Пуск дизеля при помощи вспомогательного пускового двигателя внутреннего сгорания. Запуск двигателя внутреннего сгорания Что происходит при запуске машины

Пуск дизеля при помощи вспомогательного пускового двигателя внутреннего сгорания. Запуск двигателя внутреннего сгорания Что происходит при запуске машины

Прежде чем запустить двигатель, необходимо поставить рычаг, переключения передач в нейтральное положение, а автомобиль затормозить ручным тормозом.

В холодное время при температуре окружающего воздуха ниже +5° С двигатель разогревают при помощи индивидуального подогревателя или проливая горячую воду через систему охлаждения при открытых сливных кранах до тех пор, пока из них не будет вытекать теплая вода.

Перед началом разогрева жалюзи радиатора плотно закрываются, а капот двигателя укрывается утеплительным чехлом.

После того как двигатель разогрелся, кнопку управления воздушной заслонкой карбюратора вытягивают на себя (в холодное время полностью), пусковой рукояткой провертывают на два - три оборота коленчатый вал, включают зажигание и затем запускают двигатель стартером или пусковой рукояткой сильным рывком снизу вверх. Рукоятку при этом обхватывают всеми пальцами руки с одной стороны во избежание удара при обратное отдаче.

При запуске двигателя стартером непрерывная работа стартера не должна превышать пяти секунд. Если двигатель не начал работать, то следующую попытку запуска можно повторить не раньше чем через одну минуту. Если после трех - четырех попыток двигатель не начал работать, надо выяснить причину и устранить неисправность.

Как только двигатель начнет работать, приоткрывают воздушную заслонку и, немного нажимая на педаль управления дроссельной заслонкой, на умеренных оборотах вала прогревают двигатель до тех пор, пока температура охлаждающей жидкости в системе охлаждения не достигнет 50° С. После этого кнопку управления воздушной заслонкой возвращают в исходное положение или в положение, обеспечивающее устойчивую работу двигателя. При запуске горячего двигателя закрывать воздушную заслонку карбюратора не рекомендуется.

Запуск дизеля при температуре воздуха выше +5° С осуществляется нажатием на кнопку включения стартера при нажатой до упора педали управления подачей топлива (максимальная подача).

Запуск дизеля при температуре воздуха ниже +5° С осуществляется при помощи электрофакельного пускового подогревателя в следующем порядке. Кнопка включателя пускового подогревателя повертывается по ходу часовой стрелки (в ней загорается лампочка); через 1-2 мин после включения подогревателя нажимается кнопка включения стартера при нажатой до упора педали управления подачей топлива; одновременно делаются четыре-пять полных хода рукояткой насоса электрофакельного пускового подогревателя. При этом полезно педаль сцепления держать выжатой.

При температуре окружающего воздуха ниже 0° С перед запуском необходимо прогреть систему охлаждения двигателя до температуры не менее 30° С подогревательным устройством или горячей водой. Рекомендуется также до запуска двигателя провернуть несколько раз коленчатый вал вручную при помощи специального ключа за шестигранную головку болта крепления шкива коленчатого вала.

После запуска двигателя выключают систему зажигания, повертывают кнопку включения электрофакельного пускового подогревателя против хода часовой стрелки (лампочка при этом гаснет) и вдвигают до упора рукоятку насоса системы подогрева воздуха.

Запускать двигатель, буксируя автомобиль, запрещается во избежание повреждения механизмов силовой передачи автомобиля.

Система запуска двигателя предназначена для создания первичного крутящего момента коленвала двигателя с оборотами, необходимыми для образования нужной степени сжатия, для воспламенения горючей смеси. Управление системой запуска может быть ручным, автоматическим и дистанционным.

Система пуска двигателя состоит из основных функциональных устройств:

  1. Стартер
  2. Механизмы управления запуска (замок зажигания, блок управления автоматическим пуском, система дистанционного управления)
  3. Соединительные провода большого сечения (многопроволочные медные).

Предъявляемые требования к системе запуска:

  • надежность работы стартера (отсутствие поломок в 45-50 тыс. км. пробега)
  • возможность уверенного запуска в условиях пониженных температур
  • способность системы к многоразовым пускам в течение короткого времени.

Устройство стартера автомобиля

Основным узлом системы запуска двигателя является стартер . Представляет собой электродвигатель постоянного тока напряжением 12 вольт и, развивающий на холостом ходу примерно 5000 об\мин.

Стартер состоит из пяти основных элементов:

  1. Корпус стартера выполнен из стали, имеет форму цилиндра. На внутреннюю стенку корпуса крепятся обмотки возбуждения (обычно четыре) совместно с сердечниками (полюсами). Крепеж происходит винтовым соединением. Винт закручивается в сердечник, который прижимает обмотку к стенке. Корпус имеет резьбовые технологические отверстия для крепления передней части, в которой происходит движение обгонной муфты.
  2. Якорь стартера представляет собой ось из легированной стали, на которую запрессован сердечник якоря и коллекторные пластины. Сердечник имеет пазы для укладки обмоток якоря. Концы обмоток надежно крепятся к коллекторным пластинам. Коллекторные пластины расположены по кругу и жестко установлены на диэлектрической основе. Диаметр сердечника напрямую связан с внутренним диаметром корпуса (совместно с обмотками). Якорь крепится в передней крышке стартера и в задней крышке при помощи втулок, изготовленных из латуни, реже из меди. Втулки одновременно являются и подшипниками.
  3. Втягивающее реле или тяговое реле устанавливается на корпус стартера. В корпусе тягового реле, в задней части находятся силовые контакты – «пятаки», и подвижный контакт-перемычка, выполненные из мягких металлов. «Пятаки» представляют собой обыкновенные болты, запрессованные в эбонитовую крышку тягового реле. При помощи гаек к ним крепятся силовые провода от аккумулятора и от плюсовых щеток стартера. Сердечник тягового реле соединяется, через подвижное «коромысло» с обгонной муфтой, в простонародье именуемой бендиксом.
  4. Обгонная муфта (бендикс) крепится подвижно на вал якоря и представляет собой роликовый механизм, который связан с шестерней зацепления с венцом маховика. Конструкция собрана так, что при подаче крутящего момента на бендикс в одну сторону, ролики, находящиеся в сепараторе выходят из пазов сепаратора и жестко фиксируют шестерню к наружной обойме. При вращении в противоположную сторону ролики западают в сепаратор, и шестерня вращается независимо от наружной обоймы.
  5. Щеткодержатель элемент стартера, через который подается рабочее напряжение на медно-графитные щетки, а затем передается на коллекторные пластины якоря. Выполнен щеткодержатель в виде диэлектрической обоймы с металлическими вставками, внутри которых находятся щетки. Контакты щеток (мягкий многожильный провод) при помощи точечной сварки привариваются к полюсным пластинам. Полюсными пластинами обычно являются «хвосты» обмоток возбуждения.

Принцип работы пусковой системы и стартера

Этапы работы стартера следующие: стыковка с зубчатым венцом маховика, пуск стартера, расстыковка стартера.

На деле это выглядит следующим образом: при включении замка зажигания и повороте ключа в положение «запуск», по цепи «+» АКБ - замок зажигания - обмотка тягового реле - «+» выхода стартера - плюсовая щетка - обмотка якоря - минусовая щетка, срабатывает тяговое реле . Под действием сердечника реле подвижный контакт замыкает силовые пятаки , через которые подается ток от АКБ на плюсовой провод стартера. Плюс стартера соединен с плюсовой полюсной пластиной и плюсовыми щётками. Минус по умолчанию подключен постоянно.

После подачи тока вокруг обмоток якоря и обмоток возбуждения возникают магнитные потоки, которые направлены в одну сторону а, как известно, одинаковые полюса магнита отталкиваются друг от друга, так возникает круговое движение якоря .

В момент срабатывания втягивающего реле, «коромысло» приходит в движение вместе сердечником реле и выталкивает бендикс на шлицах якоря, в сторону венца маховика. Якорь в этот момент начинает вращаться и приводит в действие маховик. Если завелся, а ключ зажигания еще не отпущен, наступает момент, когда обороты двигателя превышают обороты стартера, в этом случае срабатывает обгонный механизм бендикса .

Для дизельных двигателей или двигателей большой мощности, применяется другой механизм подачи вращения на бендикс. Применяется редуктор, встроенный в корпус стартера. Редуктор представляет собой механизм привода , т.е. по внутренней зубчатой обойме вращаются три сателлита, которые и приводят в действие вал, на котором подвижно находится бендикс. Достоинство таких стартеров в малых габаритах и большой мощности.



План:

    Введение
  • 1 Мускульная сила человека
  • 2 Электростартёр
  • 3 Вспомогательный двигатель внутреннего сгорания
  • 4 Сжатый воздух
  • 5 Direct Start (Непосредственный запуск)
  • 6 Экзотические способы
  • 7 Зажигание при запуске
  • Примечания

Введение


Двигатель внутреннего сгорания любого типа не создаёт вращающего момента в неподвижном состоянии. Прежде чем он начнёт работать, его нужно раскрутить с помощью внешнего источника энергии. Практически используются следующие варианты:

1. Мускульная сила человека

Используется при запуске двигателей небольшой мощности. На лодочных моторах и бензопилах дёргают за тросик, намотанный на маховик или пусковой барабан («верёвочный стартёр »); на мотоциклах используют резкое нажатие ногой на специальный рычаг (кикста́ртер ); на мопедах - вращение педалей велосипедного типа; на автомобилях - проворачивают коленвал пусковой (заводной) рукояткой («кривой стартёр»). Мускульная сила всегда доступна и не зависит от заряда аккумуляторов и т. п. Однако такой метод запуска не очень удобен в эксплуатации; чаще он используется в качестве резервного. На современных автомобилях, как правило, использование «кривого стартёра» вообще не предусматривается. Помимо всего прочего, «кривой стартер» крайне травмоопасен при неправильном использовании.

Существуют также ручные инерционные стартеры , при которых ручкой (через повышающий редуктор) раскручивается небольшой маховик, а когда он запасет необходимое количество кинетической энергии, этот маховик через редуктор (понижающий) соединяется с коленвалом пускаемого двигателя. Такой способ позволяет повысить пусковую мощность и не создавать чрезмерных усилий на пусковой рукоятке. В СССР такие стартеры устанавливались на часть тракторов Т-16 , Т-25 [источник не указан 780 дней ] и небольшие судовые дизели.

Долгое время ручной способ был основным для запуска поршневых двигателей самолётов - всем знакомы кадры хроники, когда коленвал авиадвигателя раскручивают, дёргая рукой пропеллер. Данный способ перестал применяться с ростом мощности моторов, поскольку мускульной силы уже просто не хватало, чтобы провернуть вал тяжёлого и мощного двигателя, зачастую ещё и снабжённого редуктором.


2. Электростартёр

Наиболее удобный способ. При запуске двигатель раскручивается коллекторным электродвигателем - машиной постоянного тока, питающейся от аккумуляторной батареи (после запуска аккумулятор подзаряжается от генератора, приводимого в движение основным двигателем). При низких температурах обычно применяемые кислотные аккумуляторы теряют ёмкость (главным образом - из-за роста вязкости электролита; также происходит снижение электродвижущей силы батареи), а вязкость масла в системе смазки увеличивается. Поэтому запуск двигателя зимой затруднён, а иногда и невозможен. При наличии электрической сети в этом случае возможен запуск от сетевого пускового устройства (практически неограниченной мощности).

Электродвигатели автомобильных стартёров имеют особую конструкцию с четырьмя щётками, которая позволяет увеличить ток ротора и мощность электродвигателя.


3. Вспомогательный двигатель внутреннего сгорания

Главный двигатель запускается другим двигателем внутреннего сгорания, меньшей мощности (так называемый «пускач»); такой способ используется на многих тракторах. Пусковой двигатель обычно карбюраторный двухтактный, его мощность составляет примерно 10 % от мощности основного двигателя. Это обеспечивает надёжный запуск в любых условиях. Сам же вспомогательный двигатель запускается вручную (дёрганием тросика) или от электростартёра.


4. Сжатый воздух

Используется для запуска больших дизелей на тепловозах, судах и бронетехнике. Ранее такой способ был основным для запуска поршневых двигателей в авиации. В цилиндрах, кроме обычных впускных и выпускных клапанов, устраиваются дополнительные пусковые клапаны. При запуске они открываются в таком порядке, чтобы входящий через них в цилиндры воздух толкал поршни и раскручивал двигатель. Ёмкости со сжатым воздухом пополняются от компрессора, приводимого главным двигателем при его работе.


5. Direct Start (Непосредственный запуск)

Немецкая фирма BOSCH опубликовала результаты экспериментов по исследованию возможности прямого (без внешнего прокручивания) запуска бензинового двигателя с непосредственным впрыском топлива. Суть заключается в следующем: в неработающем двигателе с 4-мя и более цилиндрами в одном из цилиндров поршень стоит в положении, соответствующем рабочему ходу. Зная положение коленчатого вала, можно рассчитать объём воздуха в этом цилиндре, впрыснуть туда необходимую дозу топлива и поджечь его искрой. Поршень начнет двигаться, вращая коленчатый вал. Далее процесс развивается лавинообразно и двигатель запускается. Эксперимент признан удачным, но, как заявляет руководство фирмы BOSCH, до применения Direct Start на серийных автомобилях ещё далеко.


6. Экзотические способы

Автомобиль (как и мотоцикл) с механической КПП можно завести, буксируя его другим автомобилем (или толкая руками, это называется «завести с толкача»), а также разгоняя его при включенной передаче по наклонной дороге. Однако таким способом есть большая вероятность поломки ходовой части, которая тем выше, чем более низкая передача включена; в руководствах по эксплуатации многих автомобилей есть запрет на такой запуск.

Разновидностью первого способа является ручное раскручивание одного из колёс автомобиля, предварительно вывешенного с помощью домкрата при включенной одной из верхних передач, для защиты рук при этом необходимо использовать рукавицы. Главной особенностью способа является возможность запуска двигателя водителем в одиночку.

При разряде аккумулятора часто приходится подключаться к аккумулятору другого автомобиля (это называется «прикурить»). Делать это рекомендуют с не работающим двигателем другого автомобиля, чтобы его электронная система не вышла из строя.

В принципе, можно запускать мотор, раскручивая его электродвигателем, питающимся от внешней электросети. Мощность и время работы такого сетевого стартёра почти не ограничены, однако подключиться к электросети можно далеко не везде.

Для запуска двигателя после кратковременного выключения предлагался маховик-накопитель: раскручиваемый двигателем при движении, он затем позволяет запустить двигатель, не нагружая аккумулятор.

Двигатель танка или другой самоходной установки можно запустить выстрелом. Для этого включается зажигание и соответствующая передача, башня танка поворачивается в сторону, противоположную предполагаемому направлению движения. Производится выстрел. Отдача заставляет танк начать движение, а следовательно - производится запуск двигателя.


7. Зажигание при запуске

Для двигателей с искровым зажиганием актуальна также проблема питания системы зажигания в момент запуска. Обычные генераторы с электромагнитами требуют некоторого времени для самовозбуждения, поэтому в момент запуска зажигание питается только от аккумулятора. В итоге мотоциклы «ИЖ» и «Урал» не заводятся при разряженном аккумуляторе, хотя запуск производится кик-стартером, а не электростартером. Эта проблема решается использованием генератора с постоянными магнитами (как на мотоциклах «Минск» и «Восход») или магнето, которые дают ток сразу, однако такие генераторы имеют меньшую мощность. Проблема становится намного слабее при использовании электронного зажигания, но и оно неспособно работать при полностью разрядившейся батарее. Проблема полностью разряженного аккумулятора усугубляется тем, что в современных генераторах вместо постоянных магнитов используют обмотку возбуждения. Это значит, что даже при вращающемся моторе (например, буксируемая машина) искры не будет.

Кроме проблем с питанием системы зажигания, существует также проблема со смесеобразованием при пуске холодного двигателя. При низких температурах топливо недостаточно полно испаряется, из-за чего попадает в камеру сгорания в виде капелек, которые могут «залить» свечу зажигания, не позволяя высокому напряжению пробить этот изолирующий слой диэлектрика, бензина. От этого недостатка свободны свечи зажигания с форкамерой и соплом Лаваля [источник? ] .

В современных автомобилях производителем нередко также предусмотрен режим «продувки» цилиндров, при котором прекращается активная подача топлива, а работа поршней освобождает объём от излишков топлива. Чтобы использовать данный режим необходимо до упора выжать педаль газа и начать прокручивать стартер.


Примечания

скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 13.07.11 06:46:42
Похожие рефераты:

Хотим отметить, что если вы нуждаетесь в каких либо автозапчастях для своего автомобиля , то наш интернет-сервис будет рад предложить вам их по самым низким ценам. Все, что вам нужно, это зайти в меню " " и заполнить форму, либо ввести название запчасти в верхнем правом окошке данной страницы, после этого на вас выйдут наши менеджеры и предложат лучшие цены, каких вы еще видом не видывали и слыхом не слыхивали! Теперь к главному.

Итак, все мы знаем, что самой важной частью машины является маэстро двигатель. Основной целью работы двигателя является преобразование бензина в движущую силу. В настоящее время, самым простым способом заставить автомобиль двигаться, является сжигание бензина внутри двигателя. Именно поэтому двигатель автомобиля называется двигателем внутреннего сгорания .

Две вещи, которые следует запомнить:

Существуют различные двигатели внутреннего сгорания. Например, дизельный двигатель отличается от бензинового. Каждый из них имеет свои преимущества и недостатки.

Существует такая вещь, как двигатель внешнего сгорания. Лучшим примером такого двигателя является паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и является движущей силой. Двигатель внутреннего сгорания является гораздо более эффективным (требуется меньше топлива на километр пути). К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет тот факт, почему мы не видим на улицах автомобили с паровыми движками.

Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания : если вы поместите небольшое количество высокоэнергетического топлива (например, бензина) в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается невероятное количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то мы получим основу работы двигателя.

Сейчас почти все автомобили используют так называемый четырехтактный цикл сгорания для преобразования бензина в движущую силу четырех колесного друга. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:

  1. Такт впуска.
  2. Такт сжатия.
  3. Такт горения.
  4. Такт выведения продуктов сгорания.

Устройство под названием поршень, выполняющее одну из основных функций в двигателе, своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Вот что происходит, когда двигатель проходит один цикл:

Ø Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом двигатель набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.

Ø Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.

Ø Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.

Ø Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.

Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.

Теперь давайте рассмотрим все части двигателя, работа которых взаимосвязана. Начнем с цилиндров.

Основные составные части двигателя благодаря которым он работает

Осноова двигателя - это цилиндр , в котором вверх-вниз перемещается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но большинство автомобилей имеет более чем один цилиндр (как правило, четыре, шесть и восемь). В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: в один ряд, V-образным способом и плоским способом (также известный как горизонтально-оппозитный).

Разные конфигурации имеют разные преимущества и недостатки с точки зрения гладкости, производственных затрат и характеристик формы. Эти преимущества и недостатки делают их более или менее подходящими к разным видам транспортных средств.

Давайте более подробно рассмотрим некоторые ключевые детали двигателя.

Свечи зажигания

Свечи зажигания обеспечивают искру, которая воспламеняет воздушно-топливную смесь. Искра должна возникнуть в правильный момент для безотказной работы двигателя.

Клапаны

Впускные и выпускные клапаны открываются в определенный момент для того чтобы впустить воздух и топливо и выпустить продукты сгорания. Следует обратить внимание на то, что оба клапана закрыты в момент сжатия и сгорания, обеспечивая герметичность камеры сгорания.

Поршень

Поршень - это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.

Поршневые кольца

Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. Кольца имеют два назначения:

  • Во время тактов сжатия и сгорания они предотвращают утечку воздушно-топливной смеси и выхлопных газов из камеры сгорания
  • Они не позволяют маслу попасть в зону сгорания, где оно будет уничтожено.

Если ваш автомобиль начинает «подъедать масло» и вам приходиться подливать его каждые 1000 километров, значит двигатель автомобиля довольно старый и поршневые кольца в нем сильно изношены. Как следствие они не могут обеспечивать герметичность на должном уровне. А это значит, вам нужно озадачиться вопросом, ибо покупка нового движка кропотливое и ответственное дело.

Шатун

Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.

Коленчатый вал

Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.

Маслосборник

Маслосборник окружает коленчатый вал. Он содержит некоторое количество масла, которое собирается в нижней его части (в масляном поддоне).

Основные причины неполадок и перебоев в машине и двигателе

Одним прекрасным утром вы можете сесть в свой автомобиль и осознать, что утро не так уж и прекрасно… Автомобиль не заводится, мотор не работает. Что может быть причиной этому. Теперь, когда мы разобрались в работе двигателя, вы можете понять, что может стать причиной его поломки. Существует три основных причины: плохая топливная смесь, отсутствие сжатия или отсутствие искры. Кроме того тысячи мелочей могут стать причиной его неисправности, но эти три образуют «большую тройку». Мы рассмотрим, как эти причины влияют на работу мотора на примере совсем простого двигателя, который мы уже обсуждали ранее.

Плохая топливная смесь

Данная проблема может возникнуть в следующих случаях:

· У вас закончился бензин и в автодвигатель поступает только воздух, чего не достаточно для сгорания.

· Могут быть забиты воздухозаборники, и в движок просто не поступает воздух, который крайне необходим для такта сгорания.

· Топливная система может поставлять слишком мало или слишком много топлива в смесь, а это означает, что горение не происходит должным образом.

· В топливе могут быть примеси (например, вода в бензобаке), которые препятствуют горению топлива.

Отсутствие сжатия

Если топливная смесь не может быть сжата должным образом, то и не будет надлежащего процесса сгорания обеспечивающего работу машины. Отсутствие сжатия может возникнуть по следующим причинам:

· Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.

· Один из клапанов неплотно закрывается, что, опять-таки, позволяет смеси вытекать.

· В цилиндре есть отверстие.

В большинстве случаев «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Как правило, между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка ломается, то между головкой цилиндра и самим цилиндром образуются отверстия, которые также становятся причиной утечки.

Отсутствие искры

Искра может быть слабой или вообще отсутствовать по нескольким причинам:

  • Если свеча зажигания или провод, идущий к ней, изношены, то искра будет довольно слабой.
  • Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает должным образом, то искры не будет.
  • Если искра приходит в цикл слишком рано, или же слишком поздно, топливо не сможет воспламениться в нужный момент, что соответственно влияет на стабильную работу мотора.

Возможны и другие проблемы с двигателем. Например:

  • Если разряжен, то двигатель не сможет сделать ни одного оборота, соответсвенно вы не сможете завести автомобиль.
  • Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не сможет провернуться и запустить двигатель.
  • Если клапаны не будут закрываться или открываться в необходимый момент цикла, то работа двигателя будет невозможна.
  • Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.

В правильно работающем двигателе вышеописанные проблемы быть не могут. Если же они появились, ждите беды.

Как видите, в моторе автомобиля есть ряд систем, которые помогают ему выполнять главную задачу - преобразовывать топливо в движущую силу.

Клапанный механизм двигателя и система зажигания

Большинство подсистем автомобильного мотора могут быть внедрены по средствам различных технологий, и более совершенные технологии могут улучшить эффективность работы двигателя. Давайте рассмотрим эти подсистемы, используемые в современных автомобилях. Начнем с клапанного механизма. Он состоит из клапанов и механизмов, которые открывают и закрывают проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу имеются выступы, которые и перемещают клапаны вверх и вниз.

Большинство современных движков имеют так называемые накладные кулачки. Это означает, что вал расположен над клапанами. Кулачки вала воздействуют на клапаны непосредственно или через очень короткие связующие звенья. Эта система настроена так, что клапаны находятся в синхронизации с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр - два на вход воздуха и два на выход продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.

Система зажигания производит высоковольтный заряд и передает его на свечи зажигания при помощи проводов. Сначала заряд поступает в распределитель, который вы можете с легкостью найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других проводов (в зависимости от количества цилиндров в двигателе). Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.

Система зажигания двигателя, охлаждения и набора воздуха

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом, для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой автомобиля. Это делает двигатели легче, но охлаждение при этом менее эффективное. Как правило, двигатели с таким видом охлаждения, имеют меньший срок службы и меньшую производительность.

Теперь вы знаете, как и почему мотор вашей машины охлаждается. Но почему же тогда так важна циркуляция воздуха? Существуют автомобильные двигателя с наддувом - это означает, что воздух проходит через воздушные фильтры и попадает непосредственно в цилиндры. Для увеличения производительности некоторые двигатели оснащены турбонаддувом, а это значит, что воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр может быть втиснуто больше воздушно-топливной смеси.

Повышение производительности автомобиля - это круто, но что же происходит на самом деле, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида. Когда вы проворачиваете ключ в замке зажигания, стартер вращает двигатель на несколько оборотов для того чтобы начался процесс сгорания топлива. Требуется действительно мощный мотор, чтобы запустить холодный двигатель. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид является тем переключателем, который может справиться с таким мощным потоком электричества, и когда вы проворачиваете ключ зажигания, активируется именно соленоид, который, в свою очередь, запускает стартер.

Смазочные жидкости двигателя, топливная, выхлопная и электрические системы

Когда дело доходит до ежедневного использования автомобиля, первое, о чем вы заботитесь это наличие бензина в бензобаке. Каким образом этот бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом таким образом, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.

При смесеобразовании, прибор под названием карбюратор, добавляет бензин в воздух, как только воздух попадает в двигатель.

В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо непосредственно в цилиндр (прямой впрыск).

Масло также играет важную роль в двигателе. Смазочная система гарантирует, что в каждую из движущихся частей двигателя поступает масло для плавной работы. Поршни и подшипники (которые позволяют свободно вращаться коленчатому и распределительному валу) - основные части, которые имеют повышенную потребность масла. В большинстве автомобилей, масло засасывается через масляный насос и маслосборника, проходит через фильтр, чтобы очиститься от песка, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Далее масло стекает в маслосборник, и цикл повторяется снова.

Теперь вы знаете немного больше о тех вещах, которые поступают в двигатель вашего автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система. Она крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, вы бы слышали звук всех тех мини-взрывов, которые происходят в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.

Теперь поговорим об электрической системе автомобиля, которая тоже приводит его в действие. Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В свою очередь, аккумулятор предоставляет электроэнергию всем системам автомобиля, которые в ней нуждаются.

Теперь вы знаете все о главных подсистемах двигателя. Давайте рассмотрим, каким способом вы можете увеличить мощность двигателя своего автомобиля.

Как увеличить производительность двигателя и улучшить его работу?

Используя всю вышеприведенную информацию, вы, должно быть, обратили внимание на то, что есть возможность заставить двигатель работать лучше. Производители автомобилей постоянно играют с этими системами с одной лишь целью: сделать двигатель более мощным и сократить расход топлива.

Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо самих цилиндров, либо их количества. В настоящее время 12 цилиндров - это предел.

Увеличение степени сжатия. До определенного момента, высшая степень сжатия производит больше энергии. Однако, чем больше вы сжимаете воздушно-топливную смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Именно поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.

Большее наполнение цилиндра. Если в цилиндр определенного размера можно втиснуть больше воздуха (и, следовательно, топлива), то вы сможете получить больше энергии от каждого цилиндра. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно вталкивают его в цилиндр.

Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер - это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.

Сделать меньшим вес деталей. Чем легче часть двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет.

Впрыск топлива. Система впрыска топлива позволяет очень точное дозирование топлива, которое поступает в каждый цилиндр. Это повышает производительность двигателя и существенно экономит топливо.

Теперь вы знаете практически все о том, как работает двигатель автомобиля, а также причины основных неполадок и перебоев в машине. Напоминаем, что если после прочтения данной статьи вы почувствовали, что ваша машина требует обновления каких либо автодеталей, то рекомендуем заказать и купить их через наш интернет-сервис заполнив форму запроса в меню " ", либо заполнив название запчасти в правом верхнем окошке данной страницы. Надеемся, что наша статья о том, как работает двигатель автомобиля? А также основные причины неполадок и перебоев в машине поможет вам совершить правильную покупку.

3.1. Назначение и требования к системам пуска двигателя

Для запуска ДВС необходимо сообщить коленчатому валу вращение с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и горения топлива. Пусковая частота вращения карбюраторных двигателей составляет 40...50 мин -1 . У дизелей частота вращения коленчатого вала должна быть не менее 100... 150 мин -1 , так как при более медленном вращении сжимаемый воздух не нагревается до необходимой температуры.

При пуске необходимо преодолеть момент сопротивления на трение, момент, создаваемый при сжатии рабочей смеси в цилиндрах, и момент инерции вращающихся частей двигателя.

Развиваемый стартером крутящий момент зависит от мощности и конструкции двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения двигателя стартера. Момент сопротивления зависит от окружающей температуры. Изменение температуры влияет на физико-механические свойства материалов (топлива, масла, охлаждающей жидкости). Наибольшие трудности вызывает пуск двигателя при низких температурах вследствие повышения вязкости масла и топлива, снижения его испаряемости. Ухудшение условий для воспламенения и сгорания топливно-воздушной смеси, а также характеристик системы зажигания обусловлено падением напряжения на зажимах аккумуляторной батареи при работе ее в стартерном режиме.

Электрический стартер - машина кратковременного действия. Продолжительность пуска карбюраторного двигателя составляет 10 с, дизеля- 15. В связи с этим тепловые и электромагнитные нагрузки, допускаемые для стартера, значительно выше (в 2 раза), чем для машин, работающих в длительном режиме. Стартер должен обладать большим крутящим моментом для преодоления момента сопротивления двигателя поэтому применяется электродвигатель с последовательным возбуждением. При запуске он развивает больший крутящий момент на валу якоря, чем двигатель с параллельным возбуждением. Вместе с тем, электродвигатель с последовательным возбуждением при холостом ходе увеличивает частоту вращения ротора теоретически до бесконечности. Практически возрастание частоты вращения ротора в этом случае ограничивается наличием механических потерь на трение в подшипниках, щеток на коллекторе и т.п.

В стартерах большой мощности КПД выше, потери на трение относительно меньше, поэтому частота вращения ротора значительно возрастает. Так как диаметр якоря стартера большой мощности также большой, то создается опасность "разноса" якоря при холостом ходе, т.е. вырывания его обмотки из пазов центробежной силой. Поэтому в мощных стартерах для ограничения числа оборотов холостого хода применяют добавочную параллельную обмотку, т.е. смешанное возбуждение. Магнитный поток параллельной обмотки составляет только 4...5% общего магнитного потока, поэтому она мало влияет на характеристики двигателя.

В зависимости от конструкции и принципа действия различают стартеры с инерционным и с принудительным электромеханическим перемещением шестерни привода, с принудительным вводом шестерни в зацепление и с самовыключением ее после пуска двигателя.

Наибольшее распространение получили в настоящее время стартеры с принудительным вводом шестерни и самовыключением ее посла пуска двигателя.

3.2. Устройство стартера

На рис. 3.1 показан разрез автомобильного стартера с электро- магнитным реле и дистанционным управлением.

На одном из концов вала имеется муфта свободного хода 9 с ведущей шестерней 8. Тяговое электромагнитное реле 3 с помощью рычага перемещает шестерню и вводит ее в зацепление с зубчатым венцом маховика двигателя. Одновременно с перемещением шестерни контактным диском 2 замыкается электрическая цепь стартера. Обмотка электромагнитного реле состоит из двух обмоток - втягивающей и удерживающей. Кроме тягового реле стартер имеет реле включения, обмотка которого включена на разность напряжения между батареей и генератором. После пуска, когда генератор начнет работать и разность напряжений между аккумулятором и генератором начнет уменьшаться, реле включения отключает удерживающую обмотку и электромагнит. Тяговое реле стартера 4 выключается, а возвратная пружина 6 выводит шестерню из зацепления с зубчатым венцом маховика двигателя. Одновременно происходит электрическое отключение стартера от батареи.

Корпус стартера и полюсные наконечники изготавливаются из листовой электротехнической стали. Обмотки якоря статора и полюсов из голой медной прямоугольной шины с небольшим количеством витков, изолированных друг от друга бумагой и покрытых лаком.

Рис.3.1. Схема стартера с электромагнитным тяговым реле и дистанционным управлением: 1-контакт зажима; 5-якорь реле; 10-корпус стартера; 11-якорь; 12-обмотка возбуждения; 13-щетка; 14-коллектор; (остальные позиции указаны в тексте)

3.3. Устройство и работа приводных механизмов

Приводной механизм - устройство, обеспечивающее ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска ДВС, передачу необходимого вращающего момента коленчатому валу и предохранение якоря электродвигателя от разноса вращающимся маховиком после пуска двигателя.

Приводные механизмы электростартера с принудительным механическим или электромеханическим перемещением шестерни имеют роликовые фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу двигателя во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска.

Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых ролики заклиниваются в связи с возникновением сил трения в сопряженных деталях.

Муфта свободного хода (рис. 3.2) обеспечивает передачу вращающего момента только с вала якоря на венец маховика и предотвращает вращение якоря от маховика после пуска двигателя.

На шлице во и втулке жестко укреплена ведущая обойма 4. В ней имеются четыре клинообразных паза, в которых установлены ролики 3, отжимаемые в сторону узкой части паза усилием пружины 10 плунжеров 9. Пружина надета на упоры II плунжеров. Шестерня 7 выполнена вместе с ведомой обоймой. Упорные шайбы 5 и 6 ограничивают осевое перемещение роликов 3.

Рис. 3.2. Муфта свободного хода: 1 - кожух, 2- уплотнитель; 8 - пружины (остальные позиции указаны в тексте)

3.4. Принцип работы системы пуска двигателя

Система пуска (рис. 3.3) содержит стартер 1, аккумуляторную батарею 2 и выключатель стартера 3. Стартер состоит из электродвигателя постоянного тока 4, тягового реле 5 и механизма привода 10. Тяговое реле обеспечивает ввод шестерни 12 привода 8 зацепления с венцом маховика 13, а также подключение электрической цепи электродвигателя стартера к аккумуляторной батарее. Механизм привода 10 передает вращение от вала якоря на венец маховика 13 двигателя и предотвращает передачу вращения от маховика на вал якоря после начала работы двигателя.

Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. После пуска частота вращения коленчатого вала достигает порядка 1000 мин -1 . Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000... 15000 мин -1 . Даже при кратковременном увеличении частоты вращения до такого значения возможен разнос якоря. Для предотвращения этого, усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода, которая обеспечивает передачу крутящего момента только в одном направлении от вала якоря к маховику. Шестерня в современных стартерах перемещается электромагнитным включением и дистанционным управлением. Для увеличения крутящего момента на коленчатом валу используется пониженная передача с передаточным числом 10...15.

При замыкании контактов выключателя по обмотке электромагнита протекает ток, и якорь электромагнита 8 втягивается, а соединенный с ним рычаг II перемещает шестерню 12. Одновременно якорь давит на пластину 6, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты.

Рис. 3.3. Принципиальная схема системы пуска

Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться. После пуска двигателя водитель выключает цепь обмотки электромагнита, и шестерня возвращается в исходное положение.

Для обеспечения длительной работоспособности привода и стартера в целом важное значение имеет своевременное отключение стартера. При задержке отключения увеличивается продолжительность работы муфты свободного хода привода, она нагревается, смазка разжижается и вытекает, что приводит к быстрому износу муфты.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков