"Spolehlivé japonské motory". Poznámky k diagnostice automobilů

"Spolehlivé japonské motory". Poznámky k diagnostice automobilů

19.10.2019

Motory pro Toyota vyráběné v řadě A jsou nejběžnější a jsou poměrně spolehlivé a oblíbené. V této řadě motorů zaujímá důstojné místo motor 4A ve všech jeho modifikacích. Na začátku motor měl nízký výkon. Vyráběl se s karburátorem a jedním vačkovým hřídelem, hlava motoru měla osm ventilů.

V procesu modernizace se vyráběl nejprve s 16ventilovou hlavou, poté s 20ventilovou a dvěma vačkovými hřídeli a s elektronickým vstřikováním paliva. Kromě toho měl motor další píst. Některé modifikace byly sestaveny s mechanickým kompresorem. Podívejme se blíže na 4A motor s jeho úpravami, identifikujte jej slabá místa a nevýhody.
Modifikace motor 4 A:

  • 4A-C;
  • 4A-L;
  • 4A-LC;
  • 4A-E;
  • 4A-ELU;
  • 4A-F;
  • 4A-FE;
  • 4A-FE Gen1;
  • 4A-FE Gen 2;
  • 4A-FE Gen 3;
  • 4A-FHE;
  • 4A-GE;
  • 4A-GE Gen 1 "Big Port";
  • 4A-GE Gen 2;
  • 4A-GE Gen 3 "Red Top"/Malý port";
  • 4A-GE Gen 4 20V "Silver Top";
  • 4A-GE Gen 5 20V "Black Top";
  • 4A-GZE;
  • 4A-GZE Gen 1;
  • 4A-GZE Gen 2.

Vozy se vyráběly s motorem 4A a jeho modifikacemi Toyota:

  • Koruna;
  • Koruna;
  • Karina;
  • Karina E;
  • celica;
  • Avensis;
  • Kaldina;
  • AE86;
  • Ceres;
  • Levin;
  • Spasio;
  • Sprinter;
  • Sprinter Karibik;
  • sprinter Marino;
  • Sprinter Trueno;

Kromě Toyoty byly motory instalovány do automobilů:

  • Chevrolet Nova;
  • Geo Prism.

Slabé stránky motoru 4A

  • lambda sonda;
  • Snímač absolutního tlaku;
  • snímač teploty motoru;
  • Těsnění klikového hřídele.

Slabá místa více detailů motoru...

Selhání lambda sondy nebo jinak řečeno lambda sondy se nestává často, ale v praxi se to stává. V ideálním případě je pro nový motor zdroj kyslíkového senzoru malý 40 - 80 tisíc km, pokud má motor problém s pístem a spotřebou paliva a oleje, pak se zdroj výrazně sníží.

Senzor absolutního tlaku

Snímač zpravidla selže kvůli špatnému spojení mezi sacím šroubením a sacím potrubím.

Snímač teploty motoru

Odmítá ne často, jak se říká zřídka, ale trefně.

Olejová těsnění klikového hřídele

Problém s olejovými těsněními klikového hřídele souvisí s uplynulou životností motoru a uplynulým časem od data výroby. Projevuje se to jednoduše – únikem nebo mačkáním oleje. I když má vůz nízký počet najetých kilometrů, pryž, ze které jsou těsnění vyrobena, po 10 letech ztrácí své fyzikální vlastnosti.

Nevýhody motoru 4A

  • Zvýšená spotřeba paliva;
  • Volnoběžné otáčky motoru plovoucí nebo zvýšené.
  • Motor se nespustí, zastaví se plovoucí rychlostí;
  • Motor se zastaví;
  • Zvýšená spotřeba oleje;
  • Motor klepe.

Nedostatky motor 4A v detailu…

Zvýšená spotřeba paliva

Důvodem zvýšené spotřeby paliva může být:

  1. porucha lambda sondy. Nevýhodu odstraňuje její výměna. Kromě toho, pokud jsou na svíčkách saze a černý kouř z výfuku a motor vibruje na volnoběh, zkontrolujte snímač absolutního tlaku.
  2. Znečištěné trysky, pokud ano, musí být omyty a propláchnuty.

Volnoběžné otáčky motoru plovoucí nebo zvýšené

Příčinou může být porucha volnoběžného ventilu a saze na škrticí klapce nebo porucha v nastavení snímače polohy škrticí klapky. Pro každý případ očistěte škrticí klapku, propláchněte ventil volnoběhu, zkontrolujte zapalovací svíčky – k problému s volnoběžnými otáčkami motoru přispívá i přítomnost karbonových usazenin. Nebude zbytečné kontrolovat trysky a činnost ventilu klikové skříně.

Motor nestartuje, zastaví se plovoucí rychlostí

Tento problém indikuje poruchu snímače teploty motoru.

Motor se zastaví

V tomto případě to může být způsobeno ucpaným palivovým filtrem. Kromě zjištění příčiny poruchy zkontrolujte činnost palivového čerpadla a stav rozdělovače.

Zvýšená spotřeba oleje

Výrobce povoluje běžnou spotřebu oleje do 1 litru na 1000 km, pokud je více, tak je problém s pístem. Alternativně může pomoci výměna pístních kroužků a těsnění dříku ventilu.

klepání motoru

Klepání motoru je signálem opotřebení pístních čepů a porušení vůle ventilů rozvodu plynu v hlavě motoru. V souladu s návodem k obsluze se ventily seřizují po 100 000 km.

Všechny nedostatky a slabiny zpravidla nejsou výrobní nebo konstrukční vadou, ale jsou důsledkem nedodržení správného provozu. Pokud totiž nebudete zařízení včas opravovat, nakonec vás o to požádá. Musíte pochopit, že v podstatě všechny poruchy a problémy začínají po vývoji určitého zdroje (300 000 km), to je první příčina všech poruch a nedostatků v práci motor 4A.

Vozy s motory verze Lean Burn budou velmi drahé, jezdí na chudou směs a jejich výkon je mnohem nižší, jsou rozmarnější a spotřební materiál je drahý.

Všechny popsané slabiny a nedostatky jsou relevantní i pro motory 5A a 7A.


P.S. Vážení majitelé Toyoty s motorem 4A a jeho úpravami! K tomuto článku můžete přidávat své komentáře, za které vám budu vděčný.

). Zde ale Japonci běžného spotřebitele „ošehli“ – mnoho majitelů těchto motorů narazilo na tzv. „LB problém“ v podobě charakteristických poruch ve středních otáčkách, jejichž příčinu se nepodařilo řádně zjistit a vyléčit – buď kvalita na vině je místní benzin, nebo problémy v napájení systémů a zapalování (tyto motory jsou zvláště citlivé na stav svíček a vysokonapěťových drátů), nebo vše dohromady - někdy se ale chudá směs prostě nezapálila.

„Motor 7A-FE LeanBurn má nízké otáčky a ještě větší točivý moment než 3S-FE díky maximálnímu točivému momentu při 2800 ot./min.
Speciální trakce na spodcích 7A-FE ve verzi LeanBurn je jedním z běžných omylů. Všechny civilní motory řady A mají „dvojhrbovou“ křivku točivého momentu – s prvním vrcholem při 2500-3000 a druhým při 4500-4800 ot./min. Výška těchto vrcholů je téměř stejná (do 5 Nm), ale pro motory STD je druhý vrchol o něco vyšší a pro LB - první. Absolutní maximální točivý moment pro STD je navíc stále vyšší (157 oproti 155). Nyní porovnejme s 3S-FE - maximální momenty 7A-FE LB a 3S-FE typu "96 jsou 155/2800 a 186/4400 Nm, v tomto pořadí, při 2800 otáčkách za minutu 3S-FE vyvine 168-170 Nm a 155 Nm již vyrábí v oblasti 1700-1900 ot./min.

4A-GE 20V (1991-2002)- nucený motor pro malé "sportovní" modely nahradil v roce 1991 předchozí základní motor celé řady A (4A-GE 16V). K zajištění výkonu 160 koní Japonci použili blokovou hlavu s 5 ventily na válec, systém VVT (první použití variabilního časování ventilů v Toyotě), tachometr redline na 8 tisíc. Nevýhodou je, že takový motor byl dokonce zpočátku nevyhnutelně „ušatanský“ ve srovnání s průměrnou výrobou 4A-FE téhož roku, protože nebyl zakoupen v Japonsku pro ekonomickou a šetrnou jízdu.

motorPROTI
NMČRD×SRONIGVD
4A-FE1587 110/5800 149/4600 9.5 81,0 × 77,091 dist.Ne
4A-FE hp1587 115/6000 147/4800 9.5 81,0 × 77,091 dist.Ne
4A-FE LB1587 105/5600 139/4400 9.5 81,0 × 77,091 DIS-2Ne
4A-GE 16V1587 140/7200 147/6000 10.3 81,0 × 77,095 dist.Ne
4A-GE 20V1587 165/7800 162/5600 11.0 81,0 × 77,095 dist.Ano
4A-GZE1587 165/6400 206/4400 8.9 81,0 × 77,095 dist.Ne
5A-FE1498 102/5600 143/4400 9.8 78,7 × 77,091 dist.Ne
7A-FE1762 118/5400 157/4400 9.5 81,0 × 85,591 dist.Ne
7A-FE LB1762 110/5800 150/2800 9.5 81,0 × 85,591 DIS-2Ne
8A-FE1342 87/6000 110/3200 9.3 78,7,0 x 69,091 dist.-

* Zkratky a symboly:
V - pracovní objem [cm 3]
N - maximální výkon [hp při otáčkách]
M - maximální točivý moment [Nm při ot./min]
CR - kompresní poměr
D×S - vrtání válce × zdvih [mm]
RON je výrobcem doporučené oktanové číslo pro benzín.
IG - typ zapalovacího systému
VD - kolize ventilů a pístu při zničení rozvodového řemene / řetězu

"E"(R4, pásek)
Hlavní "subkompaktní" řada motorů. Používá se na modelech tříd "B", "C", "D" (rodiny Starlet, Tercel, Corolla, Caldina).

4E-FE, 5E-FE (1989-2002)- základní motory řady
5E-FHE (1991-1999)- verze s vysokou redline a systémem pro změnu geometrie sacího potrubí (pro zvýšení maximálního výkonu)
4E-FTE (1989-1999)- turbo verze, která proměnila Starlet GT v "šílenou stoličku"

Na jednu stranu má tato řada málo kritických bodů, na druhou stranu je příliš znatelně horší v životnosti než řada A. Charakteristické jsou velmi slabé těsnění klikového hřídele a menší zásoba skupiny válec-píst, navíc formálně neopravitelný. Měli byste také pamatovat na to, že výkon motoru musí odpovídat třídě vozu - proto je docela vhodný pro Tercel, 4E-FE je již slabý pro Corollu a 5E-FE pro Caldinu. Při práci na maximální kapacitu mají kratší zdroj a zvýšené opotřebení ve srovnání s motory s větším objemem u stejných modelů.

motorPROTI
NMČRD×SRONIGVD
4E-FE1331 86/5400 120/4400 9.6 74,0 × 77,491 DIS-2Ne*
4E-FTE1331 135/6400 160/4800 8.2 74,0 × 77,491 dist.Ne
5E-FE1496 89/5400 127/4400 9.8 74,0 × 87,091 DIS-2Ne
5E-FHE1496 115/6600 135/4000 9.8 74,0 × 87,091 dist.Ne
* Za normálních podmínek nedochází ke kolizi mezi ventily a písty, ale za nepříznivých okolností (viz níže) je kontakt možný.

"G"(R6, pásek)
1G-FE (1998-2008)- instalováno na modelech s pohonem zadních kol třídy "E" (Mark II, rodiny Crown).

Nutno podotknout, že pod stejným názvem existovaly dva vlastně odlišné motory. V optimální formě - osvědčený, spolehlivý a bez technických kudrlinek - byl motor vyroben v letech 1990-98 ( 1G-FE typ"90). Mezi nedostatky patří pohon olejového čerpadla rozvodovým řemenem, který tomu tradičně neprospívá (při studeném startu s velmi zahuštěným olejem může řemen přeskakovat nebo se prořezat zuby, není potřeba olej navíc těsnění proudící uvnitř rozvodové skříně) a tradičně slabý snímač tlaku oleje. Obecně výborný agregát, ale od auta s tímto motorem byste neměli požadovat dynamiku závodního vozu.

V roce 1998 byl motor radikálně změněn, zvýšením kompresního poměru a maximálních otáček vzrostl výkon o 20 koní. Motor dostal systém VVT, systém změny geometrie sacího potrubí (ACIS), zapalování bez rozdělovače a elektronicky řízenou škrticí klapku (ETCS). Nejzávažnější změny se dotkly mechanické části, kde zůstalo zachováno pouze celkové uspořádání - zcela se změnila konstrukce a náplň hlavy bloku, objevil se napínač řemenu, byl aktualizován blok válců a celá skupina válců a pístů, změnil se klikový hřídel. Náhradní díly 1G-FE typ 90 a typ 98 většinou nejsou zaměnitelné. Ventily, když se rozvodový řemen přetrhne ohnutý. Spolehlivost a zdroje nového motoru se určitě snížily, ale co je nejdůležitější - od legendárního nezničitelnost, nenáročnost na údržbu a nenáročnost, jedno jméno v ní zůstalo.

motorPROTI
NMČRD×SRONIGVD
1G-FE typ"901988 140/5700 185/4400 9.6 75,0 × 75,091 dist.Ne
1G-FE typ"981988 160/6200 200/4400 10.0 75,0 × 75,091 DIS-6Ano

"K"(R4, řetěz + OHV)
Absolutní rekord v životnosti mezi motory Toyota patří řadě K, jejíž výroba trvala od roku 1966 do roku 2013. Během posuzovaného období byly tyto motory používány na komerčních verzích rodiny LiteAce / TownAce a na speciálních zařízeních (nakladače).
Extrémně spolehlivá a archaická konstrukce (spodní vačkový hřídel v bloku) s dobrou mírou bezpečnosti. Společnou nevýhodou jsou skromné ​​charakteristiky odpovídající době, kdy se série objevila.

5K (1978-2013), 7K (1996-1998)- verze s karburátorem. Hlavním a prakticky jediným problémem je příliš složitá soustava pohonu, místo snahy o její opravu či seřízení je optimální ihned namontovat jednoduchý karburátor pro lokálně vyráběné vozy.
7K-E (1998-2007)- nejnovější modifikace vstřikovače.

MotorPROTI
NMČRD×SRONIGVD
5 tis1496 70/4800 115/3200 9.3 80,5×75,091 dist.-
7 tis1781 76/4600 140/2800 9.5 80,5×87,591 dist.-
7K-E1781 82/4800 142/2800 9.0 80,5×87,591 dist.-

"S"(R4, pásek)
Jedna z nejúspěšnějších masových sérií. Byly instalovány na vozy tříd "D" (rodiny Corona, Vista), "E" (Camry, Mark II), minivany a dodávky (Ipsum, TownAce), SUV (RAV4, Harrier).

3S-FE (1986-2003)- základní motor řady je výkonný, spolehlivý a nenáročný. Bez kritických nedostatků, i když ne ideální - docela hlučné, náchylné k vyhoření oleje souvisejícím s věkem (s najetými kilometry více než 200 tisíc km), rozvodový řemen je přetížen čerpadlem a pohonem olejového čerpadla a je nepohodlně nakloněn pod kapotou. Nejlepší úpravy motoru se vyráběly od roku 1990, ale aktualizovaná verze, která se objevila v roce 1996, se již nemohla pochlubit stejným bezproblémovým provozem. Mezi závažné závady patří zlomené šrouby ojnice, které se vyskytují především na pozdním typu „96 – viz Obr. „Motory 3S a pěst přátelství“ . Ještě jednou je třeba připomenout, že je nebezpečné znovu používat šrouby ojnice u řady S.

4S-FE (1990-2001)- varianta se sníženým pracovním objemem, designem a provozem je zcela podobná 3S-FE. Jeho vlastnosti jsou dostatečné pro většinu modelů s výjimkou rodiny Mark II.

3S-GE (1984-2005)- nucený motor s "hlavovým blokem Yamaha", vyráběný v různých variantách s různým stupněm vynucení a různou složitostí konstrukce pro sportovní modely založené na třídě D. Jeho verze patřily mezi první motory Toyota s VVT a první s DVVT (Dual VVT - systém proměnného časování ventilů na sacích a výfukových vačkových hřídelích).

3S-GTE (1986-2007)- verze s turbodmychadlem. Není zbytečné připomínat vlastnosti přeplňovaných motorů: vysoké náklady na údržbu (nejlepší olej a minimální frekvence jeho výměn, nejlepší palivo), další potíže s údržbou a opravami, relativně nízký zdroj nuceného motoru a omezené zdroje turbín. Ceteris paribus, je třeba připomenout: ani první japonský kupec si nevzal turbomotor na jízdu „do pekárny“, takže otázka zbytkové životnosti motoru a vozu jako celku bude vždy otevřená, a to je trojí kritický pro ojetý vůz v Ruské federaci.

3S-FSE (1996-2001)- verze s přímým vstřikováním (D-4). Nejhorší benzínový motor Toyota vůbec. Ukázka toho, jak snadno dokáže nepotlačitelná touha po zlepšení proměnit vynikající motor v noční můru. Vezměte auta s tímto motorem absolutně nedoporučuje.
Prvním problémem je opotřebení vstřikovacího čerpadla, v důsledku čehož se do klikové skříně motoru dostává značné množství benzínu, což vede ke katastrofálnímu opotřebení klikového hřídele a všech ostatních "drhných" prvků. V sacím potrubí se vlivem činnosti systému EGR hromadí velké množství karbonu, který ovlivňuje schopnost nastartovat. "Pěst přátelství" - standardní konec kariéry pro většinu 3S-FSE (závada oficiálně uznaná výrobcem ... v dubnu 2012). Problémů je však dost v jiných motorových systémech, které mají s normálními motory řady S pramálo společného.

5S-FE (1992-2001)- verze se zvýšeným pracovním objemem. Nevýhodou je, že stejně jako na většině benzinových motorů s objemem nad dva litry i zde Japonci použili vyvažovací mechanismus poháněný převodem (nevypínatelný a obtížně seřiditelný), což nemohlo ovlivnit celkovou úroveň spolehlivosti.

motorPROTI
NMČRD×SRONIGVD
3S-FE1998 140/6000 186/4400 9,5 86,0 × 86,091 DIS-2Ne
3S-FSE1998 145/6000 196/4400 11,0 86,0 × 86,091 DIS-4Ano
3S-GE vvt1998 190/7000 206/6000 11,0 86,0 × 86,095 DIS-4Ano
3S-GTE1998 260/6000 324/4400 9,0 86,0 × 86,095 DIS-4Ano*
4S-FE1838 125/6000 162/4600 9,5 82,5×86,091 DIS-2Ne
5S-FE2164 140/5600 191/4400 9,5 87,0 × 91,091 DIS-2Ne

FZ (R6, řetěz + ozubená kola)
Nahrazuje starou řadu F, solidní klasický velkoobjemový motor. Instalováno v letech 1992-2009. na těžkých džípech (Land Cruiser 70..80..100), verze s karburátorem se nadále používá na speciálních vozidlech.

motorPROTI
NMČRD×SRONIGVD
1FZ-F4477 190/4400 363/2800 9.0 100,0 × 95,091 dist.-
1FZ-FE4477 224/4600 387/3600 9.0 100,0 × 95,091 DIS-3-


"JZ"(R6, pásek)
Nejvyšší řada klasických motorů v různých verzích byla instalována na všechny modely Toyota s pohonem zadních kol pro cestující (Mark II, Crown, rodiny sportovních kupé). Tyto motory jsou nejspolehlivější mezi výkonnými a nejvýkonnější mezi těmi, které jsou k dispozici masovému spotřebiteli.

1JZ-GE (1990-2007)- základní motor pro domácí trh.
2JZ-GE (1991-2005)- "celosvětová" možnost.
1JZ-GTE (1990-2006)- přeplňovaná verze pro domácí trh.
2JZ-GTE (1991-2005)- "celosvětová" turbo verze.
1JZ-FSE, 2JZ-FSE (2001-2007)- nejsou nejlepší možnosti s přímým vstřikováním.

Motory nemají výrazné nedostatky, jsou velmi spolehlivé při rozumném provozu a správné péči (až na to, že jsou citlivé na vlhkost, zvláště ve verzi DIS-3, proto se nedoporučuje umývat). Jsou považovány za ideální polotovary pro ladění různého stupně zlomyslnosti.

Po modernizaci v letech 1995-96. motory dostaly systém VVT a zapalování bez rozdělovače, staly se o něco úspornějšími a výkonnějšími. Zdálo by se, že jeden z mála případů, kdy aktualizovaný motor Toyota neztratil spolehlivost - více než jednou jsem musel nejen slyšet o problémech s ojnicí a skupinou pístů, ale také vidět důsledky zadření pístu. jejich zničením a ohnutím ojnic.

motorPROTI
NMČRD×SRONIGVD
1JZ-FSE2491 200/6000 250/3800 11.0 86,0 × 71,595 DIS-3Ano
1JZ-GE2491 180/6000 235/4800 10.0 86,0 × 71,595 dist.Ne
1JZ-GE vvt2491 200/6000 255/4000 10.5 86,0 × 71,595 DIS-3-
1JZ-GTE2491 280/6200 363/4800 8.5 86,0 × 71,595 DIS-3Ne
1JZ-GTE vvt2491 280/6200 378/2400 9.0 86,0 × 71,595 DIS-3Ne
2JZ-FSE2997 220/5600 300/3600 11,3 86,0 × 86,095 DIS-3Ano
2JZ-GE2997 225/6000 284/4800 10.5 86,0 × 86,095 dist.Ne
2JZ-GE vvt2997 220/5800 294/3800 10.5 86,0 × 86,095 DIS-3-
2JZ-GTE2997 280/5600 470/3600 9,0 86,0 × 86,095 DIS-3Ne

"MZ"(V6, řemen)
Jedním z prvních zvěstovatelů „třetí vlny“ byly šestky ve tvaru V pro původní vozy s pohonem předních kol třídy „E“ (rodina Camry), ale i SUV a dodávky na jejich základě (Harrier/RX300, Kluger /Highlander, Estima/Alphard).

1MZ-FE (1993-2008)- Vylepšená náhrada za řadu VZ. Blok válců s pouzdrem z lehké slitiny neznamená možnost generální opravy s vrtáním pro velikost opravy, je zde tendence ke koksování oleje a zvýšené tvorbě uhlíku v důsledku intenzivních tepelných podmínek a chladicích funkcí. V pozdějších verzích se objevil mechanismus pro změnu časování ventilů.
2MZ-FE (1996-2001)- zjednodušená verze pro tuzemský trh.
3MZ-FE (2003–2012)- Varianta s větším zdvihovým objemem pro severoamerický trh a hybridní pohonné jednotky.

motorPROTI
NMČRD×SRONIGVD
1MZ-FE2995 210/5400 290/4400 10.0 87,5 × 83,091-95 DIS-3Ne
1MZ-FE vvt2995 220/5800 304/4400 10.5 87,5 × 83,091-95 DIS-6Ano
2MZ-FE2496 200/6000 245/4600 10.8 87,5 × 69,295 DIS-3Ano
3MZ-FE vvt3311 211/5600 288/3600 10.8 92,0 × 83,091-95 DIS-6Ano
3MZ-FE vvt hp3311 234/5600 328/3600 10.8 92,0 × 83,091-95 DIS-6Ano

"RZ"(R4, řetěz)
Základní podélné benzínové motory pro střední džípy a dodávky (rodiny HiLux, LC Prado, HiAce).

3RZ-FE (1995-2003)- největší řadová čtyřka v nabídce Toyoty, celkově je charakterizována pozitivně, pozor si můžete dát jen na překomplikovaný rozvod rozvodu a vyvažovací mechanismus. Motor byl často instalován na modelech Gorkého a Uljanovského automobilového závodu Ruské federace. Pokud jde o spotřebitelské vlastnosti, hlavní věcí není počítat s vysokým poměrem tahu k hmotnosti u poměrně těžkých modelů vybavených tímto motorem.

motorPROTI
NMČRD×SRONIGVD
2RZ-E2438 120/4800 198/2600 8.8 95,0 × 86,091 dist.-
3RZ-FE2693 150/4800 235/4000 9.5 95,0 × 95,091 DIS-4-

"TZ"(R4, řetěz)
Horizontální motor navržený speciálně pro umístění pod podlahu karoserie (Estima/Previa 10..20). Toto uspořádání značně zkomplikovalo pohon namontovaných agregátů (prováděný kardanovým převodem) a systém mazání (něco jako „suchá jímka“). Při provádění jakékoli práce na motoru se proto objevily velké potíže, sklon k přehřívání a citlivost na stav oleje. Jako téměř vše, co souvisí s první generací Estima - příklad vytváření problémů od začátku.

2TZ-FE (1990-1999)- základní motor.
2TZ-FZE (1994-1999)- nucená verze s mechanickým kompresorem.

motorPROTI
NMČRD×SRONIGVD
2TZ-FE2438 135/5000 204/4000 9.3 95,0 × 86,091 dist.-
2TZ-FZE2438 160/5000 258/3600 8.9 95,0 × 86,091 dist.-

UZ(V8, řemen)
Již téměř dvě desetiletí - nejvyšší řada motorů Toyota, určená pro velká vozidla business třídy s pohonem zadních kol (Crown, Celsior) a těžká SUV (LC 100..200, Tundra / Sequoia). Velmi úspěšné motory s dobrou mírou bezpečnosti.

1UZ-FE (1989-2004)- základní motor řady pro osobní automobily. V roce 1997 dostal proměnné časování ventilů a zapalování bez rozdělovače.
2UZ-FE (1998-2012)- verze pro těžké džípy. V roce 2004 obdržel variabilní časování ventilů.
3UZ-FE (2001-2010)- Náhrada 1UZ pro osobní vozy.

motorPROTI
NMČRD×SRONIGVD
1UZ-FE3968 260/5400 353/4600 10.0 87,5×82,595 dist.-
1UZ-FE vvt3968 280/6200 402/4000 10.5 87,5×82,595 DIS-8-
2UZ-FE4663 235/4800 422/3600 9.6 94,0 × 84,091-95 DIS-8-
2UZ-FE vvt4663 288/5400 448/3400 10.0 94,0 × 84,091-95 DIS-8-
3UZ-FE vvt4292 280/5600 430/3400 10.5 91,0 × 82,595 DIS-8-

"VZ"(V6, řemen)
Obecně nepovedená série motorů, z nichž většina rychle zmizela ze scény. Byly instalovány na vozech obchodní třídy s pohonem předních kol (rodina Camry) a středních džípech (HiLux, LC Prado).

Lehké varianty se ukázaly jako nespolehlivé a vrtošivé: poctivá láska k benzínu, jedení oleje, sklon k přehřívání (což obvykle vede k deformaci a praskání hlav válců), zvýšené opotřebení hlavních čepů klikového hřídele a sofistikovaný hydraulický pohon ventilátoru. A ke všemu - relativní vzácnost náhradních dílů.

5VZ-FE (1995-2004)- používá se na HiLux Surf 180-210, LC Prado 90-120, velké dodávky z rodiny HiAce SBV. Tento motor se ukázal být na rozdíl od svých protějšků a docela nenáročný.

motorPROTI
NMČRD×SRONIGVD
1VZ-FE1992 135/6000 180/4600 9.6 78,0 x 69,591 dist.Ano
2VZ-FE2507 155/5800 220/4600 9.6 87,5×69,591 dist.Ano
3VZ-E2958 150/4800 245/3400 9.0 87,5×82,091 dist.Ne
3VZ-FE2958 200/5800 285/4600 9.6 87,5×82,095 dist.Ano
4VZ-FE2496 175/6000 224/4800 9.6 87,5 × 69,295 dist.Ano
5VZ-FE3378 185/4800 294/3600 9.6 93,5 × 82,091 DIS-3Ano

"AZ"(R4, řetěz)
Zástupci 3. vlny - "jednorázové" motory se slitinovým blokem, které nahradily řadu S. Instalovány od roku 2000 na modelech tříd "C", "D", "E" (rodiny Corolla, Premio, Camry), dodávky založené na je (Ipsum, Noah, Estima), SUV (RAV4, Harrier, Highlander).

Podrobnosti o designu a problémech – viz velká recenze "Série" .

Nejzávažnější a nejmasivnější závadou je samovolná destrukce závitu pro šrouby hlavy válců, vedoucí k narušení těsnosti plynového spoje, poškození těsnění a všech z toho plynoucích následků.

Poznámka. Pro japonské vozy 2005-2014 vydání platné přivolávací kampaň na spotřebě oleje.

motorPROTI
NMČRD×SRON
1AZ-FE1998 150/6000 192/4000 9.6 86,0 × 86,091
1AZ-FSE1998 152/6000 200/4000 9.8 86,0 × 86,091
2AZ-FE2362 156/5600 220/4000 9.6 88,5 × 96,091
2AZ-FSE2362 163/5800 230/3800 11.0 88,5 × 96,091

"NZ"(R4, řetěz)
Náhrada řady E a A, instalované od roku 1997 na modelech tříd "B", "C", "D" (rodiny Vitz, Corolla, Premio).

Další informace o designu a rozdílech v úpravách najdete ve velké recenzi "NZ Series" .

I přes to, že motory řady NZ jsou konstrukčně podobné ZZ, jsou dostatečně vynucené a fungují i ​​na modelech třídy „D“, ze všech motorů 3. vlny je lze považovat za nejbezporuchovější.

motorPROTI
NMČRD×SRON
1NZ-FE1496 109/6000 141/4200 10.5 75,0 × 84,791
2NZ-FE1298 87/6000 120/4400 10.5 75,0 × 73,591

"SZ"(R4, řetěz)
Řada SZ vděčí za svůj vznik divizi Daihatsu a je samostatným a dosti kuriózním „hybridem“ motorů 2. a 3. vlny. Instalováno od roku 1999 na modelech třídy "B" (rodina Vitz, sestavy Daihatsu a Perodua).

motorPROTI
NMČRD×SRON
1SZ-FE997 70/6000 93/4000 10.0 69,0 × 66,791
2SZ-FE1296 87/6000 116/3800 11.0 72,0 × 79,691
3SZ-VE1495 109/6000 141/4400 10.0 72,0 × 91,891

"ZZ"(R4, řetěz)
Revoluční řada nahradila starou dobrou řadu A. Instalovaly se na modely tříd „C“ a „D“ (rodiny Corolla, Premio), SUV (RAV4) a lehké minivany. Typické "jednorázové" (s hliníkovým objímkovým blokem) motory se systémem VVT. Hlavním masovým problémem je zvýšená spotřeba oleje na odpad způsobená konstrukčními prvky.

Podrobnosti o designu a problémech - viz recenze "Série ZZ. Žádný prostor pro chyby" .

1ZZ-FE (1998-2007)- základní a nejběžnější motor řady.
2ZZ-GE (1999-2006)- modernizovaný motor s VVTL (VVT plus systém proměnlivého zdvihu ventilů první generace), který má se základním motorem pramálo společného. Nejjemnější a nejkratší z nabitých motorů Toyota.
3ZZ-FE, 4ZZ-FE (1999-2009)- verze pro modely evropského trhu. Zvláštní nevýhoda - nedostatek japonského analogu vám neumožňuje koupit levný smluvní motor.

motorPROTI
NMČRD×SRON
1ZZ-FE1794 127/6000 170/4200 10.0 79,0 × 91,591
2ZZ-GE1795 190/7600 180/6800 11.5 82,0 × 85,095
3ZZ-FE1598 110/6000 150/4800 10.5 79,0 × 81,595
4ZZ-FE1398 97/6000 130/4400 10.5 79,0 × 71,395

"AR"(R4, řetěz)
Středně velká řada příčných motorů s DVVT pro doplnění a nahrazení řady AZ. Instalováno od roku 2008 na modely třídy „E“ (Camry, rodiny Crown), SUV a dodávky (RAV4, Highlander, RX, Sienna). Základní motory (1AR-FE a 2AR-FE) lze považovat za docela úspěšné.

Podrobnosti o designu a různých úpravách - viz recenze "Řada AR" .

motorPROTI
NMČRD×SRON
1AR-FE2672 182/5800 246/4700 10.0 89,9 × 104,991
2AR-FE2494 179/6000 233/4000 10.4 90,0 × 98,091
2AR-FXE2494 160/5700 213/4500 12.5 90,0 × 98,091
2AR-FSE2494 174/6400 215/4400 13.0 90,0 × 98,091
5AR-FE2494 179/6000 234/4100 10.4 90,0 × 98,0-
6AR-FSE1998 165/6500 199/4600 12.7 86,0 × 86,0-
8AR-FTS1998 238/4800 350/1650 10.0 86,0 × 86,095

"GR"(V6, řetěz)
Univerzální náhrada za řadu MZ, VZ, JZ, která se objevila v roce 2003 - bloky z lehkých slitin s otevřeným chladicím pláštěm, pohon rozvodovým řetězem, DVVT, verze s D-4. Podélné nebo příčné, instalované na mnoha modelech různých tříd - Corolla (Blade), Camry, pohon zadních kol (Mark X, Crown, IS, GS, LS), špičkové verze SUV (RAV4, RX), střední a těžké džípy (LC Prado 120...150, LC 200).

Podrobnosti o designu a problémech – viz velká recenze "série GR" .

motorPROTI
NMČRD×SRON
1GR-FE3955 249/5200 380/3800 10.0 94,0 × 95,091-95
2GR-FE3456 280/6200 344/4700 10.8 94,0 × 83,091-95
2GR-FKS3456 280/6200 344/4700 11.8 94,0 × 83,091-95
2GR-FKS hp3456 300/6300 380/4800 11.8 94,0 × 83,091-95
2GR-FSE3456 315/6400 377/4800 11.8 94,0 × 83,095
3GR-FE2994 231/6200 300/4400 10.5 87,5 × 83,095
3GR-FSE2994 256/6200 314/3600 11.5 87,5 × 83,095
4GR-FSE2499 215/6400 260/3800 12.0 83,0 × 77,091-95
5GR-FE2497 193/6200 236/4400 10.0 87,5 × 69,2-
6GR-FE3956 232/5000 345/4400 - 94,0 × 95,0-
7GR-FKS3456 272/6000 365/4500 11.8 94,0 × 83,0-
8GR-FKS3456 311/6600 380/4800 11.8 94,0 × 83,095
8GR-FXS3456 295/6600 350/5100 13.0 94,0 × 83,095

"KR"(R3, řetěz)
Pobočkové motory Daihatsu. Tříválcová náhrada za nejmladší motor řady SZ, vyrobený podle obecného kánonu 3. vlny (2004-) - s objímkovým blokem válců z lehké slitiny a konvenčním jednořadým řetězem.

motorPROTI
NMČRD×SRON
1KR-FE996 71/6000 94/3600 10.5 71,0 × 83,991
1KR-FE996 69/6000 92/3600 12.5 71,0 × 83,991
1KR-VET996 98/6000 140/2400 9.5 71,0 × 83,991

"LR"(V10, řetěz)
Hlavní „sportovní“ motor Toyoty pro Lexus LFA (2010-), poctivý vysokootáčkový sací motor, vyrobený tradičně za účasti specialistů Yamaha. Některé z konstrukčních prvků jsou odklon 72°, suchá vana, vysoký kompresní poměr, ojnice a ventily z titanové slitiny, vyvažovací mechanismus, systém Dual VVT, tradiční vstřikování, samostatné škrticí ventily pro každý válec...

motorPROTI
NMČRD×SRON
1LR-GUE4805 552/8700 480/6800 12.0 88,0 × 79,095

"NR"(R4, řetěz)
Subcompact série 4. vlna (2008-), s DVVT a hydraulickými zvedáky. Instaluje se na modely tříd "A", "B", "C" (iQ, Yaris, Corolla), lehké SUV (CH-R).

Podrobnosti o designu a úpravách - viz recenze "řada NR" .

motorPROTI
NMČRD×SRON
1NR-FE1329 100/6000 132/3800 11.5 72,5×80,591
2NR-FE1496 90/5600 132/3000 10.5 72,5×90,691
2NR-FKE1496 109/5600 136/4400 13.5 72,5×90,691
3NR-FE1197 80/5600 104/3100 10.5 72,5×72,5-
4NR-FE1329 99/6000 123/4200 11.5 72,5×80,5-
5NR-FE1496 107/6000 140/4200 11.5 72,5×90,6-
8NR-FTS1197 116/5200 185/1500 10.0 71,5×74,591-95

"TR"(R4, řetěz)
Upravená verze motorů řady RZ s novou hlavou bloku, systémem VVT, hydraulickými kompenzátory v rozvodovém pohonu, DIS-4. Instaluje se od roku 2003 na džípy (HiLux, LC Prado), dodávky (HiAce), užitková vozidla s pohonem zadních kol (Crown 10).

Poznámka. Některá vozidla 2TR-FE pro rok 2013 procházejí globální svolávací kampaní za účelem výměny vadných pružin ventilů.

motorPROTI
NMČRD×SRON
1TR-FE1998 136/5600 182/4000 9.8 86,0 × 86,091
2TR-FE2693 151/4800 241/3800 9.6 95,0 × 95,091

"UR"(V8, řetěz)
Náhrada řady UZ (2006-) - motory pro špičková vozidla s pohonem zadních kol (Crown, GS, LS) a těžké džípy (LC 200, Sequoia), vyrobené v moderní tradici se slitinovým blokem, DVVT a s D -4 verze.

1UR-FSE- základní motor řady pro osobní automobily se smíšeným vstřikováním D-4S a elektrickým pohonem pro změnu fází na sání VVT-iE.
1UR-FE- s distribuovaným vstřikováním, pro auta a džípy.
2UR-GSE- vylepšená verze "s hlavami Yamaha", titanovými sacími ventily, D-4S a VVT-iE - pro modely -F Lexus.
2UR-FSE- pro hybridní elektrárny špičkových Lexusů - s D-4S a VVT-iE.
3UR-FE- největší benzinový motor Toyota pro těžké džípy s distribuovaným vstřikováním.

motorPROTI
NMČRD×SRON
1UR-FE4608 310/5400 443/3600 10.2 94,0 × 83,191-95
1UR-FSE4608 342/6200 459/3600 10.5 94,0 × 83,191-95
1UR-FSE hp4608 392/6400 500/4100 11.8 94,0 × 83,191-95
2UR-FSE4969 394/6400 520/4000 10.5 94,0 × 89,495
2UR-GSE4969 477/7100 530/4000 12.3 94,0 × 89,495
3UR-FE5663 383/5600 543/3600 10.2 94,0 × 102,191

"ZR"(R4, řetěz)
Hromadná řada 4. vlny výměna ZZ a dvoulitru AZ. Charakteristické vlastnosti - DVVT, Valvematic (u verzí -FAE - systém pro plynulou změnu výšky zdvihu ventilu - podrobnosti viz. "Ventilový systém" ), hydraulické kompenzátory, odvzdušnění klikového hřídele. Jsou instalovány od roku 2006 na modelech tříd "B", "C", "D" (rodiny Corolla, Premio), minivanech a SUV na nich založených (Noah, Isis, RAV4).

Typické závady: zvýšená spotřeba oleje u některých verzí, usazeniny kalu ve spalovacích komorách, klepání pohonů VVT při spouštění, netěsnosti čerpadla, únik oleje zpod krytu řetězu, tradiční problémy s EVAP, vynucené volnoběhové chyby, problémy se startem za tepla kvůli tlaku palivo, vadná řemenice alternátoru, zamrznutí relé navíječe startéru. Verze s Valvematic - hlučnost vývěvy, chyby regulátoru, oddělení regulátoru od řídicího hřídele pohonu VM s následným vypnutím motoru.

motorPROTI
NMČRD×SRON
1ZR-FE1598 124/6000 157/5200 10.2 80,5×78,591
2ZR-FE1797 136/6000 175/4400 10.0 80,5×88,391
2ZR-FAE1797 144/6400 176/4400 10.0 80,5×88,391
2ZR-FXE1797 98/5200 142/3600 13.0 80,5×88,391
3ZR-FE1986 143/5600 194/3900 10.0 80,5×97,691
3ZR-FAE1986 158/6200 196/4400 10.0 80,5×97,691
4ZR-FE1598 117/6000 150/4400 - 80,5×78,5-
5ZR-FXE1797 99/5200 142/4000 13.0 80,5×88,391
6ZR-FE1986 147/6200 187/3200 10.0 80,5×97,6-
8ZR-FXE1797 99/5200 142/4000 13.0 80,5×88,391

"A25A/M20A"(R4, řetěz)
A25A (2016-)- prvorozenec 5. vlny motorů pod společnou značkou "Dynamic Force". Instalováno na modely třídy "E" (Camry, Avalon). Přestože se jedná o produkt evolučního vývoje a téměř všechna řešení byla vypracována na minulých generacích, celkově nový motor působí jako pochybná alternativa k osvědčeným motorům z řady AR.

Designové vlastnosti. Vysoký "geometrický" kompresní poměr, dlouhý zdvih, chod Miller/Atkinsonův cyklus, vyvažovací mechanismus. Hlava válců - "laserem stříkaná" sedla ventilů (jako řada ZZ), narovnané vstupní kanály, hydraulické zvedáky, DVVT (na vstupu - VVT-iE s elektrickým pohonem), vestavěný okruh EGR s chlazením. Vstřikování - D-4S (smíšené, do sacích kanálů a do válců), požadavky na oktanové číslo benzínu jsou rozumné. Chlazení - elektrické čerpadlo (první u Toyoty), elektronicky řízený termostat. Mazání - olejové čerpadlo s proměnným objemem.

M20A (2018-)- třetí motor z rodiny, z velké části podobný A25A, s pozoruhodnými vlastnostmi - laserový zářez na plášti pístu a GPF.

motorPROTI
NMČRD×SRON
M20A-FKS1986 170/6600 205/4800 13.0 80,5×97,691
M20A-FXS1986 145/6000 180/4400 14.0 80,5×97,691
A25A-FKS2487 205/6600 250/4800 13.0 87,5 × 103,491
A25A-FXS2487 177/5700 220/3600-5200 14.1 87,5 × 103,491

"V35A"(V6, řetěz)
Doplnění v řadě turbomotorů nové doby a první Toyota turbo-V6. Instalováno od roku 2017 na modelech třídy „E+“ (Lexus LS).

Konstrukční prvky - dlouhý zdvih, DVVT (sání - VVT-iE s elektrickým pohonem), "laserem stříkaná" sedla ventilů, twin-turbo (dva paralelní kompresory integrované do výfukového potrubí, elektronicky řízené WGT) a dva kapalinové mezichladiče, smíšené vstřikování D-4ST (sací otvory a válce), elektronicky řízený termostat.


Několik obecných slov o výběru motoru - "Benzín nebo nafta?"

"C"(R4, pásek)
Klasické dieselové motory s vířivou komorou, s litinovým blokem válců, dvěma ventily na válec (schéma SOHC s tlačníky) a rozvodovým řemenem. Instalováno v letech 1981-2004. na původních vozech s pohonem předních kol tříd „C“ a „D“ (rodiny Corolla, Corona) a původních dodávkách s pohonem zadních kol (TownAce, Estima 10).
Atmosférické verze (2C, 2C-E, 3C-E) jsou obecně spolehlivé a nenáročné, měly však příliš skromné ​​vlastnosti a palivová výbava u verzí s elektronicky řízenými vysokotlakými palivovými čerpadly vyžadovala jejich údržbu kvalifikovanou obsluhou nafty.
Turbodmychadlem přeplňované varianty (2C-T, 2C-TE, 3C-T, 3C-TE) často vykazovaly vysokou tendenci k přehřívání (s vyhořením těsnění, prasklinami a deformacemi hlavy válců) a rychlému opotřebení těsnění turbíny. Ve větší míře se to projevilo u minibusů a těžkých vozidel s namáhavějšími pracovními podmínkami a nejkanoničtějším příkladem špatného naftového motoru je Estima s 3C-T, kde se horizontálně umístěný motor pravidelně přehříval, kategoricky nesnášel palivo. "regionální" kvality a při první příležitosti vytlačil veškerý olej přes těsnění.
motorPROTI
NMČRD×S
1C1838 64/4700 118/2600 23.0 83,0 × 85,0
2C1975 72/4600 131/2600 23.0 86,0 × 85,0
2C-E1975 73/4700 132/3000 23.0 86,0 × 85,0
2C-T1975 90/4000 170/2000 23.0 86,0 × 85,0
2C-TE1975 90/4000 203/2200 23.0 86,0 × 85,0
3C-E2184 79/4400 147/4200 23.0 86,0 × 94,0
3C-T2184 90/4200 205/2200 22.6 86,0 × 94,0
3C-TE2184 105/4200 225/2600 22.6 86,0 × 94,0

"L"(R4, pásek)
Běžná řada dieselových motorů s vířivou komorou, instalovaná v letech 1977-2007. pro osobní vozy klasického uspořádání třídy "E" (Mark II, rodiny Crown), džípy (rodiny HiLux, LC Prado), velké minibusy (HiAce) a lehké užitkové modely. Provedení je klasické - litinový blok, SOHC s tlačníky, pohon rozvodovým řemenem.
Z hlediska spolehlivosti lze nakreslit úplnou analogii s řadou C: relativně úspěšné, ale nízkovýkonové sací (2L, 3L, 5L-E) a problematické turbodiesely (2L-T, 2L-TE). U přeplňovaných verzí lze hlavu bloku považovat za spotřební položku a nejsou vyžadovány ani kritické režimy - stačí dlouhá jízda po dálnici.
motorPROTI
NMČRD×S
L2188 72/4200 142/2400 21.5 90,0 × 86,0
2L2446 85/4200 165/2400 22.2 92,0 × 92,0
2L-T2446 94/4000 226/2400 21.0 92,0 × 92,0
2L-TE2446 100/3800 220/2400 21.0 92,0 × 92,0
3L2779 90/4000 200/2400 22.2 96,0 × 96,0
5L-E2986 95/4000 197/2400 22.2 99,5 × 96,0

"N"(R4, pásek)
Malokapacitní vznětové motory s vířivou komorou byly instalovány v letech 1986-1999. na modelech třídy "B" (rodiny Starlet a Tercel).
Měly skromné ​​vlastnosti (i s přeplňováním), pracovaly ve stresových podmínkách, a proto měly malý zdroj. Citlivý na viskozitu oleje, náchylný k poškození klikového hřídele při studeném startu. Neexistuje prakticky žádná technická dokumentace (proto například nelze provést správné seřízení vstřikovacího čerpadla), náhradní díly jsou extrémně vzácné.
motorPROTI
NMČRD×S
1N1454 54/5200 91/3000 22.0 74,0 × 84,5
1N-T1454 67/4200 137/2600 22.0 74,0 × 84,5

"HZ" (R6, ozubená kola+řemen)
Jako náhrada starých OHV motorů řady H se zrodila řada velmi úspěšných klasických dieselů. Byly instalovány na těžké džípy (rodiny LC 70-80-100), autobusy (Coaster) a užitková vozidla.
1HZ (1989-) - díky jednoduché konstrukci (litina, SOHC s tlačníky, 2 ventily na válec, jednoduché vstřikovací čerpadlo, vířivá komora, nasávání) a nedostatku síly se ukázalo, že je to nejlepší dieselový motor Toyota v z hlediska spolehlivosti.
1HD-T (1990-2002) - dostal komoru v pístu a turbodmychadlo, 1HD-FT (1995-1988) - 4 ventily na válec (SOHC s vahadlami), 1HD-FTE (1998-2007) - elektronické vstřikovací čerpadlo řízení.
motorPROTI
NMČRD×S
1 Hz4163 130/3800 284/2200 22.7 94,0 × 100,0
1HD-T4163 160/3600 360/2100 18.6 94,0 × 100,0
1HD-FT4163 170/3600 380/2500 18.,6 94,0 × 100,0
1 HD-FTE4163 204/3400 430/1400-3200 18.8 94,0 × 100,0

"KZ" (R4, ozubená kola+řemen)
Vírový turbodiesel druhé generace se vyráběl v letech 1993-2009. Instalováno na džípy (HiLux 130-180, LC Prado 70-120) a velké dodávky (rodina HiAce).
Konstrukčně to bylo složitější než u řady L - řemenový pohon rozvodu, vstřikovacího čerpadla a vyvažovacího mechanismu, povinné přeplňování turbodmychadlem, rychlý přechod na elektronické vstřikovací čerpadlo. Zvýšený zdvihový objem a výrazný nárůst točivého momentu však přispěly k tomu, že se i přes vysoké náklady na náhradní díly zbavili mnoha nedostatků předchůdce. Legenda o „mimořádné spolehlivosti“ však ve skutečnosti vznikla v době, kdy těchto motorů bylo nepoměrně méně než známého a problematického 2L-T.
motorPROTI
NMČRD×S
1KZ-T2982 125/3600 287/2000 21.0 96,0 × 103,0
1KZ-TE2982 130/3600 331/2000 21.0 96,0 × 103,0


"WZ" (R4, pás / pás + řetěz)
Od začátku roku 2000 se pod tímto označením montovaly diesely z koncernu PSA na některé „badge engineering“ a vlastní modely Toyoty.
1WZ- Peugeot DW8 (SOHC 8V) - jednoduchý atmosférický naftový motor s rozvodovým vstřikovacím čerpadlem.
Zbytek jsou tradiční přeplňované motory common rail, které používají také Peugeot/Citroen, Ford, Mazda, Volvo, Fiat...
2WZ-TV- Peugeot DV4 (SOHC 8V).
3WZ-TV- Peugeot DV6 (SOHC 8V).
4WZ-FTV, 4WZ-FHV- Peugeot DW10 (DOHC 16V).
motorPROTI
NMČRD×S
1WZ1867 68/4600 125/2500 23.0 82,2 × 88,0
2WZ-TV1398 54/4000 130/1750 18.0 73,7 × 82,0
3WZ-TV1560 90/4000 180/1500 16.5 75,0 × 88,3
4WZ-FTV1997 128/4000 320/2000 16.5 85,0 × 88,0
4WZ-FHV1997 163/3750 340/2000 16.5 85,0 × 88,0

"WW"(R4, řetěz)
Označení motorů BMW instalovaných v Toyotě od poloviny roku 2010 (1WW - N47D16, 2WW - N47D20).
Úroveň technologie a spotřebitelských kvalit odpovídá polovině poslední dekády a je částečně ještě horší než řada AD. Hliníkový objímkový blok s uzavřeným chladicím pláštěm, DOHC 16V, common rail s elektromagnetickými vstřikovači (vstřikovací tlak 160 MPa), VGT, DPF+NSR...
Nejznámějším záporákem této série jsou neodmyslitelné problémy s rozvodovým řetězem, které od roku 2007 řeší Bavoři.
motorPROTI
NMČRD×S
1WW1598 111/4000 270/1750 16.5 78,0 × 83,6
2WW1995 143/4000 320/1750 16.5 84,0 × 90,0

"INZERÁT"(R4, řetěz)
Hlavní cestující Toyota diesel. Instaluje se od roku 2005 na modely tříd „C“ a „D“ (rodiny Corolla, Avensis), SUV (RAV4) a dokonce i pohon zadních kol (Lexus IS).
Provedení 3. vlny - "jednorázový" objímkový blok z lehké slitiny s otevřeným chladicím pláštěm, 4 ventily na válec (DOHC s hydraulickými zvedáky), pohon rozvodovým řetězem, turbína s proměnnou geometrií (VGT), u motorů o zdvihovém objemu 2,2 l je instalován vyvažovací mechanismus . Palivová soustava - common-rail, vstřikovací tlak 25-167 MPa (1AD-FTV), 25-180 (2AD-FTV), 35-200 MPa (2AD-FHV), nucené verze používají piezoelektrické vstřikovače. Na pozadí konkurentů lze specifické vlastnosti motorů řady AD nazvat slušnými, ale nikoli vynikajícími.
Závažné vrozené onemocnění - vysoká spotřeba oleje a z toho vyplývající problémy s rozsáhlou tvorbou karbonu (od ucpání EGR a sacího traktu až po usazeniny na pístech a poškození těsnění hlavy válců), záruka se vztahuje na výměnu pístů, kroužků a všech klikových hřídelí ložiska. Dále charakteristické: chladící kapalina odcházející přes těsnění hlavy válců, netěsnosti čerpadla, poruchy systému regenerace filtru pevných částic, zničení akčního členu škrticí klapky, únik oleje z vany, vadný posilovač vstřikovačů (EDU) a samotné vstřikovače, zničení vstřikovacího čerpadla vnitřnosti.

Více o designu a problémech – viz velký přehled "Série" .

motorPROTI
NMČRD×S
1AD-FTV1998 126/3600 310/1800-2400 15.8 86,0 × 86,0
2AD-FTV2231 149/3600 310..340/2000-2800 16.8 86,0 × 96,0
2AD-FHV2231 149...177/3600 340..400/2000-2800 15.8 86,0 × 96,0


"GD"(R4, řetěz)
Nová řada, která přišla v roce 2015 nahradit diesely KD. Ve srovnání s předchůdcem můžeme zaznamenat pohon rozvodovým řetězem, vícestupňové vstřikování paliva (tlak až 220 MPa), elektromagnetické vstřikovače, nejpokročilejší systém snižování toxicity (až vstřikování močoviny) ...

Po krátkou dobu provozu se zvláštní problémy ještě nestihly projevit, kromě toho, že mnoho majitelů si v praxi vyzkoušelo, co znamená „moderní ekologický diesel Euro V s DPF“ ...

motorPROTI
NMČRD×S
1GD-FTV2755 177/3400 450/1600 15.6 92,0 × 103,6
2GD-FTV2393 150/3400 400/1600 15.6 92,0 × 90,0

"KD" (R4, ozubená kola+řemen)
Modernizace motoru 1KZ na nový napájecí systém vedla ke vzniku dvojice motorů s dlouhou životností, které se rozšířily. Instalováno od roku 2000 na džípy / pickupy (rodiny Hilux, LC Prado), velké dodávky (HiAce) a užitková vozidla.
Konstrukčně blízko KZ - litinový blok, rozvodový řemenový pohon, vyvažovací mechanismus (na 1KD), nicméně je již použita turbína VGT. Palivová soustava - common-rail, vstřikovací tlak 32-160 MPa (1KD-FTV, 2KD-FTV HI), 30-135 MPa (2KD-FTV LO), elektromagnetické vstřikovače u starších verzí, piezoelektrické u verzí s Euro-5.
Po desetiletí a půl na montážní lince se série morálně zastarala - technické vlastnosti jsou skromné ​​podle moderních standardů, průměrná účinnost, "traktorová" úroveň pohodlí (z hlediska vibrací a hluku). Nejzávažnější konstrukční vadu - zničení pístů () - oficiálně uznává Toyota.
motorPROTI
NMČRD×S
1KD-FTV2982 160..190/3400 320..420/1600-3000 16.0..17.9 96,0 × 103,0
2KD-FTV2494 88..117/3600 192..294/1200-3600 18.5 92,0 × 93,8

"ND"(R4, řetěz)
Vzhledově první diesel Toyota 3. vlny. Instalováno od roku 2000 na modely třídy "B" a "C" (rodiny Yaris, Corolla, Probox, Mini One).
Provedení - "jednorázový" objímkový blok z lehké slitiny s otevřeným chladicím pláštěm, 2 ventily na válec (SOHC s vahadly), pohon rozvodovým řetězem, turbína VGT. Palivový systém - common-rail, vstřikovací tlak 30-160 MPa, elektromagnetické vstřikovače.
Jedním z nejproblematičtějších moderních dieselových motorů v provozu s velkým seznamem pouze vrozených „záručních“ onemocnění je porušení těsnosti kloubu hlavy bloku, přehřívání, destrukce turbíny, spotřeba oleje a dokonce i nadměrné vytékání paliva do kliková skříň s doporučením na následnou výměnu bloku válců ...
motorPROTI
NMČRD×S
1ND TV1364 90/3800 190..205/1800-2800 17.8..16.5 73,0 × 81,5

"VD" (V8, ozubená kola + řetěz)
Špičkový diesel Toyota a první diesel společnosti s takovým uspořádáním. Instalováno od roku 2007 na těžkých džípech (LC 70, LC 200).
Provedení - litinový blok, 4 ventily na válec (DOHC s hydraulickými zvedáky), pohon rozvodovým řetězem (dva řetězy), dvě turbíny VGT. Palivový systém - common-rail, vstřikovací tlak 25-175 MPa (HI) nebo 25-129 MPa (LO), elektromagnetické vstřikovače.
V provozu - los ricos tambien lloran: vrozený odpad oleje již není považován za problém, vše je tradiční s tryskami, ale problémy s vložkami předčily všechna očekávání.
motorPROTI
NMČRD×S
1VD-FTV4461 220/3600 430/1600-2800 16.8 86,0 × 96,0
1VD-FTV hp4461 285/3600 650/1600-2800 16.8 86,0 × 96,0

Obecné poznámky

Některé vysvětlivky k tabulkám, stejně jako povinné komentáře k obsluze a výběru spotřebního materiálu by tento materiál velmi ztěžovaly. Proto byly otázky, které jsou významově soběstačné, přesunuty do samostatných článků.

Oktanové číslo
Obecné rady a doporučení od výrobce - "Jaký benzín nalijeme do Toyoty?"

Motorový olej
Obecné tipy pro výběr motorového oleje - "Jaký olej naléváme do motoru?"

Zapalovací svíčka
Obecné poznámky a katalog doporučených svíček - "Zapalovací svíčka"

Baterie
Některá doporučení a katalog standardních baterií - "Baterie pro Toyotu"

Napájení
Trochu více o vlastnostech - "Jmenovité výkonové charakteristiky motorů Toyota"

Tankovací nádrže
Příručka výrobce - "Objemy plnění a kapaliny"

Časový pohon v historickém kontextu

Vývoj návrhů mechanismů distribuce plynu v Toyotě po několik desetiletí šel jakousi spirálou.

Nejarchaičtější motory OHV z větší části zůstaly v 70. letech 20. století, ale někteří jejich zástupci byli upraveni a zůstali v provozu až do poloviny 2000 (řada K). Spodní vačkový hřídel byl poháněn krátkým řetězem nebo ozubenými koly a pohyboval tyčemi pomocí hydraulických tlačníků. OHV dnes Toyota používá pouze v segmentu nákladních dieselů.

Od druhé poloviny 60. let se začaly objevovat motory SOHC a DOHC různých řad - zpočátku s pevnými dvouřadými řetězy, s hydraulickými kompenzátory nebo seřizováním ventilových vůlí podložkami mezi vačkovým hřídelem a tlačníkem (méně často šrouby).

První série s rozvodovým řemenem (A) se zrodila teprve koncem 70. let, ale v polovině 80. let se takové motory – to, čemu říkáme „klasika“ – staly naprostým mainstreamem. Nejprve SOHC, pak DOHC s písmenem G v indexu - "široký Twincam" s pohonem obou vačkových hřídelí od řemene a pak masivní DOHC s písmenem F, kde jeden z hřídelů spojených ozubeným kolem byl poháněn pás. Vůle v DOHC byly upraveny podložkami nad tlačnou tyčí, ale některé motory s hlavami navrženými Yamaha si zachovaly princip umístění podložek pod tlačnou tyč.

Když se u většiny sériově vyráběných motorů přetrhl řemen, ventily a písty se nevyskytovaly, s výjimkou nucených 4A-GE, 3S-GE, některých V6, motorů D-4 a samozřejmě dieselových motorů. V druhém případě jsou důsledky kvůli konstrukčním prvkům obzvláště závažné - ventily se ohýbají, vodicí pouzdra se zlomí a vačkový hřídel se často zlomí. U benzinových motorů hraje určitou roli náhoda - v „neprohýbajícím se“ motoru se někdy srazí píst a ventil pokrytý silnou vrstvou sazí a v „ohybu“ mohou ventily naopak úspěšně viset v neutrální pozici.

V druhé polovině 90. let se objevily zásadně nové motory třetí vlny, na které se vrátil pohon rozvodovým řetězem a standardem se staly mono-VVT (variabilní fáze sání). Řetězy zpravidla poháněly oba vačkové hřídele u řadových motorů, u motorů ve tvaru V byl mezi vačkovými hřídeli jedné hlavy převodový pohon nebo krátký přídavný řetěz. Na rozdíl od starých dvouřadých řetězů nové dlouhé jednořadé válečkové řetězy již nebyly odolné. Vůle ventilů se nyní téměř vždy nastavovaly výběrem různě vysokých stavěcích zdvihátek, čímž byl postup příliš pracný, zdlouhavý, nákladný, a tudíž nepopulární - většinou majitelé jednoduše přestali vůle hlídat.

U motorů s řetězovým pohonem se tradičně nepočítá s případy přetržení, nicméně v praxi při prokluzování nebo nesprávné montáži řetězu dochází v naprosté většině případů k vzájemnému setkání ventilů a pístů.

Svérázným odvozením mezi motory této generace byl nucený 2ZZ-GE s proměnným zdvihem ventilů (VVTL-i), ale v této podobě se koncepce distribuce a vývoje nedočkala.

Již v polovině roku 2000 začala éra další generace motorů. Z hlediska časování jsou jejich hlavními charakteristickými znaky Dual-VVT (variabilní fáze na vstupu a výstupu) a oživené hydraulické kompenzátory v pohonu ventilu. Dalším experimentem byla druhá možnost změny zdvihu ventilu - Valvematic u řady ZR.

Jednoduchou reklamní frázi „řetěz je navržen tak, aby fungoval po celou dobu životnosti auta“ mnozí vzali doslova a na jejím základě začali rozvíjet legendu o neomezeném zdroji řetězu. Ale jak se říká, snění není škodlivé ...

Praktické výhody řetězového pohonu ve srovnání s řemenovým pohonem jsou jednoduché: pevnost a odolnost - řetěz se relativně neláme a vyžaduje méně časté plánované výměny. Druhý zisk, rozložení, je důležitý pouze pro výrobce: pohon čtyř ventilů na válec přes dvě hřídele (i s mechanismem změny fáze), pohon vysokotlakého palivového čerpadla, čerpadla, olejového čerpadla - vyžadují dostatečně velká šířka pásu. Zatímco instalace tenkého jednořadého řetězu místo něj umožňuje ušetřit několik centimetrů od podélného rozměru motoru a zároveň snížit příčný rozměr a vzdálenost mezi vačkovými hřídeli díky tradičně menšímu průměru řetězových kol ve srovnání s řemenicemi v řemenových převodech. Dalším malým plusem je menší radiální zatížení hřídelí díky menšímu předpětí.

Nesmíme ale zapomenout na standardní mínusy řetězů.
- V důsledku nevyhnutelného opotřebení a vzhledu vůle v závěsech článků se řetěz během provozu natahuje.
- Pro boj s natahováním řetězu je vyžadován buď pravidelný "tahací" postup (jako u některých archaických motorů), nebo instalace automatického napínáku (což dělá většina moderních výrobců). Tradiční hydraulický napínák vychází z obecného systému mazání motoru, což negativně ovlivňuje jeho životnost (proto jej Toyota u řetězových motorů nové generace umisťuje mimo, čímž je výměna maximálně zjednodušena). Někdy ale natažení řetězu překročí mez seřizovacích možností napínáku a následky pro motor jsou pak velmi tristní. A některým výrobcům automobilů třetí třídy se daří instalovat hydraulické napínače bez ráčny, což umožňuje i neopotřebovanému řetězu „hrát si“ s každým startem.
- Kovový řetěz v procesu práce nevyhnutelně "prořezává" botky napínačů a tlumičů, postupně opotřebovává řetězová kola hřídelů a produkty opotřebení se dostávají do motorového oleje. Ještě horší je, že mnoho majitelů při výměně řetězu nemění řetězová kola a napínáky, i když musí pochopit, jak rychle může staré řetězové kolo zničit nový řetěz.
- I provozuschopný pohon rozvodovým řetězem vždy pracuje znatelně hlučněji než řemenový pohon. Mimo jiné jsou otáčky řetězu nerovnoměrné (zejména při malém počtu zubů řetězového kola) a při zařazení článku do záběru vždy dojde k úderu.
- Cena řetězu je vždy vyšší než cena sady rozvodového řemene (a někteří výrobci jsou prostě nedostačující).
- Výměna řetězu je pracnější (stará metoda "Mercedes" na Toyotách nefunguje). A v tomto procesu je vyžadována značná dávka přesnosti, protože ventily v řetězových motorech Toyota se setkávají s písty.
- Některé motory odvozené od Daihatsu používají místo válečkových řetězů ozubené řetězy. Z definice jsou tišší v provozu, přesnější a odolnější, ale z nevysvětlitelných důvodů mohou někdy prokluzovat na ozubených kolech.

V důsledku toho – snížily se náklady na údržbu přechodem na rozvodové řetězy? Řetězový pohon vyžaduje ten či onen zásah minimálně stejně často jako řemenový - hydraulické napínače se půjčují, průměrně se řetěz natáhne přes 150 t.km ... a náklady "na kruh" jsou vyšší, zvláště pokud nevyřezávejte detaily a vyměňte všechny potřebné komponenty současně s pohonem.

Řetěz může být dobrý - pokud je dvouřadý, v motoru 6-8 válců a na krytu je třípaprsková hvězda. Ale na klasických motorech Toyota byl rozvodový řemen tak dobrý, že přechod na tenké dlouhé řetězy byl jasným krokem zpět.

"Sbohem karburátoru"

Ale ne všechna archaická řešení jsou spolehlivá a karburátory Toyota jsou toho názorným příkladem. Naštěstí naprostá většina současných řidičů Toyoty začala okamžitě se vstřikovacími motory (které se objevily již v 70. letech), obcházely japonské karburátory, takže jejich vlastnosti nemohou v praxi srovnávat (ačkoliv na domácím japonském trhu jednotlivé úpravy karburátorů vydržely až do roku 1998, na vnější - do roku 2004).

V postsovětském prostoru nebude mít systém napájení karburátorů pro lokálně vyráběné vozy nikdy konkurenci, pokud jde o údržbu a rozpočet. Veškerá hloubková elektronika - EPHH, vše vakuové - automatické odvětrávání UOZ a klikové skříně, veškerá kinematika - plyn, ruční sání a pohon druhé komory (Solex). Vše je poměrně jednoduché a srozumitelné. Cena za cent vám umožní doslova převážet druhou sadu napájecích a zapalovacích systémů v kufru, ačkoli náhradní díly a „dokhtura“ lze vždy najít někde poblíž.

Karburátor Toyota je úplně jiná věc. Stačí se podívat na nějaké 13T-U z přelomu 70-80 let - opravdové monstrum se spoustou chapadel podtlakových hadic... No, pozdější "elektronické" karburátory obecně představovaly vrchol složitosti - katalyzátor, lambda sonda , obtok vzduchu do výfuku, obtok výfukových plynů (EGR), elektrické ovládání sání, dvou nebo třístupňová regulace volnoběhu při zátěži (elektrické spotřebiče a posilovač řízení), 5-6 pneumatických pohonů a dvoustupňové klapky, odvětrávání nádrže a plováková komora, 3-4 elektropneumatické ventily, termopneumatické ventily, EPHX, vakuový korektor, systém ohřevu vzduchu, kompletní sada senzorů (teplota chladicí kapaliny, nasávaný vzduch, rychlost, detonace, DZ koncový spínač), katalyzátor, elektronické ovládání jednotka ... Je s podivem, proč byly takové potíže vůbec potřeba, když došlo k úpravám s normálním vstřikováním, ale ať tak či onak, takové systémy, vázané na vakuum, elektroniku a kinematiku pohonu, fungovaly ve velmi jemné rovnováze. Rovnováha byla porušena elementárním způsobem – ani jeden karburátor není imunní vůči stáří a špíně. Někdy bylo všechno ještě hloupější a jednodušší - přehnaně impulzivní "pán" odpojil všechny hadice za sebou, ale samozřejmě si nepamatoval, kde jsou připojeny. Nějakým způsobem je možné tento zázrak oživit, ale je extrémně obtížné nastavit správný provoz (současně udržovat normální studený start, normální zahřívání, normální volnoběh, normální korekci zatížení, normální spotřebu paliva). Jak asi tušíte, pár karburátorů se znalostí japonských specifik žilo pouze v Primorye, ale po dvou desetiletích si je ani místní obyvatelé pravděpodobně nepamatují.

Výsledkem bylo, že distribuované vstřikování Toyota se zpočátku ukázalo jako jednodušší než pozdní japonské karburátory - nebylo v něm o mnoho více elektriky a elektroniky, ale vakuum se hodně zvrhlo a neexistovaly žádné mechanické pohony se složitou kinematikou - což nám dalo tak cenné spolehlivost a udržovatelnost.

Majitelé prvních motorů D-4 si svého času uvědomili, že kvůli své extrémně pochybné pověsti prostě nemohou prodat svá auta bez hmatatelných ztrát - a šli do útoku ... Proto poslouchali jejich "rady" a "zkušenosti", člověk si musel pamatovat, že nejsou jen morálně, ale hlavně finančně zainteresovaný při vytváření rozhodně pozitivního veřejného mínění ohledně motorů s přímým vstřikováním (DI).

Nejnerozumnější argument ve prospěch D-4 je následující - "přímé vstřikování brzy nahradí tradiční motory." I kdyby to byla pravda, v žádném případě by to nenaznačovalo, že alternativa k LV motorům již neexistuje Nyní. D-4 byl po dlouhou dobu chápán obecně jako jeden konkrétní motor - 3S-FSE, který byl instalován na relativně cenově dostupné sériově vyráběné automobily. Ale byly pouze dokončeny tři Modely Toyota z let 1996-2001 (pro tuzemský trh), přičemž přímou alternativou byla vždy alespoň verze s klasickým 3S-FE. A pak byla obvykle zachována volba mezi D-4 a normální injekcí. A od druhé poloviny roku 2000 Toyota obecně opustila použití přímého vstřikování u motorů v masovém segmentu (viz. "Toyota D4 - vyhlídky?" ) a k této myšlence se začal vracet až o deset let později.

"Motor je výborný, jen máme špatný benzín (příroda, lidi...)" - to je zase z oblasti scholastiky. Ať je tento motor dobrý pro Japonce, ale k čemu je tohle v Ruské federaci? - země ne nejlepšího benzínu, drsného klimatu a nedokonalých lidí. A kde místo mýtických předností D-4 vycházejí najevo jen jeho nedostatky.

Je krajně nečestné apelovat na zahraniční zkušenosti – „ale v Japonsku, ale v Evropě“... Japonci jsou hluboce znepokojeni přitaženým problémem CO2, Evropané kombinují blinkry na snižování emisí a účinnosti (není to nadarmo že více než polovinu trhu tam zaujímají dieselové motory). Obyvatelstvo Ruské federace se s nimi příjmově většinou nemůže srovnávat a kvalita místního paliva je horší i než ve státech, kde se s přímým vstřikováním do určité doby neuvažovalo - především kvůli nevhodnému palivu (mimo jiné např. výrobce upřímně špatného motoru tam může být potrestán dolarem) .

Historky, že „motor D-4 spotřebuje o tři litry méně“, jsou jen dezinformací. I podle pasu byla maximální úspora nového 3S-FSE oproti novému 3S-FE na jednom modelu 1,7 l / 100 km - a to je v japonském testovacím cyklu s velmi tichými podmínkami (skutečné úspory tedy byly vždy méně). Při dynamické jízdě městem D-4 pracující v režimu výkonu v zásadě nesnižuje spotřebu. Totéž se děje při rychlé jízdě po dálnici - zóna hmatatelné účinnosti D-4 z hlediska rychlosti a rychlosti je malá. A obecně je nekorektní mluvit o „regulované“ spotřebě u auta, které není nikterak nové – záleží v mnohem větší míře na technickém stavu konkrétního auta a stylu jízdy. Praxe ukázala, že některé z 3S-FSE naopak výrazně spotřebovávají více než 3S-FE.

Často bylo slyšet "ano, levné čerpadlo vyměníte rychle a nejsou žádné problémy." Co říkáte, ale povinnost pravidelně měnit hlavní sestavu palivového systému motoru s ohledem na čerstvé japonské auto (zejména Toyota) je prostě nesmysl. A dokonce i s pravidelností 30-50 t.km se i "penny" 300 $ nestalo nejpříjemnějším plýtváním (a tato cena se týkala pouze 3S-FSE). A málo se hovořilo o tom, že trysky, které také často vyžadovaly výměnu, stojí peníze srovnatelné s vysokotlakými palivovými čerpadly. Standardní a navíc již fatální problémy 3S-FSE z hlediska mechanické části byly pečlivě utuženy.

Možná ne každý přemýšlel o tom, že pokud motor již "chytl druhý stupeň v olejové vaně", pak pravděpodobně všechny třecí části motoru trpěly prací na benzoolejové emulzi (neměli byste porovnávat gramy benzínu, který se někdy dostane do oleje při studeném startu a odpařuje se při zahřívání motoru, přičemž do klikové skříně neustále proudí litry paliva).

Nikdo nevaroval, že na tomto motoru byste se neměli pokoušet "vyčistit plyn" - to je vše opravitúprava prvků systému řízení motoru si vyžádala použití skenerů. Ne každý věděl o tom, jak systém EGR otravuje motor a koksuje sací prvky, což vyžaduje pravidelnou demontáž a čištění (podmíněně - každých 30 t.km). Ne každý věděl, že pokus o výměnu rozvodového řemene za „podobnou metodu s 3S-FE“ vede k setkání pístů a ventilů. Ne každý si dokáže představit, že by v jeho městě existoval alespoň jeden autoservis, který problémy D-4 úspěšně vyřešil.

Proč je Toyota obecně v Ruské federaci ceněna (pokud existují japonské značky levnější-rychlejší-sportovnější-pohodlnější-..)? Za „nenáročnost“, v nejširším slova smyslu. Nenáročnost v práci, nenáročnost na palivo, na spotřební materiál, na výběr náhradních dílů, na opravy... High-tech ždímačky samozřejmě pořídíte za cenu běžného auta. Můžete si pečlivě vybrat benzín a dovnitř nalít různé chemikálie. Můžete si přepočítat každý ušetřený cent na benzínu – zda ​​budou pokryty náklady na nadcházející opravy nebo ne (bez nervových buněk). Je možné vyškolit místní servisní pracovníky v základech oprav systémů přímého vstřikování. Můžete si vzpomenout na klasiku "něco se už dlouho nerozbilo, kdy to konečně spadne" ... Otázka je jen jedna - "Proč?"

Nakonec je výběr kupujících jejich vlastní věcí. A čím více lidí bude HB a další pochybné technologie kontaktovat, tím více zákazníků služby budou mít. Ale elementární slušnost stále vyžaduje říci - koupě auta s motorem D-4 za přítomnosti jiných alternativ je v rozporu se zdravým rozumem.

Zpětné zkušenosti umožňují tvrdit, že potřebnou a dostatečnou úroveň snížení emisí poskytovaly již klasické motory modelů japonského trhu v 90. letech nebo norma Euro II na evropském trhu. Vše, co k tomu bylo potřeba, bylo distribuované vstřikování, jeden kyslíkový senzor a katalyzátor pod dnem. Taková auta fungovala mnoho let ve standardní konfiguraci, navzdory ohavné kvalitě benzínu v té době, svému značnému stáří a počtu najetých kilometrů (někdy bylo nutné vyměnit zcela vyčerpané kyslíkové nádrže) a bylo snadné je zbavit katalyzátoru - ale obvykle taková potřeba nebyla.

Problémy začaly se stupněm Euro III a korelujícími normami pro další trhy a pak se jen rozšířily - druhý kyslíkový senzor, posunutí katalyzátoru blíže k výstupu, přechod na "kočičí sběrače", přechod na širokopásmové senzory složení směsi, elektronické ovládání škrticí klapky (přesněji algoritmy, záměrně zhoršující odezvu motoru na akcelerátor), zvýšené teplotní podmínky, úlomky katalyzátorů ve válcích ...

Dnes při běžné kvalitě benzínu a mnohem novějších aut je odstraňování katalyzátorů s blikáním ECU typu Euro V> II masivní. A pokud je nakonec u starších aut možné místo zastaralého použít levný univerzální katalyzátor, pak pro nejčerstvější a „inteligentnější“ auta prostě neexistuje alternativa, jak prorazit sběrač a softwarově deaktivovat kontrolu emisí.

Pár slov k jednotlivým čistě „environmentálním“ excesům (benzínové motory):
- Systém recirkulace výfukových plynů (EGR) je absolutní zlo, měl by být co nejdříve vypnut (s přihlédnutím ke specifické konstrukci a přítomnosti zpětné vazby), čímž se zastaví otrava a kontaminace motoru vlastními odpadními produkty. .
- Systém odpařování emisí (EVAP) - funguje dobře na japonských a evropských autech, problémy vznikají pouze u modelů na severoamerickém trhu kvůli jeho extrémní složitosti a "citlivosti".
- Přívod výfukového vzduchu (SAI) - pro severoamerické modely zbytečný, ale relativně neškodný systém.

Udělejme si hned rezervaci, že na našem zdroji pojem „nejlepší“ znamená „nejproblémovější“: spolehlivý, odolný, udržovatelný. Konkrétní ukazatele výkonu, účinnost jsou již druhořadé a nevýhodou jsou ze své podstaty různé „špičkové technologie“ a „šetrnost k životnímu prostředí“.

Abstraktní recept na nejlepší motor je ve skutečnosti jednoduchý - benzín, R6 nebo V8, nasávaný, litinový blok, maximální bezpečnostní rezerva, maximální pracovní objem, distribuované vstřikování, minimální posilovač ... ale bohužel, v Japonsku to lze pouze lze nalézt na autech jasně "anti-lidové "třídy.

V nižších segmentech dostupných masovému spotřebiteli se to již bez kompromisů neobejde, takže motory zde nemusí být nejlepší, ale přinejmenším „dobré“. Dalším úkolem je vyhodnotit motory s přihlédnutím k jejich skutečné aplikaci - zda poskytují přijatelný poměr tahu k hmotnosti a v jakých konfiguracích jsou instalovány (ideální motor pro kompaktní modely bude ve střední třídě jednoznačně nedostatečný, a konstrukčně povedenější motor nemusí být agregován s pohonem všech kol apod.) . A nakonec faktor času - všechna naše lítost nad vynikajícími motory, které byly ukončeny před 15-20 lety, vůbec neznamenají, že dnes musíme kupovat staré opotřebované vozy s těmito motory. Má tedy smysl mluvit pouze o nejlepším motoru ve své třídě a ve svém časovém období.

devadesátá léta Mezi klasickými motory je snazší najít pár nepovedených, než vybrat z masy dobrých ten nejlepší. Známí jsou však dva absolutní lídři – 4A-FE STD typ „90“ v malé třídě a 3S-FE typ „90 ve střední třídě. Ve velké třídě jsou 1JZ-GE a 1G-FE typu "90 stejně hodné schválení.

2000 Co se týče motorů třetí vlny, pro 1NZ-FE typ „99 pro malotřídku jsou jen dobrá slova, zatímco zbytek řady může se střídavým úspěchem bojovat jen o titul outsidera, ve střední třídě neexistují dokonce žádné „dobré“ motory. abychom vzdali hold 1MZ-FE, který se na pozadí mladých konkurentů ukázal být vůbec špatný.

léta 2010. Obecně se obrázek trochu změnil - přinejmenším motory 4. vlny stále vypadají lépe než jejich předchůdci. V nižší třídě je stále 1NZ-FE (bohužel ve většině případů se jedná o "modernizovaný" typ "03" k horšímu).Ve starším segmentu střední třídy si vede dobře 2AR-FE. velká třída, podle řady ekonomických a politických důvodů pro běžného spotřebitele již neexistuje.

Otázkou vyplývající z předchozích je, proč jsou staré motory ve svých starších modifikacích označovány jako nejlepší? Může se zdát, že Toyota i Japonci obecně nejsou organicky vědomě čehokoli schopni zhoršit. Ale bohužel, nad inženýry v hierarchii jsou hlavní nepřátelé spolehlivosti - "environmentalisté" a "marketéři". Majitelé aut díky nim získávají méně spolehlivá a odolná auta za vyšší cenu a s vyššími náklady na údržbu.

Na příkladech je však lépe vidět, jak nové verze motorů dopadly hůře než ty staré. O 1G-FE typu „90 a typ“ 98 již bylo řečeno výše, ale jaký je rozdíl mezi legendárním 3S-FE typu „90“ a typem „96“? Všechna zhoršení jsou způsobena stejnými „dobrými úmysly“, jako je snížení mechanických ztrát, snížení spotřeby paliva, snížení emisí CO2. Třetí bod odkazuje na naprosto šílenou (ale pro někoho prospěšnou) myšlenku mýtického boje proti mýtickému globálnímu oteplování a pozitivní efekt prvních dvou se ukázal být nepoměrně menší než úbytek zdrojů...

Zhoršení mechanické části se týká skupiny válec-píst. Zdá se, že instalace nových pístů s uříznutými (v projekci ve tvaru T) lemy pro snížení ztrát třením by mohla být vítána? V praxi se ale ukázalo, že takové písty začnou při řazení na TDC klepat při mnohem kratších chodech než u klasického typu "90. A toto klepání samo o sobě neznamená hluk, ale zvýšené opotřebení. Za zmínku stojí fenomenální hloupost nahrazením lisovatelných prstů plně plovoucího pístu.

Výměna rozdělovače zapalování za DIS-2 je teoreticky charakterizována pouze pozitivně - chybí rotační mechanické prvky, delší životnost cívky, vyšší stabilita zapalování... Ale v praxi? Je jasné, že je nemožné ručně nastavit základní časování zapalování. Zásoba nových zapalovacích cívek ve srovnání s klasickými dálkovými dokonce klesla. Zdroj vysokonapěťových drátů se očekávaně snížil (nyní každá svíčka jiskřila dvakrát častěji) - místo 8-10 let sloužily 4-6. Je dobře, že alespoň svíčky zůstaly jednoduché dvoupinové, a ne platinové.

Katalyzátor se přesunul zespodu přímo do výfukového potrubí, aby se rychleji zahřál a mohl začít pracovat. Výsledkem je celkové přehřívání motorového prostoru, snížení účinnosti chladicí soustavy. O notoricky známých důsledcích možného vnikání rozdrcených prvků katalyzátoru do válců je zbytečné se zmiňovat.

Namísto párového nebo synchronního vstřikování paliva se u mnoha typů typu „96“ vstřikování paliva stalo čistě sekvenčním (do každého válce jednou za cyklus) – přesnější dávkování, snížení ztrát, „ekologie“... Ve skutečnosti se nyní dával benzín před vstupem do válce mnohem méně času na odpařování, proto se spouštěcí charakteristiky při nízkých teplotách automaticky zhoršují.

Debata o „milionářích“, „půlmilionářích“ a dalších stoletých lidech je ve skutečnosti čistá a nesmyslná scholastika, která se nevztahuje na auta, která během své životní cesty změnila alespoň dvě země bydliště a několik majitelů.

Víceméně spolehlivě lze hovořit pouze o „zdroji před přepážkou“, kdy si motor sériové řady vyžádal první vážnější zásah do mechanické části (nepočítáme-li výměnu rozvodového řemene). U většiny klasických motorů padla přepážka na třetí stovku jízdy (cca 200-250 t.km). Zásah spočíval zpravidla ve výměně opotřebovaných nebo zadřených pístních kroužků a výměně těsnění dříků ventilů - tedy šlo jen o přepážku, a ne o zásadní repase (geometrie válců a broušení na stěnách byly většinou zachovány).

Motory nové generace často vyžadují pozornost již ve druhých sto tisících kilometrech jízdy a v lepším případě stojí výměna skupiny pístů (v tomto případě je vhodné vyměnit díly za díly upravené podle nejnovějšího servisu bulletiny). Při citelném plýtvání olejem a hluku při řazení pístů při jízdách nad 200 t.km byste se měli připravit na velkou opravu - silné opotřebení vložek nedává jiné možnosti. Toyota repasy hliníkových bloků válců nezajišťuje, ale v praxi se samozřejmě bloky převlékají a nudí. Bohužel renomované firmy, které opravdu kvalitně a odborně repasují moderní „jednorázové“ motory po celé republice, se dají opravdu spočítat na prstech. Ale pikantní zprávy o úspěšném přepracování dnes pocházejí z mobilních dílen JZD a garážových družstev - to, co lze říci o kvalitě práce a zdroji takových motorů, je pravděpodobně pochopitelné.

Tato otázka je položena nesprávně, stejně jako v případě „absolutně nejlepšího motoru“. Ano, moderní motory nelze srovnávat s klasickými, pokud jde o spolehlivost, životnost a životnost (alespoň s lídry minulých let). Jsou mnohem méně mechanicky udržovatelné, stávají se příliš vyspělými pro nekvalifikovanou obsluhu...

Faktem ale je, že k nim už neexistuje žádná alternativa. Vznik nových generací motorů je nutné brát jako samozřejmost a pokaždé se s nimi znovu naučit pracovat.

Majitelé aut by se samozřejmě měli všemi možnými způsoby vyhýbat jednotlivým nepovedeným motorům a zejména neúspěšným sériím. Vyhněte se motorům prvních verzí, kdy ještě probíhá tradiční „běh na kupujícího“. Pokud existuje několik úprav konkrétního modelu, měli byste vždy zvolit spolehlivější - i když obětujete buď finance nebo technické vlastnosti.

P.S. Závěrem nelze nepoděkovat Toyotu za to, že kdysi vytvořil motory „pro lidi“, s jednoduchými a spolehlivými řešeními, bez kudrlinek, které jsou vlastní mnoha jiným Japoncům a Evropanům. ” výrobci je hanlivě nazývali kondovy – tím lépe!













Časová osa výroby dieselových motorů

Fenomén a oprava "dieselového" hluku na starých (najeto 250-300 tisíc km) motorech 4A-FE.

Hluk „nafty“ se objevuje nejčastěji v režimu plynu nebo brzdění motorem. Z prostoru pro cestující je zřetelně slyšet při otáčkách 1500-2500 ot./min., stejně jako při otevřené kapotě při puštění plynu. Zpočátku se může zdát, že tento hluk co do frekvence a zvuku připomíná zvuk neseřízených ventilových vůlí, případně visící vačkové hřídele. Z tohoto důvodu ti, kteří to chtějí odstranit, často začínají s opravami od hlavy válců (seřízení ventilových vůlí, spouštění třmenů, kontrola, zda je ozubené kolo na hnaném vačkovém hřídeli nataženo). Další navrhovanou možností opravy je výměna oleje.

Vyzkoušel jsem všechny tyto možnosti, ale hlučnost zůstala nezměněna, v důsledku čehož jsem se rozhodl vyměnit píst. I při výměně oleje při 290000 jsem dolil polosyntetický olej Hado 10W40. A podařilo se mu zatlačit 2 opravné trubky, ale zázrak se nekonal. Zůstal poslední z možných důvodů – hra ve dvojici prst-píst.

Najeto mého vozu (Toyota Carina E XL kombi, 95 a více; anglická montáž) bylo v době opravy (dle počítadla kilometrů) 290 200 km, navíc mohu předpokládat, že na kombíku s klimatizací je 1.6. litrový motor byl z hlediska srovnání s běžným sedanem nebo hatchbackem poněkud přetížený. To znamená, že nastal čas!

K výměně pístu potřebujete následující:

- Víra v nejlepší a naděje na úspěch!!!

- Nástroje a přípravky:

1. Nástrčný klíč (hlava) pro 10 (pro čtverec 1/2 a 1/4 palce), 12, 14, 15, 17.
2. Nástrčný klíč (hlava) (řetězové kolo na 12 paprsků) na 10 a 14 (na 1/2palcový čtverec (nutně ne menší čtverec!) A z kvalitní oceli !!!). (Vyžadováno pro šrouby hlavy válců a matice ložisek ojnice).
3. Nástrčný klíč (ráčna) pro 1/2 a 1/4 palce.
4. Momentový klíč (až 35 N*m) (pro utahování kritických spojů).
5. Nástavec pro nástrčný klíč (100-150 mm)
6. Klíč na 10 (pro odšroubování těžko přístupných spojovacích prvků).
7. Nastavitelný klíč pro otáčení vačkových hřídelů.
8. Kleště (odstraňte pružinové svorky z hadic)
9. Malý kovový svěrák (velikost čelistí 50x15). (hlavu jsem do nich upnul o 10 a vyšrouboval dlouhé závrtné šrouby zajišťující víko ventilu a také s jejich pomocí vytlačil a vtlačil prsty do pístů (viz foto s lisem)).
10. Lis až 3 tuny (pro zatlačení prstů a upnutí hlavy o 10 do svěráku)
11. K vyjmutí palety použijte několik plochých šroubováků nebo nožů.
12. Křížový šroubovák s šestihrannou špičkou (pro odšroubování šroubů třmenů RV v blízkosti jamek svíčky).
13. Stírací deska (k čištění povrchů hlavy válců, BC a pánve od zbytků tmelu a těsnění).
14. Měřicí nástroj: mikrometr 70-90 mm (pro měření průměru pístů), vrtoměr nastavený na 81 mm (pro měření geometrie válců), posuvné měřítko (pro určení polohy prstu v pístu při lisování) , sada tykadel (pro ovládání ventilové vůle a mezer v zámkech kroužků s odstraněnými písty). Můžete si také vzít mikrometr a 20 mm vrtací měrku (pro měření průměru a opotřebení prstů).
15. Digitální fotoaparát - pro reportáž a doplňující informace při montáži! ;Ó))
16. Kniha s rozměry CPG a momenty a způsoby demontáže a montáže motoru.
17. Klobouk (aby olej nekapal na vlasy, když je pánev sundaná). I když byla pánev vyjmuta na dlouhou dobu, kapka oleje, která měla kapat celou noc, ukápne přesně, když jste pod motorem! Opakovaně kontrolováno lysinou !!!

- Materiály:

1. Čistič karburátoru (velký sprej) - 1 ks.
2. Silikonový tmel (odolný vůči oleji) - 1 tuba.
3. VD-40 (nebo jiný ochucený petrolej pro uvolnění šroubů výfukového potrubí).
4. Litol-24 (pro utažení upevňovacích šroubů lyží)
5. Bavlněné hadry v neomezeném množství.
6. Několik kartonových krabic pro skládací upevňovací prvky a třmeny vačkových hřídelů (PB).
7. Nádrže na vypouštění nemrznoucí směsi a oleje (každá 5 litrů).
8. Vana (o rozměrech 500x400) (náhrada pod motor při demontáži hlavy válců).
9. Motorový olej (podle návodu k motoru) v požadovaném množství.
10. Nemrznoucí směs v požadovaném množství.

- díly:

1. Sada pístů (většinou nabízejí standardní rozměr 80,93 mm), ale pro případ (neznalost minulosti vozu) jsem vzal i (s podmínkou vrácení) opravný rozměr o 0,5 mm větší. - 75 $ (jedna sada).
2. Sada prstenů (vzal jsem i originál ve 2 velikostech) - 65 $ (jedna sada).
3. Sada těsnění motoru (ale vystačíte si s jedním těsněním pod hlavu válců) - 55 $.
4. Těsnění výfukového potrubí / svodu - 3 $.

Před demontáží motoru je velmi užitečné umýt celý motorový prostor u dřezu - není potřeba dalších nečistot!

Rozhodl jsem se rozebírat na minimum, protože jsem byl časově velmi omezený. Soudě podle sady těsnění motoru to bylo pro běžný, ne chudý motor 4A-FE. Proto jsem se rozhodl nesnímat sací potrubí z hlavy válců (aby nedošlo k poškození těsnění). A pokud ano, pak by mohlo být výfukové potrubí ponecháno na hlavě válců a odpojit jej od výfukového potrubí.

Stručně popíšu postup demontáže:

V tuto chvíli je ve všech pokynech odstraněn záporný pól baterie, ale schválně jsem se rozhodl jej neodstraňovat, abych neresetoval paměť počítače (pro čistotu experimentu) ... a poslouchal rádio při opravě;o)
1. Hojně naplněný VD-40 rezavými šrouby výfukového potrubí.
2. Vypustil jsem olej a nemrznoucí kapalinu odšroubováním spodních zátek a uzávěrů na plnicích hrdlech.
3. Odpojil jsem hadice podtlakových systémů, vodiče teplotních čidel, ventilátor, polohu škrticí klapky, vodiče systému studeného startu, lambda sondu, vysokonapěťové vodiče, vodiče zapalovacích svíček, vodiče vstřikovačů HBO a přívodní hadice plynu a benzínu. Obecně vše, co pasuje na sací a výfukové potrubí.

2. Odstraňte první třmen sání RV a zašroubujte provizorní šroub skrz odpružené ozubené kolo.
3. Důsledně povoloval šrouby zbytku třmenů RV (k odšroubování šroubů - závrtných šroubů, na kterých je připevněno víko ventilu, jsem musel použít 10 hlavu upnutou do svěráku (pomocí lisu)). Šrouby umístěné poblíž jamek svíčky byly odšroubovány malou 10 hlavou s křížovým šroubovákem vloženým do ní (s šestihranným bodcem a klíčem nasazeným na tomto šestihranu).
4. Demontujte vstup RV a zkontrolujte, zda hlava pasuje 10 (hvězdička) na šrouby hlavy válců. Naštěstí to perfektně sedělo. Kromě samotného řetězového kola je důležitý i vnější průměr hlavy. Neměla by být větší než 22,5 mm, jinak se nevejde!
5. Demontoval výfukový RV, nejprve odšrouboval šroub ozubeného řemene a odstranil jej (hlava o 14), poté postupně povoloval nejprve vnější šrouby třmenů, poté středové, a odstranil samotný RV.
6. Demontujte rozdělovač odšroubováním šroubů třmenu rozdělovače a seřízením (hlava 12). Před demontáží rozdělovače je vhodné označit jeho polohu vzhledem k hlavě válců.
7. Demontujte šrouby držáku posilovače řízení (hlava 12),
8. Kryt rozvodového řemene (4 šrouby M6).
9. Vyjmul trubku měrky oleje (šroub M6) a vyndal ji, také odšrouboval trubku chladicího čerpadla (hlava 12) (trubka měrky oleje je připevněna právě k této přírubě).

3. Jelikož byl přístup k paletě omezený kvůli nepochopitelnému hliníkovému žlabu spojujícímu převodovku s blokem válců, rozhodl jsem se ji odstranit. Odšrouboval jsem 4 šrouby, ale žlab se nedal kvůli lyži sundat.

4. Přemýšlel jsem o odšroubování lyže pod motorem, ale nepodařilo se mi odšroubovat 2 matice přední lyže. Myslím, že přede mnou bylo tohle auto rozbité a místo svorníků s maticemi tam byly šrouby se samojistnými maticemi M10. Při pokusu o odšroubování se šrouby otočily a rozhodl jsem se je nechat na místě, odšrouboval jsem pouze zadní část lyže. V důsledku toho jsem odšrouboval hlavní šroub předního držáku motoru a 3 šrouby zadní lyže.
5. Jakmile jsem odšrouboval 3. zadní šroub lyže, ohnula se zpět a hliníkový žlab mi s pootočením vypadl ... do obličeje. Bolelo to... :o/.
6. Dále jsem odšrouboval šrouby a matice M6 zajišťující pánev motoru. A zkusil to strhnout – a ty trubky! Musel jsem vzít všechny možné ploché šroubováky, nože, sondy, abych paletu odtrhl. Výsledkem bylo, že když jsem odlomil přední strany palety, odstranil jsem ji.

Také jsem si nevšiml jakéhosi hnědého konektoru pro mě neznámého systému, který se nachází někde nad startérem, ale při demontáži hlavy válců se sám úspěšně odkotvil.

Jinak se odstranění hlavy válců povedlo. Vytáhl jsem to sám. Hmotnost v něm není větší než 25 kg, ale musíte si dávat velký pozor, abyste nezbourali ty vyčnívající - snímač ventilátoru a lambda sondu. Seřizovací podložky je vhodné očíslovat (obyčejným fixem, po setření hadříkem s čističem na uhlohydráty) - to pro případ, že by podložky vypadly. Sejmutou hlavu válce položil na čistý karton – pryč od písku a prachu.

Píst:

Píst byl odstraněn a instalován střídavě. K odšroubování matic ojnice je potřeba 14hvězdičková hlava Odšroubovaná ojnice s pístem se pohybuje prsty nahoru, až vypadne z bloku válců. V tomto případě je velmi důležité nezaměnit vyklápěcí ojniční ložiska !!!

Demontovanou sestavu jsem prozkoumal a co nejvíce změřil. Píst se přede mnou změnil. Navíc jejich průměr v ovládací zóně (25 mm shora) byl přesně stejný jako u nových pístů. Radiální vůle ve spojení píst-prst nebyla rukou cítit, ale to je způsobeno olejem. Axiální pohyb podél prstu je volný. Soudě podle sazí na horní části (až po kroužky) byly některé písty posunuty podél os prstů a povrchem (kolmo k ose prstů) třeny o válce. Když změřil polohu prstů tyčí vzhledem k válcové části pístu, zjistil, že některé prsty byly posunuty podél osy až o 1 mm.

Dále jsem při lisování nových prstů kontroloval polohu prstů v pístu (zvolil jsem axiální vůli v jednom směru a změřil vzdálenost od konce prstu ke stěně pístu, poté v druhém směru). (Musel jsem jezdit prsty tam a zpět, ale nakonec jsem dosáhl chyby 0,5 mm). Z tohoto důvodu se domnívám, že přistání studeného prstu do horké kliky je možné pouze za ideálních podmínek, s kontrolovaným dorazem prstů. V mých podmínkách to bylo nemožné a s přistáním „za tepla“ jsem si hlavu nelámal. Zalisoval jsem, promazal otvor v pístu a ojnici motorovým olejem. Naštěstí na prstech byla pažba vyplněna hladkým rádiusem a netřásla ani ojnicí, ani pístem.

Staré čepy měly znatelné opotřebení v oblastech nálitků pístu (0,03 mm vzhledem ke střední části čepu). Nebylo možné přesně změřit výstup na nálitcích pístů, ale žádná konkrétní elipsa tam nebyla. Všechny kroužky byly pohyblivé v drážkách pístu a olejové kanály (otvory v oblasti kroužku stírače oleje) byly bez karbonových usazenin a nečistot.

Před zalisováním nových pístů jsem změřil geometrii střední a horní části válců a také nové písty. Cílem je osadit větší písty do opotřebovanějších válců. Ale nové písty měly téměř stejný průměr. Podle váhy jsem je nekontroloval.

Dalším důležitým bodem při zalisování je správná poloha ojnice vůči pístu. Na ojnici (nad vložkou klikového hřídele) je přítok - jedná se o speciální značku označující umístění ojnice k přední části klikového hřídele (řemenice alternátoru), (stejný přítok je na spodních lůžkách klikového hřídele vložky ojnice). Na pístu - nahoře - dvě hluboká jádra - také do přední části klikové hřídele.

Zkontroloval jsem i mezery v zámcích kroužků. K tomu se kompresní kroužek (nejprve starý, pak nový) vloží do válce a spustí se pístem do hloubky 87 mm. Mezera v kroužku se měří spároměrem. Na starých byla mezera 0,3 mm, na nových kroužcích 0,25 mm, což svědčí o tom, že jsem kroužky měnil marně! Přípustná mezera, připomínám, je 1,05 mm pro kroužek N1. Zde je třeba poznamenat následující: Pokud bych uhodl označit polohy zámků starých kroužků vzhledem k pístům (při vytahování starých pístů), pak by staré kroužky mohly být bezpečně nasazeny na nové písty ve stejném pozice. Tak by bylo možné ušetřit 65 $. A čas záběhu motoru!

Dále je třeba na písty nainstalovat pístní kroužky. Instaluje se bez přizpůsobení - prsty. Nejprve - oddělovač stíracího kroužku oleje, poté spodní škrabka stíracího kroužku oleje, poté horní. Poté 2. a 1. kompresní kroužek. Umístění zámků kroužků - nutně podle knihy !!!

S odstraněnou paletou je ještě nutné zkontrolovat axiální vůli klikového hřídele (to jsem nedělal), vizuálně se zdálo, že vůle je velmi malá ... (a přípustná do 0,3 mm). Při demontáži - montáži sestav ojnice se klikový hřídel otáčí ručně pomocí řemenice generátoru.

Shromáždění:

Před montáží pístů s ojnicemi, válce, pístní čepy a kroužky, ojniční ložiska namažte čerstvým motorovým olejem. Při montáži spodních lůžek spojovacích tyčí je nutné zkontrolovat polohu vložek. Musí stát na místě (bez posunutí, jinak je možné zaseknutí). Po instalaci všech ojnic (utažení momentem 29 Nm, v několika přístupech) je nutné zkontrolovat snadnost otáčení klikového hřídele. Měl by se otáčet rukou na řemenici alternátoru. V opačném případě je nutné hledat a eliminovat zešikmení vložek.

Montáž palet a lyží:

Očištěná od starého tmelu, příruba jímky, stejně jako povrch na bloku válců, je pečlivě odmaštěna čističem karburátorů. Poté se na paletu nanese vrstva tmelu (viz návod) a paleta se na několik minut odloží. Mezitím je nainstalován olejový přijímač. A za ním je paleta. Nejprve se doprostřed nastraží 2 oříšky – pak vše ostatní a dotáhne se ručně. Později (po 15-20 minutách) - s klíčem (hlava na 10).

Hadičku od chladiče oleje můžete ihned položit na paletu a namontovat lyži a šroub předního uchycení motoru (šrouby je vhodné namazat Litolem - pro zpomalení rezivění závitového spoje).

Montáž hlavy válců:

Před montáží hlavy válců je nutné pečlivě očistit roviny hlavy válců a BC stírací deskou a také montážní přírubu trubky čerpadla (v blízkosti čerpadla ze zadní strany hlavy válců (ta, kde je nasazena měrka oleje)). Ze závitových otvorů je vhodné odstranit loužičky oleje a nemrznoucí směsi, aby se při utahování BC pomocí šroubů neroztrhly.

Pod hlavu válců dát nové těsnění (v místech blízko okrajů jsem to trochu namazal silikonem - podle staré paměti opakovaných oprav motoru Moscow 412). Trysku pumpy jsem namazal silikonem (ten s měrkou oleje). Dále lze nastavit hlavu válců! Zde je nutné poznamenat jednu vlastnost! Všechny šrouby hlavy válců na straně uchycení sacího potrubí jsou kratší než na straně výfuku !!! Nainstalovanou hlavu dotahuji šrouby ručně (pomocí 10 pastorkové hlavy s nástavcem). Poté našroubuji trysku čerpadla. Když jsou všechny šrouby hlavy válců nastraženy, začnu dotahovat (pořadí a způsob je jako v knize) a pak další kontrolní dotažení na 80 Nm (to jen pro případ).

Po montáži hlavy válců se instalují P-hřídele. Styčné roviny třmenů s hlavou válců jsou důkladně očištěny od nečistot a závitové montážní otvory jsou očištěny od oleje. Je velmi důležité umístit třmeny na jejich místa (pro to jsou označeny ve výrobě).

Polohu klikového hřídele jsem určil podle značky "0" na krytu rozvodového řemene a zářezu na řemenici alternátoru. Poloha výstupu RV je na čepu v přírubě řemenového převodu. Pokud je nahoře, pak je PB v poloze TDC 1. válce. Dále jsem dal RV olejové těsnění na místo vyčištěné čističem karburátorů. Řemenový převod jsem dal dohromady s řemenem a utáhl upevňovacím šroubem (14 hlavička). Na staré místo (dříve označené fixem) se rozvodový řemen bohužel nasadit nepodařilo, ale bylo žádoucí tak učinit. Dále jsem nainstaloval rozdělovač, po odstranění starého tmelu a oleje čističem karburátorů a nanesení nového tmelu. Poloha rozdělovače byla nastavena podle předem nanesené značky. Mimochodem, pokud jde o distributor, na fotografii jsou spálené elektrody. To může být příčinou nerovnoměrného chodu, ztrojnásobení, „slabosti“ motoru a výsledkem je zvýšená spotřeba paliva a touha změnit vše na světě (svíčky, výbušné dráty, lambda sonda, auto atd.). Eliminuje se elementárním způsobem - jemně seškrábne šroubovákem. Podobně - na opačném kontaktu jezdce. Doporučuji čistit každých 20-30 t.km.

Dále je nainstalován vstup RV, nezapomeňte vyrovnat potřebné (!) značky na ozubených kolech hřídelů. Nejprve se nainstalují centrální třmeny vstupu RV, poté se po odstranění dočasného šroubu z ozubeného kola umístí první třmen. Všechny upevňovací šrouby jsou utaženy požadovaným momentem v příslušném pořadí (podle knihy). Dále se nainstaluje plastový kryt rozvodového řemene (4 šrouby M6) a teprve poté opatrně otřete víko ventilu a styčnou plochu hlavy válců hadrem s čističem karburátorů a naneste nový tmel - samotný kryt ventilu. Zde jsou ve skutečnosti všechny triky. Zbývá pověsit všechny trubky, dráty, utáhnout řemeny posilovače řízení a generátoru, doplnit nemrznoucí kapalinu (před plněním doporučuji otřít hrdlo chladiče, vytvořit na něm podtlak ústy (pro kontrolu těsnosti)) ; naplňte olejem (nezapomeňte utáhnout vypouštěcí zátky!). Nainstalujte hliníkový žlab, lyži (namažte šrouby salidolem) a přední trubku s těsněním.

Start nebyl okamžitý – bylo nutné načerpat prázdné palivové nádrže. Garáž byla plná hustého olejového kouře - to je z mazání pístů. Dále - kouř se stává více spáleným zápachem - jedná se o vypalování oleje a nečistot z výfukového potrubí a výfukového potrubí ... Dále (pokud vše klaplo) - užíváme si absenci "dieselového" hluku !!! Myslím, že při jízdě bude užitečné dodržovat jemný režim - pro záběh motoru (alespoň 1000 km).

Toyota vyrobila mnoho zajímavých modelů motorů. Motor 4A FE a další členové rodiny 4A zaujímají důstojné místo v sestavě pohonných jednotek Toyota.

Historie motoru

V Rusku a ve světě jsou japonská auta z koncernu Toyota zaslouženě populární díky své spolehlivosti, vynikajícím technickým vlastnostem a relativní cenové dostupnosti. Významnou roli v tomto uznání sehrály japonské motory - srdce koncernových vozů. Již několik let je řada produktů japonské automobilky vybavena motorem 4A FE, jehož technické vlastnosti vypadají dodnes dobře.

Vzhled:

Jeho výroba začala v roce 1987 a trvala více než 10 let – až do roku 1998. Číslo 4 v názvu označuje sériové číslo motoru v „A“ řadě pohonných jednotek Toyota. Samotná řada se objevila ještě dříve, v roce 1977, kdy inženýři společnosti čelili výzvě vytvořit ekonomický motor s přijatelným technickým výkonem. Vývoj byl určen pro vůz třídy B (subkompakt podle americké klasifikace) Toyota Tercel.

Výsledkem inženýrského výzkumu byly čtyřválcové motory o výkonu 85 až 165 koní a objemu 1,4 až 1,8 litru. Jednotky byly vybaveny rozvodem plynu DOHC, litinovým tělem a hliníkovými hlavami. Jejich dědicem byla 4. generace, zvažovaná v tomto článku.

Zajímavost: Řada A se stále vyrábí ve společném podniku Tianjin FAW Xiali a Toyota: vyrábí se tam motory 8A-FE a 5A-FE.

Historie generací:

  • 1A - roky výroby 1978-80;
  • 2A - od roku 1979 do roku 1989;
  • 3A - od roku 1979 do roku 1989;
  • 4A - od roku 1980 do roku 1998.

Specifikace 4A-FE

Podívejme se blíže na označení motoru:

  • číslo 4 - označuje číslo v řadě, jak je uvedeno výše;
  • A - index série motorů, který naznačuje, že byl vyvinut a začal se vyrábět před rokem 1990;
  • F - hovoří o technických detailech: čtyřválcový, 16ventilový nevynucený motor poháněný jedním vačkovým hřídelem;
  • E - označuje přítomnost vícebodového systému vstřikování paliva.

V roce 1990 byly pohonné jednotky v sérii modernizovány, aby umožnily provoz na nízkooktanové benzíny. Za tímto účelem byl do konstrukce zaveden speciální podávací systém pro libovou směs - LeadBurn.

Ilustrace systému:


Podívejme se nyní, jaké vlastnosti má motor 4A FE. Základní údaje o motoru:

Parametr Význam
Hlasitost 1,6 l.
Vyvinutá síla 110 HP
Hmotnost motoru 154 kg.
Kompresní poměr motoru 9.5-10
Počet válců 4
Umístění v souladu
Dodávky paliva Injektor
Zapalování Tramblernoe
Ventily na válec 4
Budova BC litina
Materiál hlavy válců Hliníková slitina
Palivo Bezolovnatý benzín 92, 95
Soulad s životním prostředím Euro 4
Spotřeba 7,9 l. - na dálnici, 10,5 - v městském režimu.

Výrobce uvádí zdroj motoru 300 tisíc km, ve skutečnosti majitelé aut s ním hlásí 350 tisíc bez větších oprav.

Vlastnosti zařízení

Konstrukční vlastnosti 4A FE:

  • řadové válce, vyvrtané přímo v samotném bloku válců bez použití vložek;
  • rozvod plynu - DOHC, se dvěma vačkovými hřídeli nad hlavou, ovládání probíhá přes 16 ventilů;
  • jeden vačkový hřídel je poháněn řemenem, točivý moment na druhém přichází od prvního přes ozubené kolo;
  • fáze vstřikování směsi vzduch-palivo jsou regulovány spojkou VVTi, ovládání ventilů využívá provedení bez hydraulických kompenzátorů;
  • zapalování je distribuováno z jedné cívky rozdělovačem (ale existuje pozdní modifikace LB, kde byly cívky dvě - jedna pro dvojici válců);
  • model s indexem LB, určený pro práci s nízkooktanovým palivem, má výkon snížený na 105 sil a snížený točivý moment.

Zajímavost: pokud se rozvodový řemen přetrhne, motor neohne ventil, což mu přidává na spolehlivosti a atraktivitě ze strany spotřebitele.

Historie verzí 4A-FE

Během životního cyklu prošel motor několika fázemi vývoje:

Gen 1 (první generace) - od roku 1987 do roku 1993.

  • Motor s elektronickým vstřikováním, výkon od 100 do 102 sil.

Gen 2 - sjel z montážních linek v letech 1993 až 1998.

  • Výkon se měnil od 100 do 110 sil, změnila se ojnice a skupina pístů, změnilo se vstřikování, změnila se konfigurace sacího potrubí. Pro spolupráci s novými vačkovými hřídeli byla upravena i hlava válců, víko ventilů dostalo žebra.

Gen 3 - vyráběno v omezeném množství od roku 1997 do roku 2001, výhradně pro japonský trh.

  • Tento motor měl výkon zvýšený na 115 „koní“, čehož bylo dosaženo změnou geometrie sacího a výfukového potrubí.

Klady a zápory motoru 4A-FE

Hlavní výhodou 4A-FE je jeho zdařilá konstrukce, kdy v případě prasknutí rozvodového řemene píst neohne ventil, čímž se vyhne nákladným generálním opravám. Mezi další výhody patří:

  • dostupnost náhradních dílů a jejich dostupnost;
  • relativně nízké provozní náklady;
  • dobrý zdroj;
  • motor lze opravit a udržovat samostatně, protože konstrukce je poměrně jednoduchá a příslušenství nezasahuje do přístupu k různým prvkům;
  • spojka VVTi a klikový hřídel jsou velmi spolehlivé.

Zajímavost: když v roce 1994 začala ve Spojeném království výroba Toyoty Carina E, byly první 4A FE ICE vybaveny řídicí jednotkou od firmy Bosh, která měla možnost flexibilní konfigurace. To se stalo návnadou pro tunery, protože motor mohl být přeflashován, aby z něj získal více výkonu a zároveň se snížily emise.

Za hlavní nedostatek je považován výše zmíněný systém LeadBurn. Navzdory zjevné účinnosti (která vedla k širokému použití LB na japonském automobilovém trhu) je extrémně citlivý na kvalitu benzínu a v ruských podmínkách vykazuje vážný pokles výkonu ve středních otáčkách. Důležitý je také stav ostatních komponentů - pancéřové dráty, svíčky, kritická je kvalita motorového oleje.

Mezi další nedostatky zaznamenáváme zvýšené opotřebení lůžek vačkového hřídele a „neplovoucí“ uložení pístního čepu. To může vést k potřebě generální opravy, ale to lze poměrně snadno provést svépomocí.

Olej 4A FE

Přípustné indikátory viskozity:

  • 5W-30;
  • 10W-30;
  • 15W-40;
  • 20W-50.

Olej by měl být vybrán podle ročního období a teploty vzduchu.

Kde byl nainstalován 4A FE?

Motor byl vybaven výhradně vozy Toyota:

  • Carina - úpravy 5. generace 1988-1992 (sedan v zadní části T170, před a po restylingu), 6. generace 1992-1996 v zadní části T190;
  • Celica - kupé 5. generace v letech 1989-1993 (karosérie T180);
  • Corolla pro evropské a americké trhy v různých úrovních výbavy od roku 1987 do roku 1997, pro Japonsko - od roku 1989 do roku 2001;
  • Corolla Ceres generace 1 - od roku 1992 do roku 1999;
  • Corolla FX - hatchback generace 3;
  • Corolla Spacio - minivan 1. generace ve 110. karoserii od roku 1997 do roku 2001;
  • Corolla Levin - od roku 1991 do roku 2000, v tělech E100;
  • Corona - generace 9, 10 od roku 1987 do roku 1996, karoserie T190 a T170;
  • Sprinter Trueno - od roku 1991 do roku 2000;
  • Sprinter Marino - od roku 1992 do roku 1997;
  • Sprinter - od roku 1989 do roku 2000, v různých tělech;
  • Premio sedan - od roku 1996 do roku 2001, karoserie T210;
  • Caldina;
  • Avensis;

Servis

Pravidla pro provádění servisních postupů:

  • výměna oleje ICE - každých 10 000 km;
  • výměna palivového filtru - každých 40 tisíc;
  • vzduch - po 20 tisících;
  • svíčky musí být vyměněny po 30 tisících a potřebují roční kontrolu;
  • seřízení ventilů, odvětrávání klikové skříně - po 30 tisících;
  • výměna nemrznoucí směsi - 50 tisíc;
  • výměna výfukového potrubí - po 100 tis., pokud by shořelo.

Poruchy

Typické problémy:

  • Klepání od motoru.

Pravděpodobně je potřeba opotřebované pístní čepy nebo seřízení ventilu.

  • Motor "žere" olej.

Kroužky a víčka na stírání oleje jsou opotřebované, je nutná výměna.

  • Motor naskočí a okamžitě se vypne.

Došlo k problému s palivovým systémem. Měli byste zkontrolovat rozdělovač, vstřikovače, palivové čerpadlo, vyměnit filtr.

  • Plovoucí obraty.

Ovládání volnoběžného vzduchu a škrticí klapka by se měly zkontrolovat, vyčistit a v případě potřeby vyměnit vstřikovače a zapalovací svíčky,

  • Motor vibruje.

Pravděpodobnou příčinou jsou ucpané vstřikovače nebo špinavé zapalovací svíčky, je třeba je zkontrolovat a v případě potřeby vyměnit.

Další motory v řadě

4A

Základní model, který nahradil řadu 3A. Motory vytvořené na jeho základě byly vybaveny mechanismy SOHC a DOHC, až 20 ventily a „zástrčka“ výstupního výkonu byla od 70 do 168 sil na „přeplňované“ přeplňované GZE.

4A-GE

Jedná se o 1,6litrový motor, konstrukčně podobný FE. Výkon motoru 4A GE je také do značné míry shodný. Ale existují také rozdíly:

  • GE má větší úhel mezi sacími a výfukovými ventily - 50 stupňů, na rozdíl od 22,3 pro FE;
  • Vačkové hřídele motoru 4A GE se otáčí jediným rozvodovým řemenem.

Když už mluvíme o technických vlastnostech motoru 4A GE, nelze zmínit výkon: je o něco výkonnější než FE a vyvíjí až 128 koní se stejnými objemy.

Zajímavost: Vyráběl se také 20ventilový 4A-GE s aktualizovanou hlavou válců a 5 ventily na válec. Vyvinul sílu až 160 sil.

4A-FHE

Jedná se o analog FE s upraveným sáním, vačkovými hřídeli a řadou dalších nastavení. Dali motoru větší výkon.

Tato jednotka je modifikací šestnáctiventilového GE, vybavená mechanickým systémem tlakování vzduchu. Vyráběl 4A-GZE v letech 1986-1995. Blok válců a hlava válců se nezměnily, do konstrukce přibylo dmychadlo poháněné klikovým hřídelem. První vzorky vykázaly tlak 0,6 baru a motor vyvinul výkon až 145 sil.


Kromě přeplňování inženýři snížili kompresní poměr a do konstrukce zavedli kované konvexní písty.

V roce 1990 byl aktualizován motor 4A GZE a začal vyvíjet výkon až 168-170 sil. Zvýšil se kompresní poměr, změnila se geometrie sacího potrubí. Kompresor vydával tlak 0,7 baru a do konstrukce motoru byl zahrnut MAP D-Jetronic DMRV.

GZE je oblíbený u tunerů, protože umožňuje instalaci kompresoru a dalších úprav bez velkých přestaveb motoru.

4A-F

Byl karburátorovým předchůdcem FE a vyvinul až 95 sil.

4A GEU

Motor 4A-GEU, poddruh GE, vyvinul výkon až 130 koní. Motory s tímto označením byly vyvinuty před rokem 1988.

4A-ELU

Do tohoto motoru byl zaveden vstřikovač, který umožnil zvýšit výkon z původních 70 pro 4A na 78 sil u exportní verze, a až 100 u japonské verze. Motor byl také vybaven katalyzátorem.

Nejběžnějším a nejvíce opravovaným japonským motorem jsou motory řady (4,5,7)A-FE. I začínající mechanik, diagnostik ví o možných problémech motorů této řady. Pokusím se upozornit (shromáždit do jediného celku) problémy těchto motorů. Není jich mnoho, ale svým majitelům přinášejí spoustu potíží.

Senzory.

Kyslíkový senzor - Lambda sonda.

„Senzor kyslíku“ – slouží k detekci kyslíku ve výfukových plynech. Jeho role je neocenitelná v procesu korekce paliva. Přečtěte si více o problémech se senzory v článek.




Mnoho majitelů se kvůli tomu obrací na diagnostiku zvýšená spotřeba paliva. Jedním z důvodů je banální přerušení ohřívače v lambda sondě. Chybu opravuje kódové číslo řídicí jednotky 21. Ohřívač lze zkontrolovat běžným testerem na kontaktech čidla (R-14 Ohm). Spotřeba paliva se zvyšuje kvůli chybějící korekci paliva během zahřívání. Obnovení ohřívače se vám nepodaří - pomůže pouze výměna čidla. Náklady na nový senzor jsou vysoké a nemá smysl instalovat použitý (jejich provozní doba je velká, takže je to loterie). V takové situaci lze alternativně nainstalovat neméně spolehlivé univerzální snímače NTK, Bosch nebo originální Denso.

Kvalita snímačů není horší než originál a cena je mnohem nižší. Jediným problémem může být správné připojení vodičů snímače.Při snížení citlivosti snímače se zvyšuje i spotřeba paliva (o 1-3 litry). Funkčnost snímače se kontroluje osciloskopem na bloku diagnostického konektoru, nebo přímo na čipu snímače (počet sepnutí). Citlivost klesá, když je snímač otráven (kontaminován) zplodinami hoření.

Snímač teploty motoru.

"Snímač teploty" se používá k registraci teploty motoru. Pokud snímač nefunguje správně, majitel bude mít spoustu problémů. Pokud dojde k poškození měřicího prvku snímače, řídicí jednotka nahradí údaje snímače a zafixuje jeho hodnotu o 80 stupňů a opraví chybu 22. Motor s takovou poruchou bude normálně fungovat, ale pouze při zahřátém motoru. Jakmile motor vychladne, bude problematické jej nastartovat bez dopingu, kvůli krátké době otevření vstřikovačů. Časté jsou případy, kdy se odpor snímače mění náhodně při chodu motoru na H.X. - otáčky budou v tomto případě plovoucí.Tuto závadu lze snadno opravit na snímači při sledování teploty. Na teplém motoru by měl být stabilní a neměl by náhodně měnit hodnoty od 20 do 100 stupňů.

Při takové závadě snímače je možný „černý žíravý výfuk“, nestabilní provoz na H.X. a v důsledku toho zvýšená spotřeba a také nemožnost nastartovat teplý motor. Motor bude možné nastartovat až po 10 minutách kalu. Pokud neexistuje úplná důvěra ve správnou funkci senzoru, jeho hodnoty mohou být nahrazeny zahrnutím 1 kΩ proměnného odporu nebo konstantního 300 ohm rezistoru do jeho obvodu pro další ověření. Změnou naměřených hodnot snímače lze snadno ovládat změnu rychlosti při různých teplotách.

Snímač polohy škrticí klapky.

Snímač polohy plynu sděluje palubnímu počítači, v jaké poloze je plyn.


Mnoho vozů prošlo montážní demontážní procedurou. Jde o takzvané „konstruktéry“. Při demontáži motoru v terénu a následné montáži utrpěly senzory, o které je motor často opřen. Když se rozbije snímač TPS, motor přestane normálně škrtit. Motor se při vytáčení zadrhává. Stroj se přepíná nesprávně. Řídicí jednotkou je opravena chyba 41. Při výměně nového snímače je nutné jej seřídit tak, aby řídicí jednotka správně viděla znak X.X., při plně uvolněném plynovém pedálu (zavřený plyn). Pokud se neobjeví žádné známky volnoběhu, nebude provedena adekvátní regulace X.X a během brzdění motorem nedojde k režimu nuceného volnoběhu, což opět povede ke zvýšené spotřebě paliva. U motorů 4A, 7A snímač nevyžaduje seřízení, je instalován bez možnosti rotace-nastavení. V praxi však dochází k častým případům ohýbání okvětního lístku, který pohybuje jádrem snímače. V tomto případě neexistuje žádný znak x / x. Správnou polohu lze upravit pomocí testeru bez použití skeneru - na základě volnoběhu.

POLOHA PLYNU……0%
SIGNÁL VOLNOBĚHU……………….ON

Snímač absolutního tlaku MAP

Snímač tlaku ukazuje počítači skutečné vakuum v rozdělovači, podle jeho údajů se tvoří složení palivové směsi.



Tento snímač je nejspolehlivější ze všech instalovaných na japonských autech. Jeho odolnost je prostě úžasná. Má ale také spoustu problémů, hlavně kvůli nesprávné montáži. Buď rozbijí přijímací „vsuvku“ a následně zalepí případný průchod vzduchu lepidlem, nebo naruší těsnost sací trubice.Při takovém rozbití se zvyšuje spotřeba paliva, hladina CO ve výfuku prudce stoupá až na 3 %. Činnost senzoru na skeneru je velmi snadné pozorovat. Řádek SACÍ POTRUBÍ ukazuje podtlak v sacím potrubí, který je měřen snímačem MAP. Pokud je kabeláž přerušena, ECU zaregistruje chybu 31. Současně se doba otevření vstřikovačů prudce zvýší na 3,5-5 ms. Při přeplynování se objeví černý výfuk, svíčky jsou zasazeny, na H.X se objeví třes. a zastavte motor.

Snímač klepání.

Snímač je instalován pro registraci detonačních klepání (výbuchů) a nepřímo slouží jako „korektor“ časování zážehu.




Záznamovým prvkem snímače je piezoelektrická destička. V případě poruchy snímače nebo přerušení kabeláže při otáčkách nad 3,5-4 tuny ECU opraví chybu 52. Při akceleraci je pozorována pomalost. Výkon můžete zkontrolovat osciloskopem nebo změřením odporu mezi výstupem snímače a pouzdrem (pokud je odpor, je třeba snímač vyměnit).

snímač klikového hřídele.

Snímač klikového hřídele generuje impulsy, ze kterých počítač vypočítává rychlost otáčení klikového hřídele motoru. Jedná se o hlavní snímač, kterým je synchronizován celý chod motoru.




U motorů řady 7A je instalován snímač klikového hřídele. Konvenční indukční snímač je podobný snímači ABC a v provozu je prakticky bezproblémový. Jsou tu ale i zmatky. S přepínacím obvodem uvnitř vinutí je generování impulsů při určité rychlosti narušeno. To se projevuje omezením otáček motoru v rozmezí 3,5-4 tuny otáček. Jakési odříznutí, pouze při nízkých rychlostech. Je poměrně obtížné detekovat přerušovací obvod. Osciloskop nevykazuje pokles amplitudy impulsů ani změnu frekvence (při zrychlení) a pro testera je poměrně obtížné zaznamenat změny v Ohmových podílech. Pokud zaznamenáte příznaky omezení rychlosti na 3-4 tisících, jednoduše vyměňte snímač za známý dobrý. Navíc spousta problémů způsobuje poškození hlavního kroužku, který mechanici zlomí při výměně olejového těsnění přední klikové hřídele nebo rozvodového řemene. Po zlomení zubů korunky a jejich obnovení svařováním dosahují pouze viditelné absence poškození. Současně snímač polohy klikového hřídele přestane adekvátně číst informace, časování zapalování se začne náhodně měnit, což vede ke ztrátě výkonu, nestabilnímu chodu motoru a zvýšené spotřebě paliva.

Vstřikovače (trysky).

Vstřikovače jsou solenoidové ventily, které vstřikují palivo pod tlakem do sacího potrubí motoru. Řídí činnost vstřikovačů - počítač motoru.





Během mnoha let provozu jsou trysky a jehly vstřikovačů pokryty dehtovým a benzínovým prachem. To vše přirozeně narušuje správný nástřik a snižuje výkon trysky. Při silném znečištění je pozorováno znatelné otřesy motoru, spotřeba paliva se zvyšuje. Ucpání je reálné určit provedením analýzy plynů, podle naměřených hodnot kyslíku ve výfuku lze posoudit správnost plnění. Hodnota nad jedno procento bude indikovat potřebu propláchnout vstřikovače (se správným načasováním a normálním tlakem paliva). Nebo instalací vstřikovačů na stojan a kontrolou výkonu v testech v porovnání s novým vstřikovačem. Trysky jsou velmi efektivně omývány společnostmi Lavr, Vince, a to jak na strojích CIP, tak v ultrazvuku.

Volnoběžný ventil.IAC

Ventil je zodpovědný za otáčky motoru ve všech režimech (zahřívání, volnoběh, zatížení).





Během provozu se okvětní lístek ventilu zašpiní a dřík je zaklíněný. Obraty visí na zahřátí nebo na X.X. (kvůli klínu). Testy změn rychlosti ve skenerech během diagnostiky pro tento motor nejsou poskytovány. Výkon ventilu lze posoudit změnou hodnot teplotního čidla. Zadejte motor do „studeného“ režimu. Nebo po odstranění vinutí z ventilu otočte magnet ventilu rukama. Zaseknutí a zaklínění bude cítit okamžitě. Pokud není možné jednoduše demontovat vinutí ventilu (například u řady GE), můžete zkontrolovat jeho funkčnost připojením k jednomu z řídicích výstupů a měřením pracovního cyklu pulsů při současném řízení rychlosti X.X. a změna zatížení motoru. U plně zahřátého motoru je pracovní cyklus přibližně 40 %, změnou zátěže (včetně elektrických spotřebičů) lze odhadnout adekvátní zvýšení otáček v reakci na změnu pracovního cyklu. Při mechanickém zablokování ventilu dochází k plynulému nárůstu pracovního cyklu, který nemá za následek změnu rychlosti H.X. Práci můžete obnovit čištěním sazí a nečistot pomocí čističe karburátorů s odstraněným vinutím. Další úpravou ventilu je nastavení rychlosti X.X. Na plně zahřátém motoru otáčením vinutí na upevňovacích šroubech dosahují u tohoto typu vozu tabulkových otáček (podle štítku na kapotě). Po předchozí instalaci propojky E1-TE1 do diagnostického bloku. U „mladších“ motorů 4A, 7A byl ventil změněn. Místo obvyklých dvou vinutí byl do těla vinutí ventilu instalován mikroobvod. Změnili jsme napájení ventilu a barvu plastu vinutí (černá). Měřit odpor vinutí na svorkách je již zbytečné. Ventil je napájen proudem a řídicím signálem obdélníkového tvaru s proměnným pracovním cyklem. Aby nebylo možné odstranit vinutí, byly instalovány nestandardní upevňovací prvky. Ale problém kmenového klínu zůstal. Nyní, když to vyčistíte obyčejným čističem, maz z ložisek se vymyje (další výsledek je předvídatelný, stejný klín, ale už kvůli ložisku). Je nutné zcela demontovat ventil z těla škrticí klapky a poté opatrně propláchnout vřeteno s okvětním lístkem.

Systém zapalování. Svíčky.



Velmi velké procento automobilů přichází do servisu s problémy v zapalovacím systému. Při provozu na nekvalitní benzín trpí zapalovací svíčky jako první. Jsou pokryty červeným povlakem (feróza). U takových svíček nebude kvalitní jiskření. Motor bude pracovat přerušovaně, s mezerami se zvyšuje spotřeba paliva, stoupá hladina CO ve výfuku. Pískování není schopné takové svíčky vyčistit. Pomůže jen chemie (na pár hodin selit) nebo výměna. Dalším problémem je zvětšení vůle (jednoduché opotřebení). Vysychání pryžových oček vysokonapěťových drátů, voda, která se dostala dovnitř při mytí motoru, vyvolává tvorbu vodivé dráhy na pryžových očkách.






Kvůli nim nebude jiskření uvnitř válce, ale mimo něj. Při plynulém přiškrcení jede motor stabilně a při ostrém drtí. V této situaci je nutné vyměnit svíčky i dráty současně. Ale někdy (v terénu), pokud výměna není možná, můžete problém vyřešit obyčejným nožem a kouskem smirkového kamene (jemná frakce). Nožem odřízneme vodivou cestu v drátu a kamenem odstraníme proužek z keramiky svíčky. Je třeba poznamenat, že není možné odstranit gumový pás z drátu, což povede k úplné nefunkčnosti válce.
Další problém souvisí s nesprávným postupem při výměně svíček. Dráty jsou vytahovány z jamek silou, přičemž se odtrhává kovový hrot otěže.U takového drátu je pozorováno vynechávání a plovoucí otáčky. Při diagnostice zapalovacího systému byste měli vždy zkontrolovat výkon zapalovací cívky na vysokonapěťové bleskojistce. Nejjednodušší test je podívat se na jiskřiště na jiskřišti při běžícím motoru.


Pokud jiskra zmizí nebo se stane nitkovou, znamená to mezizávitový zkrat v cívce nebo problém ve vysokonapěťových vodičích. Přerušení vodiče se kontroluje odporovým testerem. Malý drát je 2-3k, pak se ještě zvětšuje dlouhý 10-12k.Odpor uzavřené cívky lze zkontrolovat i testerem. Odpor sekundárního vinutí přerušené cívky bude menší než 12 kΩ.




Cívky další generace (dálkové) takovými neduhy netrpí (4A.7A), jejich poruchovost je minimální. Správné chlazení a tloušťka drátu tento problém odstranily.




Dalším problémem je aktuální olejové těsnění v rozdělovači. Olej padající na snímače koroduje izolaci. A při vystavení vysokému napětí se posuvník zoxiduje (pokryje se zeleným povlakem). Uhlí zkysne. To vše vede k narušení jiskření. V pohybu jsou pozorovány chaotické střelby (do sacího potrubí, do tlumiče) a drcení.

Jemné chyby

Na moderních motorech 4A, 7A Japonci změnili firmware řídící jednotky (zřejmě pro rychlejší zahřátí motoru). Změna spočívá v tom, že motor na volnoběh dosahuje až při 85 stupních. Změněn byl i design chladicího systému motoru. Nyní hlavou bloku intenzivně prochází malý chladicí okruh (ne potrubím za motorem, jak tomu bylo dříve). Samozřejmě se zefektivnilo chlazení hlavy, zefektivnil se i motor jako celek. Ale v zimě, s takovým chlazením během pohybu, teplota motoru dosahuje teploty 75-80 stupňů. A v důsledku toho neustálé zahřívací otáčky (1100-1300), zvýšená spotřeba paliva a nervozita majitelů. S tímto problémem se vypořádáte buď více zateplením motoru, nebo změnou odporu teplotního čidla (oklamání počítače), případně výměnou termostatu na zimu s vyšší otevírací teplotou.
Olej
Majitelé nalévají olej do motoru bez rozdílu, aniž by přemýšleli o důsledcích. Málokdo chápe, že různé druhy olejů nejsou kompatibilní a po smíchání tvoří nerozpustnou kaši (koks), což vede k úplnému zničení motoru.



Veškerá tato plastelína nejde smýt chemií, čistí se pouze mechanicky. Je třeba si uvědomit, že pokud není známo, jaký typ starého oleje, je třeba před výměnou použít propláchnutí. A další rady majitelům. Věnujte pozornost barvě rukojeti měrky oleje. Je žlutý. Pokud je barva oleje ve vašem motoru tmavší než barva pera, je čas na výměnu namísto čekání na virtuální kilometry doporučené výrobcem motorového oleje.
Vzduchový filtr.

Nejlevnějším a snadno dostupným prvkem je vzduchový filtr. Majitelé velmi často zapomínají na jeho výměnu, aniž by přemýšleli o pravděpodobném zvýšení spotřeby paliva. Často je díky ucpanému filtru spalovací prostor velmi silně znečištěn usazeninami spáleného oleje, silně znečištěné ventily a svíčky. Při diagnostice se lze mylně domnívat, že na vině je opotřebení těsnění dříku ventilu, ale hlavní příčinou je ucpaný vzduchový filtr, který při znečištění zvyšuje podtlak v sacím potrubí. Samozřejmě v tomto případě budou muset být změněny i krytky.
Někteří majitelé si ani nevšimnou, že garážové hlodavce žijí v krytu vzduchového filtru. Což vypovídá o jejich naprosté lhostejnosti k autu.




Pozornost si zaslouží i palivový filtr. Pokud není včas vyměněno (15-20 tisíc najetých kilometrů), čerpadlo začne pracovat s přetížením, tlak klesne a v důsledku toho je nutné čerpadlo vyměnit. Plastové části oběžného kola čerpadla a zpětného ventilu se předčasně opotřebovávají.






Tlak klesá. Je třeba poznamenat, že provoz motoru je možný při tlaku do 1,5 kg (při standardních 2,4-2,7 kg). Při sníženém tlaku jsou neustálé výstřely do sacího potrubí, start je problematický (po). Výrazně snížená trakce. Správné je kontrolovat tlak manometrem (přístup k filtru není obtížný). V terénu můžete použít „test naplnění vratky“. Pokud při běžícím motoru vyteče z vratné hadice benzínu za 30 sekund méně než jeden litr, lze soudit, že tlak je nízký. K nepřímému určení výkonu čerpadla můžete použít ampérmetr. Pokud je proud spotřebovaný čerpadlem menší než 4 ampéry, pak je tlak promarněn. Proud můžete měřit na diagnostickém bloku.

Při použití moderního nástroje proces výměny filtru netrvá déle než půl hodiny. Dříve to zabralo spoustu času. Mechanici vždy doufali v případě, že měli štěstí a spodní kování nezrezlo. Ale často se to stalo. Dlouho jsem si musel lámat hlavu, jakým plynovým klíčem zaháknout srolovanou matici spodní armatury. A někdy se proces výměny filtru změnil v „filmovou show“ s odstraněním trubice vedoucí k filtru. Dnes se nikdo nebojí tuto změnu provést.

Ovládací blok.

Až do roku 98 neměly řídicí jednotky při provozu dostatečně závažné problémy. Bloky musely být opraveny pouze kvůli tvrdému přepólování. Je důležité si uvědomit, že všechny závěry řídicí jednotky jsou podepsány. Na desce je snadné najít potřebný výstup senzoru pro kontrolu nebo kontinuitu vodiče. Díly jsou spolehlivé a stabilní v provozu při nízkých teplotách.



Na závěr bych se chtěl trochu zastavit u rozvodů plynu. Mnoho „praktických“ majitelů provádí výměnu řemene vlastními silami (ačkoli to není správné, nemohou správně utáhnout řemenici klikového hřídele). Mechanici provedou kvalitní výměnu do dvou hodin (maximálně), při prasknutí řemene se ventily nepotkají s pístem a nedojde k fatální destrukci motoru. Vše je propočítáno do nejmenších detailů.
Pokusili jsme se mluvit o nejčastějších problémech na motorech této řady. Motor je velmi jednoduchý a spolehlivý a podléhá velmi tvrdému provozu na "voda - železný benzín" a prašných cestách naší velké a mocné vlasti a "možná" mentality majitelů. Poté, co vydržel veškerou šikanu, se dodnes těší ze své spolehlivé a stabilní práce a získal status nejspolehlivějšího japonského motoru.
Vladimír Bekreněv, Chabarovsk.
Andrej Fedorov, Novosibirsk.

  • Zadní
  • Vpřed

Komentáře mohou přidávat pouze registrovaní uživatelé. Nemáte povolení vkládat komentáře.



© 2023 globusks.ru - Opravy a údržba automobilů pro začátečníky