Новые технологии в аккумуляторах. Прорыв в разработке аккумуляторных батарей Аккумуляторные батареи будущего

Новые технологии в аккумуляторах. Прорыв в разработке аккумуляторных батарей Аккумуляторные батареи будущего

Представьте себе мобильный телефон, который держит заряд больше недели, а затем заряжается за 15 минут. Фантастика? Но она может стать реальностью благодаря новому исследованию ученых Северо-Западного университета (г. Эванстон, штат Иллинойс, США). Команда инженеров разработала электрод для литиево-ионных перезаряжаемых батарей (которые сегодня используются в большинстве сотовых телефонов), позволивший увеличить их энергетическую емкость в 10 раз. Этим приятные сюрпризы не ограничиваются — новые аккумуляторные устройства умеют заряжаться в 10 раз быстрее нынешних.

Для преодоления ограничений, налагаемых существующими технологиями на энергетическую ёмкость и скорость заряда батареи, ученые применили два различных химико-технологических подхода. Полученный в результате аккумулятор позволит не только продлить время работы мелких электронных устройств (вроде телефонов и лэптопов), но и подготовить почву для разработки более эффективных и компактных батарей для электромобилей.

«Мы нашли способ продлить время удержания заряда новой литиево-ионной батареей в 10 раз», — сообщил профессор Гарольд Х. Кунг (Harold H. Kung), один из ведущих авторов исследования. - «Даже после 150 сеансов зарядки/разрядки, что означает не менее года работы, она остается впятеро эффективнее, чем литиево-ионные баратеи, присутствующие сегодня на рынке».

Работа литиево-ионной батареи основана на химической реакции, в которой ионы лития движутся между анодом и катодом, размещенными на противоположных концах батареи. В процессе эксплуатации аккумулятора ионы лития мигрируют от анода через электролит к катоду. При зарядке же их направление сменяется прямо противоположным. Существующие на данный момент аккумуляторы имеют два важных ограничения. Их энергетическая емкость - то есть время удержания заряда батареей - ограничена плотностью заряда, или тем, сколько ионов лития может разместиться на аноде или катоде. В то же время скорость зарядки такого аккумулятора ограничена скоростью, с которой ионы лития способны двигаться через электролит к аноду.

В нынешних перезаряжаемых батареях в аноде, созданном из множества графеновых листов, на каждые шесть атомов углерода (из которых состоит графен) может приходиться лишь один атом лития. В попытке увеличить энергетическую емкость аккумуляторов ученые уже экспериментировали с заменой углерода на кремний, способный вместить куда больше лития: по четыре атома лития на каждый атом кремния. Однако кремний в процессе зарядки резко расширяется и сжимается, чем вызывает фрагментацию вещества анода и, как результат, быструю потерю зарядной емкости батареи.

В настоящее время малая скорость зарядки батареи объясняется формой графеновых листов: по сравнению с толщиной (составляющей всего один атом) их длина оказывается непомерно большой. Во время зарядки ион лития должен преодолеть расстояние до внешних краев графеновых листов, а затем пройти между ними и остановиться где-то внутри. Так как для достижения середины графенового листа литию требуется немалое время, у краев его наблюдается что-то вроде ионного затора.

Как уже говорилось, исследовательская группа Кунга решила обе эти проблемы, взяв на вооружение две различные технологии. Во-первых, для обеспечения устойчивости кремния и, соответственно, поддержания максимальной зарядной емкости батареи, они разместили кластеры кремния между графеновыми листами. Это позволило увеличить количество ионов лития в электроде, одновременно используя гибкость графеновых листов для учета изменений объема кремния в процессе зарядки/разрядки батареи.

«Теперь мы одним выстрелом убиваем обоих зайцев», — говорит Кунг. - «Благодаря кремнию мы получаем более высокую плотность энергии, а чередование слоев уменьшает потерю мощности, вызванную расширением с сокращением кремния. Даже при разрушении кластеров кремния сам кремний больше никуда не денется».

Кроме того, исследователи использовали процесс химического окисления для создания миниатюрных (10-20 нанометров) отверстий в графеновых листах («in-plane defects»), обеспечивающих ионам лития «быстрый доступ» внутрь анода с последующим хранением в нем в результате реакции с кремнием. Это уменьшило время, необходимое для зарядки батареи, в 10 раз.

Пока что все усилия по оптимизации работы батарей были направлены на одну из их составляющих - анод. На следующем этапе исследований ученые с той же целью планируют изучить изменения в катоде. Кроме того, они хотят доработать электролитную систему таким образом, чтобы батарея могла автоматически (и обратимо) выключаться при высоких температурах - подобный защитный механизм мог бы пригодиться при использовании батарей в электромобилях.

По словам разработчиков, в текущем виде новая технология должна выйти на рынок в течение ближайших трех-пяти лет. Статья, посвященная результатам исследования и разработки новых аккумуляторных батарей, была опубликована в журнале «Advanced Energy Materials».

А сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

В погоне за скоростью зарядки

Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

Вечные аккумуляторы

Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

Переход в третье измерение

В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

Зарядка через экран

Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.

В отношении аккумуляторов действует правило «все или ничего». Без энергетических накопителей нового поколения не будет ни перелома в энергетической политике, ни на рынке электромобилей.

Закон Мура, постулируемый в IT-индустрии, обещает увеличение производительности процессоров каждые два года. Развитие аккумуляторов отстает: их эффективность увеличивается в среднем на 7% в год. И хотя литий-ионные батареи в современных смартфонах работают все дольше и дольше, это во многом связано с оптимизированной производительностью чипов.

Литий-ионные батареи доминируют на рынке из-за их малого веса и высокой плотности накапливаемой энергии.

Ежегодно миллиарды аккумуляторов устанавливаются в мобильные устройства, электромобили и системы для хранения электричества от возобновляемых источников энергии. Однако современная техника достигла своего предела.

Хорошей новостью является то, что следующее поколение литий-ионных батарей уже почти соответствует требованиям рынка. В качестве аккумулирующего материала в них применяется литий, который теоретически позволяет в десять раз увеличить плотность хранения энергии.

Наряду с этим приводятся исследования других материалов. Хотя литий и обеспечивает приемлемую плотность энергии, однако речь идет о разработках на несколько порядков оптимальнее и дешевле. В конце концов, природа могла бы предоставить нам лучшие схемы для высококачественных аккумуляторов.

Научно-исследовательские лаборатории университетов разрабатывают первые образцы органических аккумуляторов . Однако до выхода таких биобатарей на рынок может пройти не одно десятилетие. Мостик в будущее помогают протянуть малогабаритные батареи, которые заряжаются путем улавливания энергии.

Мобильные источники питания

По данным компании Gartner, в этом году будет продано более 2 млрд. мобильных устройств, в каждом из которых установлен литий-ионный аккумулятор. Эти аккумуляторы сегодня считаются стандартом, отчасти потому, что они весьма легкие. Тем не менее они обладают максимальной плотностью энергии только 150-200 Вт·ч/кг.

Литий-ионные батареи заряжаются и отдают энергию путем перемещения ионов лития. При зарядке положительно заряженные ионы двигаются от катода через раствор электролита между слоями графита анода, накапливаются там и присоединяют электроны тока зарядки.

При разрядке они отдают электроны в контур тока, ионы лития перемещаются обратно к катоду, в котором они вновь связываются с находящимся в нем металлом (в большинстве случаев - кобальтом) и кислородом.

Емкость литий-ионных аккумуляторов зависит от того, какое количество ионов лития может располагаться между слоями графита. Однако благодаря кремнию сегодня можно добиться более эффективной работы аккумуляторов.

Для сравнения: для связывания одного иона лития требуется шесть атомов углерода. Один атом кремния, напротив, может удерживать четыре иона лития.

Литий-ионный аккумулятор сохраняет свою элетроэнергию в литии. При зарядке анода атомы лития сохраняются между слоями графита. При разрядке они отдают электроны и перемещаются в виде ионов лития в слоистую структуру катода (кобальтит лития).

Кремний повышает емкость

Емкость аккумуляторов растет при включении кремния между слоями графита. Она увеличивается в три-четыре раза при соединении кремния с литием, однако после нескольких циклов зарядки графитовый слой разрывается.

Решение этой проблемы найдено в стартап-проекте Amprius , созданном учеными из Стэндфордского университета. Проект Amprius получил поддержку таких лю­дей, как Эрик Шмидт (председателя совета директоров Google) и лауреат Нобелевской премии Стивен Чу (до 2013 года – министр энергетики США).


Пористый кремний в аноде увеличивает эффективность литий-ионных аккумуляторов до 50%. В ходе реализации стартап-проекта Amprius же произведены первые кремниевые аккумуляторы.

В рамках этого проекта доступны три метода решения «проблемы графита». Первый из них - применение пористого кремния , который можно рассматривать как «губку». При сохранении лития он крайне мало увеличивается в объеме, следовательно, слои графита остаются неповрежденными. Amprius может создать аккумуляторы, которые сохраняют до 50% больше энергии, чем обычные.

Более эффективно, чем пористый кремний, накапливает энергию слой кремниевых нанотрубок . В прототипах было достигнуто почти двукратное увеличение зарядной емкости (до 350 Вт·ч/кг).

«Губка» и трубки должны быть по-прежнему покрыты графитом, так как кремний вступает в реакцию с раствором электролита и тем самым уменьшает время работы аккумулятора.

Но есть и третий метод. Исследователи проекта Ampirus внедрили в углеродную оболочку группы частиц кремния , которые непосредст­венно не соприкасаются, а обеспечивают свободное пространство для увеличения частиц в объеме. Литий может накапливаться на этих частицах, а оболочка остается неповрежденной. Даже после тысячи циклов зарядки емкость прототипа снизилась только на 3%.


Кремний соединяется с несколькими атомами лития, но при этом расширяется. Для предотвращения разрушения графита исследователи используют структуру растения граната: они вводят кремний в графитовые оболочки, размер которых достаточно велик, чтобы дополнительно присоединять литий.

Многие считают, что будущее автомобилестроения именно за электрокарами. За границей существуют законопроекты, по которым часть ежегодно продаваемых автомобилей должны либо быть гибридами, либо работать на электричестве, поэтому деньги вкладываются не только в рекламу таких авто, но и в постройку заправок.

Однако многие люди все-таки ждут, когда электрокары станут настоящими соперниками традиционным автомобилям. А может, это будет, когда время зарядки уменьшится, а время автономной работы увеличится? Возможно, в этом человечеству помогут графеновые аккумуляторы.

Что такое графен?

Революционный материал нового поколения, самый легкий и прочный, самый электропроводящий - все это о графене, который является не чем иным, как двумерной углеродной решеткой толщиной в один атом. Создатели графена, Константин Новоселов и получили Нобелевскую премию. Обычно между открытием и началом практического использования этого открытия на практике проходит продолжительное время, иногда даже десятки лет, однако графен такая участь не постигла. Возможно, это связано с тем, что Новоселов и Гейм не утаили технологию его производства.

Они не только рассказали о ней всему миру, но и показали: есть видео на YouTube, где Константин Новоселов подробно рассказывает об этой технологии. Поэтому, возможно, скоро мы сможем даже делать графеновые аккумуляторы своими руками.

Разработки

Попытки применения графена были практически во всех областях науки. Его пробовали в солнечных батареях, наушниках, корпусах и даже пытались лечить рак. Однако на данный момент одна из самых перспективных и нужных человечеству вещей - это графеновый аккумулятор. Напомним, что при таком неоспоримом преимуществе, как дешевое и экологичное топливо, электромобили имеют серьезный недостаток - относительно небольшую максимальную скорость и запас хода не более трехсот километров.

Решение проблемы века

Графеновый аккумулятор работает по тому же принципу, что и свинцовые с щелочным или кислотным электролитом. Этим принципом является электрохимическая реакция. По устройству графеновый аккумулятор схож с литиево-ионным с твердым электролитом, в котором катодом является угольный кокс, близкий по составу к чистому углероду.

Однако уже сейчас среди инженеров, разрабатывающих графеновые аккумуляторы, есть два принципиально разных направления. В США ученые предложили делать катод из пластин графена и кремния, перемежающихся между собой, а анод - из классического кобальта лития. Российские инженеры нашли другое решение. Токсичная и дорогая литиевая соль может быть заменена более экологичным и дешевым оксидом магния. Емкость аккумулятора увеличивается в любом случае за счет повышения скорости прохождения ионов от одного электрода к другому. Это достигается вследствие того, что графен обладает высоким показателем электрической проницаемости и способностью к накоплению электрического заряда.

Мнения ученых относительно инноваций разделяются: российские инженеры утверждают, что графеновые аккумуляторы имеют емкость в два раза больше, чем литий-ионные, а вот их зарубежные коллеги утверждают, что в десять.

Графеновые аккумуляторы запущены в массовое производство в 2015 году. К примеру, этим занимается испанская компания Graphenano. По словам производителя, использование этих аккумуляторов в электрокарах на логистических площадках показывает реальные практические возможности батареи с графеновым катодом. Для полной зарядки ему требуется всего восемь минут. Максимальную длину пробега также способны увеличить графеновые аккумуляторы. Зарядка на 1000 км вместо трехсот - вот что хочет предложить потребителю корпорация Graphenano.

Испания и Китай

С Graphenano сотрудничает китайская компания Chint, которая купила 10 % акций испанской корпорации за 18 миллионов евро. На совместные средства будет осуществляться постройка завода с двадцатью производственными линиями. Проект уже получил около 30 миллионов инвестиций, которые будут вложены в установку оборудования и наем сотрудников. По первоначальному плану завод должен был начать выпускать около 80 миллионов батарей. На начальном этапе основным рынком должен стать Китай, а затем планировалось начало поставок в другие страны.

На втором этапе компания Chint готова инвестировать 350 миллионов евро для постройки еще одного завода, на котором будет около пяти тысяч сотрудников. Такие цифры неудивительны, если учесть, что суммарный доход будет составлять около трех миллиардов евро. К тому же Китай, известный своими проблемами с экологией, будет обеспечен экологичным и дешевым "топливом". Однако, как мы можем наблюдать, кроме громких заявлений, свет не увидел ничего, только тестовые модели. Хотя корпорация Volkswagen тоже объявила о своем намерении сотрудничать с Graphenano.

Ожидания и реальность

На дворе 2017 год, а это значит, что Graphenano занимаются "массовым" производством аккумуляторов уже два года, однако встретить электромобиль на дороге - большая редкость не только для России. Все характеристики и данные, обнародованные корпорацией, довольно неопределенны. В целом они никак не выходят за рамки общепринятых теоретических представлений о том, какими параметрами должен обладать графеновый аккумулятор для электромобиля.

К тому же до сих пор все, что было представлено как потребителям, так и инвесторам, - это только компьютерные модели, никаких настоящих прототипов. Добавляет проблем и то, что графен - материал, который очень дорог в производстве. Несмотря на громкие заявления ученых о том, как его можно будет "печатать на коленке", на данном этапе снизить удается только стоимость некоторых компонентов.

Графен и мировой рынок

Сторонники всяческих теорий заговоров скажут, что никому не выгодно появление такого автомобиля, потому что тогда нефть уйдет на задний план, а значит, сократятся и доходы от ее добычи. Однако, скорее всего, инженеры столкнулись с какими-то проблемами, но не хотят это афишировать. Слово "графен" сейчас на слуху, многие считают его поэтому, возможно, ученым не хочется портить его славу.

Проблемы в разработках

Однако дело может быть и в том, что материал действительно инновационный, поэтому подхода требует соответствующего. Возможно, аккумуляторы с использованием графена должны быть принципиально отличными от традиционных литий-ионных или литий-полимерных.

Существует и еще одна теория. Корпорация Graphenano заявила, что новые аккумуляторы заряжаются всего за восемь минут. Специалисты подтверждают, что это действительно возможно, только мощность источника питания должна быть не менее одного мегаватта, что возможно в тестовых условиях на заводе, но никак не в домашних. Постройка достаточного количества заправок с такой мощностью будет стоить огромных денег, цена одной подзарядки будет довольно высока, поэтому графеновый аккумулятор для авто не принесет никакой выгоды.

Практика показывает, что революционные технологии достаточно долго встраиваются в мировой рынок. Необходимо провести множество тестов, чтобы убедиться в безопасности продукта, поэтому выход новых технологических устройств порой затягивается на долгие годы.

Экология потребления.Наука и техника: Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.

Будущее электротранспорта во многом зависит от совершенствования аккумуляторов - они должны весить меньше, заряжаться быстрее и при этом производить больше энергии. Ученые уже добились некоторых результатов. Команда инженеров создала литий-кислородные батареи, которые не растрачивают энергию впустую и могут служить десятилетиями. А австралийский ученый представил ионистор на основе графена, который может заряжаться миллион раз без потери эффективности.

Литий-кислородные аккумуляторы мало весят и производят много энергии и могли бы стать идеальными комплектующими для электромобилей. Но у таких батарей есть существенный недостаток - они быстро изнашиваются и выделяют слишком много энергии в виде тепла впустую. Новая разработка ученых из МТИ, Аргонской национальной лаборатории и Пекинского университета обещает решить эту проблему.

Созданные командой инженеров литий-кислородные аккумуляторы используют наночастицы, в которых содержится литий и кислород. При этом кислород при изменении состояний сохраняется внутри частицы и не возвращается в газовую фазу. Это отличает разработку от литий-воздушных батарей, которые получают кислород из воздуха и выпускают его в атмосферу во время обратной реакции. Новый подход позволяет сократить потерю энергии (величина электрического напряжения сокращается почти в 5 раз) и увеличить срок службы батареи.

Литий-кислородная технология также хорошо адаптирована к реальным условиям, в отличие от литий-воздушных систем, которые портятся при контакте с влагой и CO2. Кроме того, аккумуляторы на литии и кислороде защищены от избыточной зарядки - как только энергии становится слишком много, батарея переключается на другой тип реакции.

Ученые провели 120 циклов заряда-разряда, при этом производительность снизилась лишь на 2%.

Пока что ученые создали лишь опытный образец аккумулятора, но в течение года они намерены разработать прототип. Для этого не нужны дорогие материалы, а производство во многом схоже с производством традиционных литий-ионных батарей. Если проект будет реализован, то в ближайшем будущем электромобили будут сохранять в два раза больше энергии при той же массе.

Инженер из Технологического университета Суинберна в Австралии решил другую проблему аккумуляторов - скорость их подзарядки. Разработанный им ионистор заряжается практически мгновенно и может использоваться в течение многих лет без потери эффективности.

Хан Линь использовал графен - один из самых прочных материалов на сегодняшний день. За счет структуры, напоминающей соты, графен обладает большой площадью поверхности для хранения энергии. Ученый напечатал графеновые пластины на 3D-принтере - такой способ производства также позволяет сократить затраты и нарастить масштабы.

Созданный ученым ионистор производит столько же энергии на килограмм веса, сколько и литий-ионный аккумуляторы, но заряжается за несколько секунд. При этом вместо лития в нем используется графен, который стоит намного дешевле. По словам Хана Линя, ионистор может проходить миллионы циклов зарядки без потери качества.

Сфера производства аккумуляторов не стоит на месте. Братья Крайзель из Австрии создали новый тип батарей, которые весят почти в два раза меньше аккумуляторов в Tesla Model S.

Норвежские ученые из Университета Осло изобрели аккумулятор, который можно полностью . Однако их разработка предназначена для городского общественного транспорта, который регулярно делает остановки - на каждой из них автобус будет подзаряжаться и энергии хватит, чтобы добраться до следующей остановки.

Ученые Калифорнийского университета в Ирвайне приблизились к созданию вечной батареи. Они разработали аккумулятор из нанопроволоки, который можно перезаряжать сотни тысяч раз.

А инженеры Университета Райса сумели создать , работающий при температуре 150 градусов Цельсия без потери эффективности. опубликовано



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков