Инжектор описание. Система впрыска топлива: езда на обедненной смеси

Инжектор описание. Система впрыска топлива: езда на обедненной смеси

ЭБУ управляет дозировкой топливной смеси и своевременным поджогом ее в каждом цилиндре двигателя. Дозировкой топлива занимается инжектор. Зажигание обеспечивает поджиг топливной смеси.

Воздух необходимый для осуществления впрыска и поджога подается "естественным" путем. Мотор всегда самостоятельно всасывает нужный объем воздуха, но для снижения мощности двигателя, подаваемое количество воздуха в систему может быть больше необходимого и должно быть ограничено. Обычно двигатель не нуждается в постоянной максимальной мощности, поэтому большую часть времени работы мотора, подача воздуха,как правило, принудительно ограничивается. Если автомобиль оснащен турбиной - воздух принудительно нагнетается в двигатель, но сути это не меняет. Подача всегда будет такой, какая необходима для нормальной работы, а регулируется количество воздуха самим водителем при помощи педали.
Оптимальное количества воздуха, которое необходимо для полного сжигания подаваемого в цилиндр топлива, является соотношение
Если топливо подается больше этого соотношения "богаче" то увеличивается мощность ДВС, но при этом топливо не сгорает полностью, что ведет к его большому расходу.
Если топлива поступает меньше т.е.смесь "беднее" то происходит обратный процесс, который может привести к перегреву двигателя.

Из этого следует, что для того чтобы узнать требуемое количества топлива, нужно знать сколько воздуха поступает в двигатель.

Для измерения этого показателя используют ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ). В википедии об этом устройстве можно прочитать следующее: "ДМРВ состоит из двух платиновых нитей, которые нагреваются при помощи электрического тока. Через одну нить проходит воздух, охлаждая её, вторая нить является контрольной. Количество поступаемого в двигатель воздуха вычисляется по тому, как изменяется ток проходящий через охлаждаемую воздухом платиновую нить."

Очень интересное и позновательное видео, рассказывающее для чего нужен осцилограф и мотор-тестер.

Для того, чтобы "МОЗГИ или ЭБУ" точно могли вычислить момент подачи топлива в двигатель для воспламенения смеси, на коленвале установлен ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНВАЛА(ДПКВ).

Для получения еще большей информации о точном времени воспламенения, применяется еще один датчик, похожий на ДПКВ но установленный на распредвале и называется он ДАТЧИК ПОЛОЖЕНИЯ РАСПРЕДВАЛА(ДПРВ).

Это основные датчики необходимые для того, чтобы знать потребность в необходимом количестве топлива, а также момент в который совершать поджиг подаваемой смеси.

Теперь рассмотрим работу исполнительных механизмов этого процесса.

ИНЖЕКТОРЫ, или как их называют в простонародье, ФОРСУНКИ предназначены для подачи топлива в цилиндр. Форсунка это электромеханический клапан на который подведен топливопровод высокого давления и два электрических проводка. Подали напряжение на выводы - открылась форсунка, отключили ток - закрылась форсунка. Чем прододжительнее будет время открытия форсунки, тем большее количество топлива попадет в двигатель.

Естественно для поджога подаваемой в двигатель смеси применяется как и раньше свеча зажигания получая необходимый, увеличенный ток от катушки.

Для более точного измерения подаваемого в двигатель воздуха применяются также: ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ(ДТОЖ), замеряющий температуру двигателя.
ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА, который идентичен ДТОЖ но замеряющий температуру поступающего в двигатель воздуха.

С помощью этих датчиков производится корректировка подачи топлива на холодном двигателе, для работы которого нужно больше топлива.

Для того, чтобы двигатель не глох а работал с отпущенной педалью газа(холостой ход), применяется специальный исполнительный механизм-регулятор холостого хода(РХХ). РХХ представляет собой шаговый двигатель, при помощи которого через специальный канал в двигатель, в обход дроссельной заслонки, которая перекрывает воздух при отпущенной педали- ПОДАЕТСЯ ВОЗДУХ. ЭБУ через РХХ открывает канал и не позволяет двигателю заглохнуть. Снизились обороты- клапан приоткрывается, повысились-клапан закрывается.

Для того, чтобы ЭБУ мог определить с каким усилием водитель давит на педаль газа, добиваясь определенной скорости, на узле ДРОССЕЛЬНОЙ ЗАСЛОНКИ установлен ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ(ДПДЗ). Если взглянуть на него с технической точки зрения, то это всего-навсего потенциометр, работа которого заключается в измерении угла поворота оси дроссельной заслонки. ЭБУ узнает от ДПДЗ что нужно двигателю: увеличивать порцию подаваемого топлива или включить режим холостого хода.

Всех этих датчиков и исполнительных механизмов было бы достаточно, но экологи не дремлют и заставляют автопроизводителей с каждым годом повышать экологические нормы, лезут уже в глушителя автомобиля, требуя от производителя не только заявлять эконормы, но и постоянно контролировать и снижать выбросы до заявленного значения на выходе работающего автомобиля. Поэтому автомобилестроители вынуждены были вмонтировать не только КАТАЛИЗАТОР, снижающий вредные выбросы в атмосферу но и датчик контролирующий количество несгоревшей смеси и падающий эти значения на ЭБУ, для соответствующей корректировки. Эту функцию выполняет так называемый "лямбда зонд" или ДАТЧИК КИСЛОРОДА. ЭБУ анализирует состав выхлопных газов, сгорело не все - сокращает подачу топлива, сгорает подчистую - увеличивает подачу. Эти устройства требуют определенной температурный режим, поэтому на последних моделях установлен подогревающий элемент.

Если один или даже несколько датчиков выходят из строя, ЭБУ определяет, что датчики показывают неправильные значения и перестает на них реагировать, а на панели приборов зажигает "check engine". С такой неисправностью вы доезжаете до СТО.

"Как работает инжекторный двигатель"

Инжекторного двигателя или, попросту говоря, впрыскивания - система топливной подачи, которая применяется для двигателей, работающих на бензине, и имеет преимущества по сравнению с карбюраторной.

Инжекторный двигатель производит легкий запуск автомобиля независимо от любых погодных условий. Такая система способна себя корректировать во время работы, гибко сдвигая параметры приготовления, воздушно-топливной смеси, основываясь на показаниях датчиков, информация с которых поступает на электронный блок управления (ЭБУ).

На сегодняшний день инжекторный двигатель практически полностью исключил использование устаревшей карбюраторной системы. С его появлением существенно улучшилась динамика разгона, снизилось количество вредных веществ, выделяемых в атмосферу, уменьшился расход автомобильного топлива. Он моментально реагирует даже на минимальные изменения нагрузки.

Инжекторные системы классифицируют по положению и количеству форсунок. В настоящее время наиболее популярна таковая, имеющая устройство инжекторного двигателя с распределённым впрыском топлива, где предусмотрена индивидуальная форсунка для каждого цилиндра. Все форсунки соединены с рампой, в которой топливо находится под давлением. Оно создает электрический бензонасос. Количество топлива, впрыскиваемого в систему, зависит от времени открытия форсунки.

Сколько времени она будет открыта, регулирует ЭБУ (контроллер). Устройство инжекторного двигателя таково, что, основываясь на результате обработки показаний от различных датчиков, ЭБУ запускает инжекторный двигатель. применяется для расчетов цикла наполнения цилиндров. Объём расходуемого воздуха измеряется, затем происходит перерасчёт электронным в циклы цилиндрового наполнения. Мощность двигателя увеличивается до 10% из-за улучшения наполнения цилиндров, оптимального который соответствует режиму работающего двигателя. При поломке датчика проводится расчет по определённым таблицам.

Датчик положения заслонки дросселя используется для расчета нагрузки на двигатель. В случае изменения работы двигателя, циклов наполнения цилиндров изменяется угол поворота заслонки дросселя.

Для охлаждающей жидкости используется для определения корректировки подачи топлива по температурным параметрам и для управления электрическим вентилятором. При его поломке показания в расчёт не берутся, параметры, смотря сколько времени работает двигатель, берутся из аварийной таблицы.

Для того чтобы система работала синхронизировано, для определения оборотов двигателя, положения коленчатого вала в определенные моменты, применен полярный датчик, определяющий положение При неверном включении инжекторный двигатель просто не заведется. Если этот датчик сломается, система работать не будет. Он очень важен, и если при поломке других контроллеров машина ехать сможет, то без него автомобиль не заведется.

В системе впрыска имеется обратная связь - в выпускной системе, непосредственно перед катализатором, установлен датчик содержания кислорода в автомобиля (его ещё называют лямбда-зондом). Та информация, которую он выдает, используется системой для корректирования нужного количества топлива, подаваемого в инжекторную систему, точно выдерживая нужные параметры рабочей смеси, следовательно, расход топлива становится более экономичным, при этом уровень токсичности выхлопных газов снижается.

Здесь приведены основные необходимые для работы инжекторной системы датчики. Система питания инжекторного двигателя, в зависимости от того, какой двигатель установлен на вашем автомобиле, может быть укомплектована различными контроллерами.

На вопрос о том, как каждый водитель выбирает автомобиль для себя, ответить очень трудно. У каждого свои критерии оценки: кто-то ориентируется на свой достаток, кто-то отдает предпочтение конкретной марке автомобилей, а кто-то намертво привязан к определенным системам функционирования машины.

Так, многие, даже покупая подержанный автомобиль, все равно стремятся выбирать те модели, на которых установлен механический инжектор. Об этой системе можно отзываться по разному. Для кого-то она самая простая, а для кого-то самая проблемная. Но чтобы делать такие оценки, необходимо очень детально ознакомиться с этим устройством, что мы и собираемся сделать в сегодняшней статье.

1. Виды механических инжекторов, которые еще встречаются на старых моделях автомобилей.

Наиболее известным автомобилем, на котором раньше устанавливался механический инжектор, сегодня является «Ауди 100». Как и любая топливная система, это устройство предназначено для обеспечения бесперебойной подачи топливно-воздушной смеси в камеру сгорания двигателя. Как принудительный впрыск топлива в цилиндры, так и отслеживание параметров горючей смеси и образование этой смеси в устройстве отслеживается исключительно благодаря механическим устройствам. Только лишь на некоторых моделях авто механический инжектор совмещается с электрическими сигналами, но зачастую он лишен всякой электроники.

Ели говорить кратко, то механический инжектор – это устройство топливной системы автомобиля, которое несет ответственность за подачу топлива в цилиндры мотора. Чтобы мотор работал правильно, топливо, а вернее, топливно-воздушная смесь должна постоянно сгорать. Для этого нужно соблюдать правильные пропорции соотношения бензина и воздуха. Именно это и обеспечивает механический инжектор: благодаря безостановочному распылению топлива оно может смешиваться с воздухом в оптимальных соотношениях. Осуществляется процесс распыления в такой системе благодаря форсункам.

Однако, механические инжекторы уже давно ушли с конвейера, и на смену им пришли электронные устройства. Чем же они отличаются друг от друга? Главное отличие – сила, которая заставляет форсунки открываться и распрыскивать топливо. В механическом варианте это происходит благодаря давлению, которое специально создается в системе, а в электронном форсунки открываются благодаря электронному импульсу. Здесь и раскрывается минус механических устройств: обороты двигателя в таких автомобилях напрямую зависят от того, какое давление удерживается в топливной системе. По сути, за управление механическими форсунками отвечает дозатор механического инжектора.

Электронный инжектор – более умное устройство, потому что открыванием и закрыванием форсунок здесь «ведает» электронный блок управления автомобиля. Но все же, со временем оснащать электроникой начали и механические инжекторы. В частности, могут устанавливаться специальные датчики для контроля и корректировки подачи топлива на форсунки, ориентируясь уже не на давление в топливной системе, а на показания датчиков температуры и выхлопных газов.

Также, сам состав горючей смеси может корректироваться на основании положения педали акселератора. Но в любом случае, именно давление является основным фактором, который обеспечивает работоспособность механического инжектора. Этот показатель может находиться в пределах 4-6,5 атмосфер.

Механические инжекторы могут быть представлены в разных вариантах. Как и любое другое устройство, его неоднократно совершенствовали и меняли конструкцию. Естественно, что все изменения были направлены только на то, чтобы сделать устройство как можно лучше и практичнее. Но виды механических инжекторов не так разнообразны, и их можно назвать только три:

K-Jetronic.

Первый указанный в списке и является первым полноценным механическим инжектором, который начали активно применять в конструировании автомобилей. Именно на примере K-Jetronic мы немного ниже и расскажем об устройстве механического инжектора, поскольку все остальные виды так или иначе создавались на его основе и мало чем отличаются.

2. Принцип работы механического инжектора автомобиля.

Прежде чем посвящать вас в основные тонкости функционирования механического инжектора, стоит обратить ваше внимание на еще одно название этого устройства – моновпрыск. Только пришел первым на смену карбюраторным двигателям, а уже позднее, когда его начали модифицировать и совершенствовать, это устройство начали называть механическим инжектором. Но ближе к делу.

Используются механические инжекторы только на тех двигателях, которые работают на бензине. Основу такой системы составляет форсунка, которая открывается под давлением в топливной системе. Но не менее важным элементом этого устройства является и дроссельная заслонка. Именно благодаря ей дозируется подача воздуха в камеру сгорания, что позволяет создавать оптимальную топливно-воздушную смесь и обеспечить стабильную работу двигателя.

Вообще, принцип работы механического инжектора очень сильно критикуется. Основная причина, по которой он был снят с производства, заключается в том, что автомобили с таким устройством слишком сильно загрязняют окружающую среду. Поскольку нормы выхлопных газов за рубежом очень строго контролируются, то моновпрыск по сути стал запрещенным. Однако, при правильной настройке всех элементов, и такой инжектор может работать в соответствии со всеми экологическими нормами. В частности, очень важно, чтобы угол открытия дроссельной заслонки правильно соотносился с частотой вращения коленчатого вала.

Основными факторами, от которых зависит функционирования механического инжектора, являются таковые:

Соотношение между объемом потока воздуха и его массой;

Угол открытия дроссельной заслонки;

Показатель давления в топливной системе автомобиля.

3. Устройство механического инжектора автомобиля: основные составляющие элементы и их характеристики.

Как уже говорилось выше, рассказать об устройстве механического инжектора мы хотим на примере K-Jetronic . Познакомиться лично с ней вы можете на автомобилях «Ауди 100». Чтобы у вас сложилось полноценное представление и о работе, и об устройстве механического инжектора, мы подробно расскажем о каждом его элементе.

Данный элемент механического инжектора представляет собой совокупность камер и плунжера. Именно благодаря им и осуществляется регуляция количества бензина, который подается в цилиндры двигателя. Непосредственная регулировка осуществляется благодаря степени открытия клапанов каждой камеры.

Также, от каждой камеры к форсункам инжектора отходят специальные трубки. Когда увеличивается угол открытия дроссельной заслонки, параллельно повышается и разрежение, которое поднимает напорный диск. Поскольку он связан с плунжером при помощи рычага, плунжер также поднимается. Все это и приводит к тому, что клапан каждой камеры открывается и осуществляется подача бензина.

Несложно сделать вывод, что количество сгораемого бензина в такой системе напрямую зависит от того, сколько воздуха расходуется для создания воздушно-топливной смеси. А изменяется расход воздуха благодаря повороту дроссельной заслонки, управление которой осуществляется через педаль акселератора.

Реле температуры

Данный элемент представлен в виде биметаллической пластины. Под воздействием температуры, то есть в результате нагрева, она имеет возможность деформироваться. Когда запускается холодный двигатель, контакт реле находится в замкнутом положении. Благодаря этому сквозь него может проходить ток, который в свою очередь воздействует на клапан форсунки и дополнительно обогащает воздушно-топливную смесь. Однако под влиянием тока нагревается реле температуры, что в итоге приводит к размыканию контакта реле и отключению форсунки.

Винт качества

Чтобы двигатель автомобиля работал правильно и бесперебойно, соотношение бензина и воздуха в горючей смеси должно соответствовать строгим нормам. Вот именно эту норму и регулирует такой элемент как винт качества. Если он работает неправильно, то расход топлива может вырасти в разы. Данный винт находится в постоянном вращении, благодаря чему возможно изменение высоты подъема плунжера, а также проходного сечения клапанов всех камер распределения механического инжектора. Расположен данный винт между штоком плунжера и рычагом расходомера.

Винт количества (регулировочный винт)

Когда двигатель работает на холостом ходу, водитель не нажимает на педаль газа, что держит дроссельную заслонку в закрытом состоянии. Из всего этого следует, что в камеру сгорания двигателя не поступает воздух через привычный канал, а значит, нужен дополнительный. Роль такового и выполняет канал холостого хода, который создается благодаря регулировочному винту. Кроме того, при помощи винта количества можно менять холостые ходы двигателя автомобиля с механическим инжектором. Однако без особой надобности баловаться этим винтом не рекомендуется.

По сути, это главный элемент любой инжекторной системы. Количество форсунок строго соответствует количеству цилиндров двигателя, поскольку на каждый цилиндр приходится по одной форсунке. Они устанавливаются на цилиндры таким образом, чтобы не допускать образования пробок и одновременно с этим обеспечивать теплоизоляцию.

Если говорить об автомобиле «Ауди 100», то форсунка на его двигателе выполнена в виде механического клапана. Принцип его действия достаточно простой: чтобы попасть в цилиндр, бензину приходится преодолевать усилие пружины, которая прижимает клапан-форсунку. Усилие пружины подбирается специально, чтобы форсунка открывалась только тогда, когда уровень давления достигает 3,5 Атмосфер.

При этом впрыск топлива осуществляется периодически. Как это возможно? Просто в верхних камерах распределителя постоянно образуются кратковременные снижения давления, что и вызывает перерывы в работе форсунок. Если система исправна, то каждая форсунка срабатывает при одинаковом уровне давления.

Регулятор противодавления

Работа этого устройства базируется на том, чтобы понижать противодавление, которое возникает в распределителе. Благодаря этому открываются клапаны из камер, и поступает больше горючего. Важно отметить, что камеры распределителя разделены при помощи мембраны и классифицируются как верхние и нижние. В нижних камерах давление создается при помощи насоса, который совместно с пружиной закрывает клапаны. Если же давление упадет, то и мембрана упадет вниз, что приведет к открытию клапанов.

Элементы, которые поддерживают давление в топливной системе автомобиля

Таковыми являются устройства, которые, по сути, не совсем и относятся к конструкции самого механического инжектора. Это аккумулятор и регулятор давления в топливной системе, клапаны форсунок и бензонасос. Первый из них поддерживает величину давления на необходимом уровне после того как был остановлен горячий двигатель. Длится это в течение непродолжительного периода времени и нужно для того, чтобы не допускать образования пробок.

Что касается , то он самостоятельно регулирует давление при помощи двух клапанов: предохранительного и пропускного. Открытие пропускного клапана провоцируется достижением рабочей величины давления, а пропускной открывается только тогда, когда давление становится очень большим. Клапаны форсунок способны удерживать давление только в том случае, если оно ниже 3,5 Атмосфер.

Пусковая форсунка

Чтобы произошел запуск холодного двигателя с механическим инжектором, на Ауди 100 подача дополнительной порции бензина осуществляется при помощи электромагнитной пусковой форсунки. Ее включение осуществляется при замкнутых контактах реле температуры. Отключается она тогда, когда реле нагревается, и размыкаются его контакты. Также реле температуры может включать дополнительный клапан противодавления.

Установлена пусковая форсунка непосредственно перед дроссельной заслонкой и основными элементами инжектора. При нормальном функционировании двигателя она находится в закрытом состоянии, что возможно благодаря наличию пружины. Вот и все устройство механического инжектора. В целом оно совсем не сложное, однако, без электрического питания функционирование системы не является идеальным.

Подписывайтесь на наши ленты в

Чтобы самому отремонтировать инжекторный автомобиль надо знать принцип работы и устройство, инжектор это автомобиль с системой впрыска топлива. Только зная принцип работы инжектора можно понять причину неисправности и устранить ее домашних условиях самому.

На автомобилях ВАЗ-21083, ВАЗ-21093 и ВАЗ-21099 в вариантном исполнении применяется система распределенного впрыска топлива на двигателях с рабочим объемом 1, 5л. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля.

Существуют системы распределенного впрыска: с обратной связью и без нее. Причем обе системы могут быть с импортными комплектующими или отечественными. Все эти системы имеют свои особенности в устройстве, диагностике и в ремонте, которые подробно описаны в соответствующих отдельных Руководствах по ремонту конкретных систем впрыска топлива.

В настоящей главе дается только краткое описание общих принципов устройства, работы и диагностики систем впрыска топлива, порядок снятия-установки узлов, а также приводятся особенности ремонта самого двигателя.

Система с обратной связью применяется, в основном, на экспортных автомобилях. У нее в системе выпуска устанавливается нейтрализатор и датчик кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а электронный блок управления по его сигналам поддерживает такое соотношение воздух/топливо, которое обеспечивает наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной связи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяется также система улавливания паров бензина.

ПРЕДУПРЕЖДЕНИЯ

1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «-» аккумуляторной батареи.

2. Не пускайте двигатель, если наконечники проводов на аккумуляторной батарее плохо затянуты.

3. Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.

4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети, автомобиля.

5. Не подвергайте электронный блок управления (ЭБУ) температуре выше 65°С в рабочем состоянии и выше 80°С в нерабочем (например, в сушильной камере). Надо снимать ЭБУ с автомобиля, если эта температура будет превышена.

6. Не отсоединяйте от ЭБУ и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.

7. Перед выполнением электродуговой сварки на автомобиле, отсоединяйте провода от аккумуляторной батареи и разъемы проводов от ЭБУ.

8. Все измерения напряжения выполняйте цифровым вольтметром с внутренним сопротивлением не менее 10 МОм.

9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому легко могут быть повреждены электростатическим разрядом. Чтобы не допустить повреждений ЭБУ электростатическим разрядом:

Не прикасайтесь руками к штекерам ЭБУ или к электронным компонентам на его платах;

При работе с ППЗУ блока управления не дотрагивайтесь до выводов микросхемы.

Нейтрализатор

Токсичными компонентами отработавших газов являются углеводороды (несгоревшее топливо), окись углерода и окись азота. Для преобразования этих соединений в нетоксичные служит трехкомпонентный каталитический нейтрализатор, установленный в системе выпуска сразу за приемной трубой глушителей. Нейтрализатор применяется только в системе впрыска топлива с обратной связью.

В нейтрализаторе (рис. 9-33) находятся керамические элементы с микроканалами, на поверхности которых нанесены катализаторы: два окислительных и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода в безвредную двуокись углерода. Восстановительный катализатор (родий) ускоряет химическую реакцию восстановления оксидов азота и превращения их в безвредный азот.

Для эффективной нейтрализации токсичных компонентов и наиболее полного сгорания воздушно-топливной смеси необходимо, чтобы на 14, 6-14, 7 частей воздуха приходилась 1 часть топлива.

Такая точность дозирования обеспечивается электронной системой впрыска топлива, которая непрерывно корректирует подачу топлива в зависимости от условий работы двигателя и сигнала от датчика концентрации кислорода в отработавших газах.

ПРЕДУПРЕЖДЕНИЕ.

Не допускается работа двигателя с нейтрализатором на этилированном бензине. Это приведет к быстрому выходу из строя нейтрализатора и датчика концентрации кислорода.

Рис. 9-33. Нейтрализатор:

1 - керамический блок с катализаторами

Электронный блок управления

Электронный блок управления (ЭБУ) 11 (рис. 9-34), расположенный под панелью приборов с правой стороны, является управляющим центром системы впрыска топлива. Этот блок называют еще контроллером. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.

В блок управления поступает следующая информация:

О положении и частоте вращения коленчатого вала;

О массовом расходе воздуха двигателем;

О температуре охлаждающей жидкости;

О положении дроссельной заслонки;

О наличии детонации в двигателе;

О напряжении в бортовой сети автомобиля;

О скорости автомобиля;

О запросе на включение кондиционера (если он установлен на автомобиле).

На основе полученной информации блок управляет следующими системами и приборами:

Топливоподачей (форсунками и электробензонасосом);

Системой зажигания;

Регулятором холостого хода;

Адсорбером системы улавливания паров бензина (если - эта система есть на автомобиле);

Вентилятором системы охлаждения двигателя;

Муфтой компрессора кондиционера (если он есть на автомобиле);

Системой диагностики.

Рис. 9-34. Схема системы впрыска:

1 - воздушный фильтр; 2 - датчик массового расхода воздуха; 3 - шланг впускной трубы; 4 - шланг подвода охлаждающей жидкости; 5 - дроссельный патрубок; 6 - регулятор холостою хода; 7 - датчик положения дроссельной заслонки; 8 - канал подогрева системы холостого хода; 9 - ресивер; 10 - шланг регулятора давления; 11 - электронный блок управления; 12 - реле включения электробензонасоса; 13 - топливный фильтр; 14 - топливный бак: 15 - электробензонасос с датчиком уровня топлива; 16 - сливная магистраль; 17 - подающая магистраль; 18 - регулятор давления: 19 - впускная труба: 20 - рампа форсунок: 21 - форсунка; 22 -датчик скорости; 23 - датчик концентрации кислорода; 24 - газоприемник впускной трубы; 25 - коробка передач; 26 - головка цилиндров; 2 7 - выпускной патрубок системы охлаждения; "28 - датчик температуры охлаждающей жидкости; А - к подводящей трубе насоса охлаждающей жидкости

Блок управления включает выходные цепи (форсунки, различные реле, и т. д.) путем замыкания их на массу через выходные транзисторы блока управления. Единственное исключение - цепь реле топливного насоса. Только на обмотку этого реле ЭБУ подает напряжение +12 В.

Блок управления имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Память

В электронном блоке управления имеется три вида памяти: оперативное запоминающее устройство (ОЗУ), однократно программируемое постоянное запоминающее устройство (ППЗУ), и электрически программируемое запоминающее устройство (ЭПЗУ).

Оперативное запоминающее устройство это «блокнот» электронного блока управления. Микропроцессор ЭБУ использует его для временного хранения измеряемых параметров для расчетов и для промежуточной информации. Микропроцессор может по мере необходимости вносить в него данные или считывать их.

Микросхема ОЗУ смонтирована на печатной плате ЭБУ. Эта память является энергозависимой и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются.

Программируемое постоянное запоминающее устройство. В ППЗУ находится общая программа, в которой содержится последовательность рабочих команд (алгоритмы управления) и различная калибровочная информация. Эта информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т. п. которые зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. ППЗУ называют еще запоминающим устройством калибровок.

Рис. 9-35. Электронный блок управления:

1 - программируемое постоянное запоминающее устройство (ППЗУ)

Содержимое ППЗУ не может быть изменено после программирования. Эта память не нуждается в питании для сохранения записанной в ней информации, которая не стирается при отключении питания, т. е. эта память является энергонезависимой. ППЗУ устанавливается в панельке на плате ЭБУ (рис. 9-35) и может выниматься из ЭБУ и заменяться.

ППЗУ индивидуально для каждой комплектации автомобиля, хотя на разных моделях автомобилей может быть применен один и тот же унифицированный ЭБУ. Поэтому при замене ППЗУ важно установить правильный номер модели и комплектации автомобиля. А при замене дефектного ЭБУ необходимо оставлять прежнее ППЗУ (если оно исправно).

Электрически программируемое запоминающее устройство используется для временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые ЭБУ от блока управления иммобили-затором (если он имеется на автомобиле), сравниваются с хранимыми в ЭПЗУ и при этом разрешается или запрещается пуск двигателя. Эта память является энергонезависимой и может храниться без подачи питания на ЭБУ.

Датчики инжектора

Датчик температуры охлаждающей жидкости представляет собой термистор, (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (100 кОм при -40 °С), а при высокой температуре - низкое (177 Ом при 100 °С).

Температуру охлаждающей жидкости ЭБУ рассчитывает по падению напряжения на датчике. Падение напряжения высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет ЭБУ.

Датчик детонации заворачивается в верхнюю часть блока цилиндров (рис. 9-36) и улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличива-

ются с возрастанием интенсивности детонационных ударов. Блок управления по сигналу датчика регулирует опережение зажигания, для устранения детонационных вспышек топлива.

Рис. 9-36. Расположение датчика детонации на двигателе:

1 - датчик детонации

Датчик концентрации кислорода применяется в системе впрыска с обратной связью и устанавливается на приемной трубе глушителей. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0, 1 В (высокое содержание кислорода - бедная смесь) до 0, 9 В (мало Кислорода - богатая смесь).

Для нормальной работы датчик должен иметь температуру не ниже 360°С. Поэтому для быстрого прогрева после пуска двигателя, в датчик встроен нагревательный элемент. »

Отслеживая выходное напряжение датчика концентрации кислорода, блок управления определяет какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) - дается команда на обеднение смеси.

Датчик массового расхода воздуха расположен между воздушным фильтром и шлангом впускной трубы. Он термоанемометрического типа. В датчике используются три чувствительных элемента. Один из элементов определяет температуру окружающего воздуха, а два остальные нагреваются до заранее установленной температуры, превышающей температуру окружающего воздуха.

Во время работы двигателя проходящий воздух охлаждает нагреваемые элементы. Массовый расход воздуха определяется путем измерения электрической мощности, необходимой для поддержания заданного превышения температуры нагреваемых элементов над температурой окружающего воздуха. Сигнал датчика - частотный. Большой расход воздуха вызывает сигнал высокой частоты, а малый расход - сигнал низкой частоты.

ЭБУ использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.

СО-потенциометр (рис. 9-37) установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в ЭБУ сигнал, который используется для регулировки состава топливо-воздушной смеси с целью получения нормированного уровня концентрации окиси углерода (СО) в. отработавших газах на холостом ходу. СО-потенциометр подобен винту каче-ства смеси в карбюраторах. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания с применением газоанализатора.

Рис. 9-37. СО-потенциометр

Датчик скорости автомобиля устанавливается на коробке передач между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Датчик положения дроссельной заслонки установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал с электронному блоку управления.

Когда дроссельная заслонка поворачивается, (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 0, 7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В.

Отслеживая выходное напряжение датчика блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т. е. по желанию водителя).

Датчик положения дроссельной заслонки не требует никакой регулировки, т. к. блок управления воспринимает холостой ход (т. е, полное закрытие дроссельной заслонки) как нулевую отметку.

Датчик положения коленчатого вала - индуктивного типа, предназначен для синхронизации работы блока управления с верхней мертвой точкой поршней 1-го и 4-го цилиндров и угловыми положениями коленчатого вала..

Датчик установлен на крышке масляного насоса напротив задающего диска на шкиве привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленными (6°) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса «в» (рис. 9-38) синхронизации («Опорного» импульса), который необходим для согласования работы блока управления с ВМТ поршней в 1-ом и 4-ом цилиндрах. ЭБУ по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

Рис. 9-38. Осциллограмма импульсов напряжения датчика положения коленчатого вала:

а - угловые импульсы; б - опорный импульс

При вращения коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1+0,2) мм.

Сигнал запроса на включение кондиционера. Если на автомобиле установлен кондиционер, то сигнал поступает от выключателя кондиционера на панели приборов. В данном случае ЭБУ получает информацию о том, что водитель желает включить кондиционер.

Получив такой сигнал ЭБУ сначала подстраивает регулятор холостого хода, чтобы компенсировать дополнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.

Система питания

Воздушный фильтр установлен в передней части моторного отсека на резиновых фиксаторах. Фильтрующий элемент - бумажный, с большой площадью фильтрующей поверхности. При замене фильтрующего элемента его необходимо устанавливать так, чтобы гофры были расположены параллельно осевой линии автомобиля.

Рис. 9-39. Дроссельный патрубок:

1 - патрубок подвода охлаждающей жидкости; 2 - патрубок системы вентиляции картера на холостом ходу; 3 - патрубок для отвода охлаждающей жидкости; 4 - датчик положения дроссельной заслонки; 5 - регулятор холостого хода; 6 - штуцер для продувки адсорбера; 7 – заглушка

Дроссельный патрубок (рис. 9-39) закреплен на ресивере. Он дозирует количество воздуха, поступающего во впускную трубу. Поступлением воздуха в двигатель управляет дроссельная заслонка, соединенная с приводом педали акселератора.

В состав дроссельного патрубка входят датчик 4 положения дроссельной заслонки и регулятор 5 холостого хода. В проточной части дроссельного патрубка (перед дроссельной заслонкой и за ней) находятся отверстия отбора разрежения, необходимые для работы системы вентиляции картера и адсорбера системы улавливания паров бензина. Если последняя система не применяется, то штуцер для продувки адсорбера глушится резиновой заглушкой 7.

Рис. 9-40. Система подачи топлива:

1 - пробка штуцера для контроля давления топлива; 2 - рампа форсунок; 3 - скоба крепления топливных трубок- 4 - регулятор давления топлива; 5 - электробензонасос; 6 - топливный фильтр; 7 - сливной топливопровод; 8 - подающий топливопрорвод; 9 – форсунки

Регулятор 5 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается, по сигналам ЭБУ. Когда игла регулятора полностью выдвинута (что соответствует 0 шагов), клапан полностью перекрывает проход воздуха. Когда игла вдвигается, то обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Система подачи топлива

Система подачи топлива включает в себя электробензонасос 5 (рис. 9-40), топливный фильтр 6, топливопроводы и рампу 2 форсунок в сборе с форсунками 9 и регулятором 4 давления топлива.

Электробензонасос -двухступенчатый, роторного типа, неразборный установлен в топливном баке. Он обеспечивает подачу топлива под давлением более 284 кПа.

Электробензонасос расположен непосредственно в топливном баке, что снижает возможность образования паровых пробок, т. к. топливо подается под давлением, а не под действием разрежения.

Топливный фильтр встроен в подающую магистраль между электробензонасосом и топливной рампой, и установлен под полом кузова за топливным баком. Фильтр - неразборный, имеет стальной корпус с бумажным фильтрующим элементом.

Рампа 2 форсунок представляет собой полую планку с установленными на ней форсунками и регулятором давления топлива. Рампа форсунок закреплена двумя болтами на впускной трубе. С левой стороны (на рисунке) на рампе форсунок находится штуцер для контроля давления топлива, закрытый резьбовой пробкой 1.

Форсунки 9 крепятся к топливной рампе, от которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях топливной рампы и впускной трубы форсунки уплотняются резиновыми уплотнительными кольцами.

Форсунка представляет собой электромагнитный клапан. Когда на нее от ЭБУ поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струёй под давлением впрыскивается во впускную трубу на впускной клапан. Здесь топливо испаряется, соприкасаясь с нагретыми деталями, и в парообразном состоянии попадает в камеру сгорания. После прекращения подачи электрического им-

пульса подпружиненный клапан форсунки перекрывает подачу топлива.

Рис. 9-41. Регулятор давления топлива:

1 - корпус; 2 - крышка; 3 - патрубок для вакуумного шланга; 4 - диафрагма; 5 - клапан; А - топливная полость; Б - вакуумная полость

Регулятор 4 давления топлива установлен на топливной рампе и предназначен для поддержания постоянного перепада давления между давлением воздуха во впускной трубе и давлением топлива в рампе.

Регулятор состоит из клапана 5 (рис. 9-41) с диафрагмой 4, поджатого пружиной к седлу в корпусе регулятора. На работающем двигателе регулятор поддерживает давление в рампе форсунок в пределах 284-325 кПа.

На диафрагму регулятора с одной стороны действует давление топлива, а с другой - давление (разрежение) во впускной трубе. При уменьшении давления во впускной трубе (дроссельная заслонка закрывается) клапан регулятора открывается при меньшем давлении топлива, перепуская избыточное топливо по сливной магистрали обратно в бак. Давление топлива в рампе понижается. При увеличении давления во впускной трубе (при открывании дроссельной заслонки) клапан регулятора открывается уже при большем давлении топлива и давление топлива в рампе повышается.

Система зажигания

В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль 5 (рис. 9-42) зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэто-му не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т. к. управление зажиганием осуществляет ЭБУ.

Рис. 9-42. Схема системы зажигания:

1 - аккумуляторная батарея; 2 - выключатель зажигания; 3 - реле зажигания; 4 - свечи зажигания; 5 - модуль зажигания; 6 электронный блок управления; 7 - датчик положения коленчатого вала; 8 - задающий диск; А - устройства согласования

В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1-4 и 2-3 и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра) и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания, ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй - с бокового на центральный. Свечи применяются типа А17ДВРМ или AC. P43XLS с зазором между электродами 1, 0-1, 13мм.

Управление зажиганием в системе, осуществляется с помощью ЭБУ. Датчик положения коленчатого вала подает в ЭБУ опорный сигнал, на основе которого ЭБУ делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием ЭБУ использует следующую информацию:

Частота вращения коленчатого вала;

Нагрузка двигателя (массовый расход воздуха);

Температура охлаждающей жидкости;

Положение коленчатого вала;

Наличие детонации.

Система улавливания паров бензина

Эта система применяется в системе впрыска с обратной связью. В системе применен метод улавливания паров угольным адсорбером. Он установлен в моторном отсеке и соединен трубопроводами с топливным баком и дроссельным патрубком. На крышке адсорбера расположен электромагнитный клапан, которым по сигналам блока управления переключаются режимы работы системы.

Когда двигатель не работает, электромагнитный клапан закрыт и пары бензина из топливного бака по трубопроводу идут к адсорберу, где они поглощаются гранулированным активированным углем. При работающем двигателе адсорбер продувается воздухом и пары отсасываются к дроссельному патрубку, а затем во впускную трубу для сжигания в ходе рабочего процесса.

ЭБУ управляет продувкой адсорбера включая электромагнитный клапан, расположенный на крышке адсорбера. При подаче на клапан напряжения, он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

ЭБУ включает клапан продувки адсорбера при выполнении всех следующих условий:

Температура охлаждающей жидкости выше 75°С;

Система управления топливоподачей работает в. режиме замкнутого цикла (с обратной связью);

Скорость автомобиля превышает 10 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 7 км/ч;

Открытие дроссельной заслонки превышает 4%. Этот фактор в дальнейшем не играет значения если он не превышает 99%. При полном открытии дроссельной заслонки ЭБУ отключает клапан продувки адсорбера.

Работа системы впрыска

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от электронного блока управления (ЭБУ). ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива - сокращается.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» ЭБУ является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Топливо подается по одному из двух разных методов: синхронному, т. е. при определенном положении коленчатого вала, или асинхронному, т. е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива - преимущественно применяемый метод. Асинхронный впрыск топлива применяется, в основном, на режиме пуска двигателя.Форсунки включаются попарно и поочередно: сначала форсунки 1 и 4 цилиндров, а через 180° поворота коленчатого вала - форсунки 2 и 3 цилиндров и т. д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т. е. два раза за полный рабочий цикл двигателя.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т. е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Первоначальный впрыск топлива

Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от ЭБУ на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается, для увеличения количества топлива, а на прогретом - длительность импульса уменьшается. После первоначального впрыска ЭБУ переключается на соответствующий режим управления форсунками.

Режим пуска двигателя

При включении зажигания ЭБУ включает реле электробензонасоса, и он создает давление в магистрали подачи топлива к топливной рампе. ЭБУ проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала ЭБУ работает в пусковом режиме пока обороты не превысят 400 об/мин или не наступит режим продувки «залитого» двигателя.

Режим продувки двигателя

Если двигатель «залит топливом» (т. е. топливо намочило свечи зажигания)", он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом ЭБУ не подает импульсы впрыска на форсунки и двигатель должен «очиститься». ЭБУ поддерживает этот режим до тех пор, пока обороты двигателя ниже 400 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).

Если дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запустится, т. к. при полностью открытой дроссельной заслонке импульсы впрыска на форсунку не подаются.

Рабочий режим управления топливоподачей

После пуска двигателя (когда обороты более 400 об/мин) ЭБУ управляет системой подачи топлива в рабочем режиме. На этом режиме ЭБУ рассчитывает длительность импульса на форсунки по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

Рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14, 7: 1. Примером может служить непрогретое состояние двигателя, т. к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Рабочий режим для системы впрыска с обратной связью

В этой системе ЭБУ сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в том, что в системе с обратной связью ЭБУ еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14, 6-14, 7: 1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Режим обогащения при ускорении

ЭБУ следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим мощностного обогащения

ЭБУ следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ изменяет соотношение воздух/топливо приблизительно до 12: 1. В системе впрыска с обратной связью на этом режиме сигнал датчика концентрации кислорода игнорируется, т. к. он. будет указывать на обогащенность смеси.

Режим обеднения при торможении

При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиться выбросы в атмосферу

токсичных компонентов. Чтобы не допустить этого, электронный блок управления следит за уменьшением угла открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем

При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания

При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) ЭБУ уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива.

При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если ЭБУ не получает опорных импульсов от датчика положения коленчатого вала, т. е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 об/мин, для зашиты двигателя от перекрутки.

Управление электровентилятором системы охлаждения.

Электровентилятор включается и выключается ЭБУ в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле К9, расположенного в монтажном блоке.

При работе двигателя электровентилятор включается если температура охлаждающей жидкости превысит 104 °С или будет дан запрос на включение кондиционера. Электровентилятор выключается после падения температуры охлаждающей жидкости ниже 101°С, после выключения кондиционера или остановки двигателя.

Как правило, на сегодня, большое количество автомобилей оборудуются специальными системами впрыска горючего. Интересно будет узнать, о том что идея о внедрении такой системы в автомобильный мир появилась уже в далеких 50-х годах. Так, 1951 год стал годом рождения первой системы впрыска топлива, именно в этом году компания Bosch укомплектовала ею 2-х тактный двигатель купе Goliath 700 Sport.

Последователем Bosch стал Mercedes-Benz 300 SL, который подхватил эстафету в 1954 году. И вот, уже в конце 70-х годов началось массовое, серийное введение инжекторных систем впрыска топлива. Как оказалось на практике, впрыск топлива имеет множество достоинств и отличных характеристик, по которым такая система превосходит карбюраторную подачу топлива. От карбюраторного принципа смесеобразования система впрыска топлива отличается более безошибочной дозировкой топлива, а следовательно, и большей экономичностью и приемистостью автомобильного транспорта. Также система впрыска топлива славится меньшей токсичностью выхлопных газов. Можно сделать такой вывод, что переоценить работу системы впрыска топлива практически невозможно.

Форсунка является одной из аниболее важных частей системы впрыска топлива, поэтому она во многом и определяет эффективность и надежность работы движка. Однако, именно она работает в наиболее тяжелых условиях. Каждому автолюбителю важно знать что это за деталь и как она работает, дабы в случае какой-либо неисправности системы впрыска топлива произвести правильную диагностику поломки, ведь именно от состоянии форсунки зависит хорошая работоспособность самой системы. В данной статье мы акцентируем внимание именно на строении форсунки, ее видах и принципе работы. Итак, начнем.

1. Типы инжекторных форсунок

Для начала давайте разберемся, что такое форсунка и какое ее предназначение. Деталь форсунки (по-другому можно назвать инжектором) представляет собой конструктивный элемент системы впрыска горючего. Главными тремя функциями, которые выполняет форсунка являются дозированная подача топлива, распыление данной топливной жидкости в камере сгорания (другими словами – впускной коллектор), а также возникновение топливно-воздушной смеси.

Как правило, форсунка приводится в эксплуатацию в системах впрыска топлива как дизельных, так и двигателей, работающих на бензине. Если говорить о современных двигателях, установленные в них форсунки руководствуются электронным управлением впрыска. Данную деталь принято разделять на три типа, в зависимости от способа произведения впрыска.

Итак, существуют такие три вида форсунки:

1. Электрогидравлическая

2. Электромагнитная

3. Пьезоэлектрическая

Теперь о каждом виде поподробнее.

Форсунка электромагнитная

Данную форсунку, как правило, принято устанавливать именно на бензиновых движках, в том числе укомплектованных системой непосредственного впрыска. Сама по себе электромагнитная форсунка имеет довольно обычное строение и состоит непосредственно из электромагнитного клапана с иглой и сопла. Работает такая форсунка по своеобразному принципу. В соотношении с заложенным алгоритмом, установленный электронный блок управления способен обеспечить в нужный момент передачу напряжения прямиком на обмотку возбуждения клапана. В этот момент создается своеобразное электромагнитное поле, которое может преодолевать усилие пружины, втянуть якорь с иглой и отпустить сопло. После проделанной операции осуществляется впрыск топлива. После того момента, как напряжение исчезнет, пружина возвращает иглу форсунки обратно на седло.

Форсунка электрогидравлическая

Как правило, электрогидравлическую форсунку принято приводить в действие на двигателях использующих дизель, в том числе и таких, которые укомплектованы системой впрыска Common Rail. Сама по себе электрогидравлическая форсунка состоит из впускной и сливной дроссели, камеры управления, а также электромагнитного клапана. Такая форсунка приводится в эксплуатацию по принципу применения в процессе работы давления топлива, как при произведении впрыска, так и при его окончании.

Как правило, на начальной позиции электромагнитный клапан обесточен и находится в закрытом состоянии, игла форсунки прислоняется к седлу благодаря мощности давления топлива на поршень, которое имеет место в камере управления. В этом случае впрыск топлива не производится. В этот момент давление топлива на иглу ввиду несоответствии площадей контакта порядка меньше чем давление на поршень.

посылает сигнал и по его команде в работу включается электромагнитный клапан, который осуществляет открытие сливной дроссели. В свою очередь, топливо, которое выходит из камеры управления, начинает проходить через дроссель прямиком в сливную магистраль. В таком случае, дроссель способна воспрепятствовать скорой стабилизации давлений в камере управления и впускной магистрали. Таким образом, происходит снижение давления на поршень, но давление топлива на иглу остается на прежнем уровне. Под воздействием давления игла двигается вверх и происходит впрыск топлива.

Форсунка пьезоэлектрическая

Пьезоэлектрическая форсунка является самым совершенным и надежным устройством, которое способно обеспечить впрыск горючего. Такую форсунку, как правило, устанавливают на двигателях, использующих дизель, которые укомплектованы системой впрыска Common Rail. Такой вид форсунки имеет много достоинств, среди которых имеет место быстрота срабатывания Данная форсунка превосходит всех своих оппоненток и является самым надежным устройством, обеспечивающим впрыск горючего.

Преимуществом пьезофорсунки является быстрота срабатывания, которая в четыре раза превышает быстроту электромагнитного клапана. Из этого следует осуществимость многократного впрыска горючего в период одного цикла, а также безошибочная дозировка впрыскиваемого горючего.

Вся операция происходит благодаря использованию пьезоэффекта в руководстве форсункой, который был основан на изменении показателей длины пьезокристалла под воздействием напряжения. Вся конструкция пьезоэлектрической форсунки состоит из пьезоэлемента, переключающего клапана, толкателя, а также иглы, которые умещаются в корпусе. Пьезофорсунка приводится в работу по такому же принципу как и электрогидравлическая, а именно по гидравлическому. В связи с высоким давлением горючего, игла, находящаяся на исходной позиции, посажена на седло.

Во время подачи электрического сигнала на пьезоэлемент, производится увеличение его длины, при этом это позволяет пьезоэлементу толкать усилие непосредственно на поршень толкателя. В этот момент, переключающий клапан приходит в открытое состояние и топливо проходит в сливную магистраль. При этом падает давление, которое находится выше иглы. При этом, за счет давления в нижней части игла идет вверх и происходит впрыск горючего. Как правило, количество впрыскиваемого топлива может определяться длительностью воздействия на пьезоэлемент, а также уровнем давления горючего в топливной рампе.

2. Принцип работы форсунки инжектора

Для того, чтобы разобраться в принципе работы форсунки, нужно в общем понять работу всей системы впрыска топлива. Итак, данная система производит подачу горючего в цилиндр двигателя либо во впускной коллектор по принципу прямого впрыска благодаря форсунке, или как принято называть еще, инжектора. Исходя из этого, все автомобили, которые комплектуются такой системой, получают название инжекторных.

Классифицирование инжекторного впрыска проводится в зависимости от того, какой принцип работы инжектора, а также по месту его установки и суммарному количеству инжекторов. Как правило, центральный впрыск топлива осуществляется по такому принципу: во всеобщий впускной трубопровод, с помощью форсунки впрыскивается топливо на все цилиндры двигателя.

Форсунку, как мы уже упоминали, принято устанавливать именно перед дроссельной заслонкой, в том месте, где должен находиться Она показывает низкое сопротивление обмотки электромагнита (до 4-5 Ом). Как же распределяется впрыск? С помощью отдельных форсунок происходит впрыск топлива во впускные трубопроводы каждого имеющегося цилиндра. Они занимают место у основания впускных трубопроводов (как правило, у корпуса головки блока цилиндров) и отличаются довольно-таки высоким сопротивлением обмоток электромагнитов (до 12-16 Ом). Он может быть и меньшим, но при условии наличия дополнительного блока сопротивлений.

Как известно, большинство современных автомобилей снабжаются системой именно распределенного впрыска топлива. Как мы уже говорили, она работает по принципу, что отдельная форсунка отвечает за свой цилиндр. Важно знать, что каждая система распределенного впрыска топлива делится на четыре разных типа:

1. Одновременный

2. Попарно-параллельный

3. Фазированный

4. Прямой

Теперь о каждом поподробнее. Одновременный тип характеризируется подачей горючего от всех форсунок системы одновременно во все цилиндры. Что ж, название говорит само за себя. Попарно-параллельный тип впрыска подразумевает парное открытие форсунок, при котором, одна открывается непосредственно пред циклом впуска, а вторая - перед циклом впуска. Главной отличительностью этого типа является применение попарно-параллельный принцип открытия форсунок в момент запуска двигателя, или же в период аварийного режима неисправности датчика положения распредвала. В период эксплуатации автомобиля, то есть во время движения, в работу включается фазированный впрыск топлива. Это тип впрыска. При котором каждый инжектор открывается перед тактом впуска. Наконец, прямой тип впрыска происходит непосредственно в камеру сгорания.

Некоторые автомобили новейшего поколения могут похвастаться подачей топлива непосредственно в камеру сгорания (это и есть непосредственный впрыск). Отличительной чертой форсунок таких двигателей является наличие высокого рабочего напряжения электромагнита, которое достигает до 100 В. Маркировки форсунок отражают фабричную, или торговую, марку либо название, а также каталожный номер, или наименование и номер серии.

Как правило, горючее подается к форсунке под определенным давлением, которое зависит от режима работы движка. Принцип действия инжектора предполагает использование сигналов микроконтроллера, который в свое время получает данные от датчиков. Поступившие на электромагнит электрические импульсы, которые исходят от блока управления, заставляют работать игольчатый клапан, который открывает и закрывает канал форсунки. Все количество топлива которое распыляется зависит от длительности импульса, которая задается непосредственно блоком управления. Если говорить о форме и направлении распыляемого факела очень важны при смесеобразовании и определяются количеством и расположением распылительных отверстий.

Как правило, если топливо впрыскивается во всеобщий трубопровод с помощью одной форсунки, то это называется системой моновпрыска. Такая система на сегодня не пользуется особым спросом среди автомобилестроителей. Большинство автопроизводств предпочитают использовать сразу две форсунки в системе впрыска.

Как ни крути, но как и любая другая система, инжекторная ситсема имеет и свои недостатки, среди которых достаточно высокая цена на узлы инжектора, низкая уровень ремонтопригодности, высокие запросы по поводу состава и качества горючего, крайняя необходимость использования специального оборудования для диагностики каких-либо поломок, и, конечно же, довольно высокие ценовые показатели стоимости ремонта.

3. Как устроена форсунка инжектора

А теперь давайте рассмотрим конструкцию форсунки, из чего же она состоит. Каждому автолюбителю известно, что подача топлива в форсунках происходит преимущественно сверху вниз. Если говорить в общих чертах, можно сказать, что форсунка состоит из одного, реже двух каналов. Как правило, по первому к выходу подходит распыляемая жидкость, а по второму проходят жидкость, пар, газ, который служит для распыления первой жидкости. Как показывает практика, чистая и качественная форсунка способна дать конусообразный распыл, а факел получается непрерывный и ровный.

Если детализировать построение форсунки, можно сказать, что она, в первую очередь состоит из корпуса. В верхней части корпуса можно отыскать так называемый гидравлический разъем, который, в свою очередь, закрепляется к топливной рампе. Благодаря наличию насоса и обратного клапана в рампе непрерывно поддерживается установленное давление горючего. Известно, что форсунка прикрепляется к топливной рампе посредством специального зажимного устройства.

Нижнюю часть форсунки занимает распылительная пластина с отверстиями для впрыскивания топлива. Для того, чтобы обеспечить герметичность соединения сверху и снизу находятся специальные уплотнительные кольца. С одной стороны форсунки находится электрический разъем, который используется для управления соленоидом форсунки. Весь основной механизм находится внутри форсунки и состоит из фильтрующей сетки, электромагнитной обмотки, седлом клапана, пружины, игольчатого клапана с якорем соленоида и запорным сферическим элементом, а также распылительной пластины. Сопло принято считать самым важным элементом форсунки.

Подписывайтесь на наши ленты в



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков