Из чего состоит форсунка электронного впрыска. Форсунка двигателя внутреннего сгорания: виды форсунок и принцип работы

Из чего состоит форсунка электронного впрыска. Форсунка двигателя внутреннего сгорания: виды форсунок и принцип работы

В этой статье мы постараемся разобраться, что такое, для чего нужен и где находится инжектор. Инжектор – однокоренное слово со словом инъекция, а инъекция – это впрыск. Хотя инжектор мало похож на шприц, но он тоже впрыскивает топливо в цилиндры двигателя. Собственно говоря, инжектор – форсунка, которая разбрызгивает топливо мелкими каплями для поступления в цилиндры смеси воздуха и паров бензина. Вы скажете, что делает все так же. Так же, но не совсем.

Жиклер карбюратора работает практически как , разбрызгивая в его камере бензин. Но бензин засасывается в карбюратор с помощью поршня двигателя, что отбирает около 10% его мощности. Плюс ко всему, отрегулировать карбюратор до идеального состояния почти невозможно: он то переливает топливо, что двигатель «захлебывается» и коптит, а часть так и не сгорает, то не доливает, и мотор работает с провалами и не тянет.

Бензин закачивается в инжектор с помощью специального электронасоса, а смешивание паров бензина и воздуха происходит в самой камере сгорания цилиндра. Количество топлива четко порционно, и зависит оно от необходимого именно в данный момент количества для оптимальной тяги.

Где же находится инжектор:

В обычных случаях инжектор устанавливают вместо карбюратора, а точнее – вообще на его место. В качестве инжектора используют лишь одну форсунку, которая «обслуживает» все цилиндры, а впрыск топлива будет во впускной коллектор, так называемый моновпрыск. Перед карбюраторной схемой преимущество здесь только одно: двигатель не расходует мощность на всасывание топлива через жиклер карбюратора.

Система многоточечного или распределенного впрыска производится также во впускной коллектор. Благодаря распределенному впрыску лучше дозируется топливо, которое поступает к каждому цилиндру. Но все же самые лучшие результаты дает только прямой впрыск прямо в камеру сгорания цилиндра, так же, как в .

Неисправности инжектора (форсунок) встречаются как на , так и на двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда , теряет мощность, расходует много топлива и т.п.

Читайте в этой статье

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого , поломки , вышедшей из строя свечи зажигания или неисправной катушки до , проблем с и т.д. Наряду с этим одним из главных признаков неисправности форсунок является , а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Самостоятельная проверка форсунок

Начнем с того, что автомобильные форсунки делятся на несколько типов, из которых в разное время широкое применение нашли два вида: механические форсунки и электромагнитные (электромеханические) инжекторы.

Электромагнитные форсунки имеют в основе специальный клапан, который осуществляет открытие и закрытие форсунки для подачи топлива под воздействием управляющего импульса двигателем. Механические форсунки открываются в результате роста давления топлива в форсунке. Добавим, что на современных авто зачастую устанавливаются электромагнитные устройства.

Чтобы проверить форсунки своими руками без снятия с машины можно воспользоваться несколькими способами. Наиболее простым и доступным способом, который позволяет быстро проверить инжекторные форсунки не снимая их с машины, является анализ шумов, издаваемых двигателем в процессе работы.

Определить неисправную форсунку на слух по звуку работы ДВС можно в том случае, если из блока цилиндров доносится приглушенный высокочастотный звук. Это указывает на необходимость чистки инжектора или неисправность форсунок.

Как проверить подачу питания на форсунки

Указанную проверку производят в том случае, если сами форсунки исправны, но какой-либо из инжекторов не работает при включении зажигания.

  • для диагностики от инжектора отключается колодка, после чего к нужно подключить два провода;
  • другие концы проводов крепятся к контактам форсунки;
  • затем нужно включить зажигание и зафиксировать наличие или отсутствие вытекания топлива;
  • если горючее течет, тогда данный признак указывает на проблемы в электрической цепи;

Еще одним из диагностических приемов является проверка инжектора при помощи мультиметра. Данный способ позволяет измерить сопротивление на форсунках не снимая их с двигателя.

  1. Перед началом работ необходимо выяснить, какой импеданс (сопротивление) имеют форсунки, установленные на конкретном автомобиле. Дело в том, что встречаются инжекторные форсунки как с высоким, так и с низким сопротивлением.
  2. Следующим шагом станет выключение зажигание, а также сбрасывание минусовой клеммы с АКБ.
  3. Далее потребуется отключить электрический разъем на форсунке. Для этого необходимо использовать отвертку с тонким концом, при помощи которой нужно отщелкнуть специальный зажим, расположенный на колодке.
  4. После отсоединения разъема переводим мультиметр в нужный режим работы для замера сопротивления (омметр), подключаем контакты мультиметра к соответствующим контактам форсунки для измерения импеданса.
  5. Сопротивление между крайним и центральным контактом форсунки с высоким импедансом должно быть в рамках от 11-12 до 15-17 Ом. Если на автомобиле применяются форсунки с низким сопротивлением, тогда показатель должен быть от 2 до 5 Ом.

Если замечены явные отклонения от допустимых норм, тогда форсунку нужно демонтировать с двигателя для подробной диагностики. Также возможна замена форсунки на заведомо исправную, после чего оценивается работа двигателя.

Комплексная диагностика работы форсунок на рампе

Для такой проверки топливную рейку понадобится снять с мотора вместе с закрепленными на ней форсунками. После этого нужно присоединить все электрические контакты к рампе и форсункам в том случае, если таковые отключались перед снятием. Также необходимо вернуть на место минусовую клемму АКБ.

  1. Рампу необходимо разместить в подкапотном пространстве так, чтобы получилось поставить под каждой из форсунок мерную емкость с нанесенной шкалой.
  2. Нужно подключить к рампе трубки подачи топлива и дополнительно проверить надежность их крепления.
  3. Следующим шагом является включение зажигания, после чего необходимо немного провернуть двигатель стартером. Данную операцию лучше проводить с помощником.
  4. Пока помощник вращает двигатель, проконтролируйте эффективность работы всех инжекторов. Подача горючего должна быть одинаковой на всех форсунках.
  5. Завершающим этапом станет выключение зажигания и проверка уровня топлива в емкостях. Указанный уровень должен быть равнозначным в каждой емкости.

Большее или меньшее количество горючего в мерных емкостях укажет на неисправность форсунки или необходимость очистки одного или нескольких инжекторов. Если форсунка демонстрирует недолив, тогда элемент нужно чистить или менять. Подтекание топлива после отключения зажигания укажет на то, что форсунка «льет» и потеряла герметичность.

Кроме самостоятельной проверки можно воспользоваться услугой диагностики инжектора в автосервисе. Данную операцию совершают на специальном проверочном стенде. Проверка форсунки на стенде позволяет точно определить не только эффективность подачи горючего, но и форму факела во время распыла топлива.

Как самому очистить форсунки без снятия с двигателя

В процессе диагностики частой причиной неустойчивой работы мотора является то, что инжекторные форсунки забились. Существует несколько способов очистки форсунок, среди которых может использоваться механический, ультразвуковой или очистка при помощи специальных химических составов.

В ряде случаев заливка в топливный бак специальной присадки-очистителя инжектора достаточно для того, чтобы нормализовать работу всей системы. Также рекомендуется с определенной периодичностью раскручивать мотор до высоких оборотов и разгонять автомобиль до 110-130 км/ч. на ровных отрезках пути. В таком режиме нужно проехать 10-20 километров. Продолжительная работа форсунок под нагрузкой позволяет реализовать так называемую самоочистку.

Напоследок добавим, что перечисленные выше способы очистки позволяют удалить только незначительные загрязнения. Серьезно забитый инжектор необходимо чистить механически, составами под давлением или ультразвуком. Что касается промывки форсунок, специалисты рекомендуют промывать инжектор каждые 30-40 тыс. пройденных километров.

Чистку инжектора стоит делать для профилактики, а не после появления признаков неисправности. Если автомобиль эксплуатируется в режиме городской езды на топливе сомнительного качества, тогда интервал профилактических мер следует сократить применительно к индивидуальным условиям эксплуатации.

Читайте также

Когда и для чего нужно снимать топливные форсунки с двигателя. Снятие форсунок на бензиновом и дизельном моторе: особенности процесса демонтажа.

  • Чистка инжектора автомобиля без снятия форсунок. Способы очистки форсунок со снятием на кавитационном стенде. Ультразвуковая и гидродинамическая кавитация.


  • Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену . Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

    Немного истории

    Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

    Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

    Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

    Что такое инжектор и чем он хорош

    Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

    Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

    1. Экономичность расхода;
    2. Лучший выход мощности;
    3. Меньшее количество вредных веществ в выхлопных газах;
    4. Легкость пуска мотора при любых условиях.

    И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

    Видео: Принцип работы системы питания инжекторного двигателя

    Виды инжекторов

    Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

    Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же .

    Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

    1. Центральная;
    2. Распределенная;
    3. Непосредственная.

    1. Центральная

    Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

    Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

    2. Распределенная

    Распределенный впрыск топлива

    Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

    Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

    К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

    3. Непосредственная

    Система непосредственного впрыска топлива

    Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

    Конструкция и принцип работы инжектора

    Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

    Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

    Механическая составляющая инжектора

    Система питания автомобилей ВАЗ 2108, 2109, 21099

    К механической части инжектора относится:

    • топливный бак;
    • электрический ;
    • фильтр очистки бензина;
    • топливопроводы высокого давления;
    • топливная рампа;
    • форсунки;
    • дроссельный узел;

    Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

    Видео: Инжектор

    Принцип работы инжектора

    Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

    Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

    Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

    Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

    С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

    Электронная составляющая

    Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

    Для своей работы ЭБУ использует показания датчиков:

    1. . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
    2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
    3. (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
    4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
    5. (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
    6. . Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
    7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
    8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

    Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

    Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

    При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

    Оборудование такого рода используется во всех системах впрыска двигателей - и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

    Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

    • Читайте также статью:

    Конструкция и принцип функционирования электромагнитной форсунки


    Фотография устройства электромагнитной форсунки


    Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

    Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

    Конструкция и принцип функционирования электрогидравлической форсунки


    Фотография устройства электрогидравлической форсунки


    Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

    Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.

    После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу - в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

    Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


    Схема устройства пьезоэлектрической форсунки


    Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана - оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail - аккумуляторная топливная система.

    Преимущество подобных устройств - это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

    Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу - всё это помещено в корпус устройства.

    В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

    Количество топлива, которое впрыскивается, определяется такими факторами, как:

    • длительность воздействия на пьезоэлемент;
    • давление топлива в топливной рампе.


    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков