"Reliable Japanese Engines". Automotive Diagnostic Notes

"Reliable Japanese Engines". Automotive Diagnostic Notes

19.10.2019

Engines for Toyota produced in the A series are the most common and are quite reliable and popular. In this series of engines, a worthy place is occupied by a motor 4A in all its modifications. At the beginning engine had low power. It was made with a carburetor and one camshaft, the engine head had eight valves.

In the process of modernization, it was first produced with a 16-valve head, then with a 20-valve and two camshafts and with electronic fuel injection. In addition, the engine had another piston. Some modifications were assembled with a mechanical supercharger. Let's take a closer look at the 4A motor with its modifications, identify it weak spots and disadvantages.
Modifications engine 4 A:

  • 4A-C;
  • 4A-L;
  • 4A-LC;
  • 4A-E;
  • 4A-ELU;
  • 4A-F;
  • 4A-FE;
  • 4A-FE Gen1;
  • 4A-FE Gen 2;
  • 4A-FE Gen 3;
  • 4A-FHE;
  • 4A-GE;
  • 4A-GE Gen 1 "Big Port";
  • 4A-GE Gen 2;
  • 4A-GE Gen 3 "Red Top"/Small port";
  • 4A-GE Gen 4 20V "Silver Top";
  • 4A-GE Gen 5 20V "Black Top";
  • 4A-GZE;
  • 4A-GZE Gen 1;
  • 4A-GZE Gen 2.

Cars were produced with the 4A engine and its modifications Toyota:

  • Corolla;
  • Crown;
  • Karina;
  • Karina E;
  • Celica;
  • Avensis;
  • Kaldina;
  • AE86;
  • Ceres;
  • Levin;
  • Spasio;
  • Sprinter;
  • Sprinter Caribbean;
  • Sprinter Marino;
  • Sprinter Trueno;

In addition to Toyota, engines were installed on cars:

  • Chevrolet Nova;
  • Geo Prism.

Weak points of the 4A engine

  • Lambda probe;
  • Absolute pressure sensor;
  • Engine temperature sensor;
  • Crankshaft seals.

Weak spots more engine detail...

The failure of the lambda probe or, in other words, the oxygen sensor does not happen often, but this happens in practice. Ideally, for a new engine, the resource of the oxygen sensor is small 40 - 80 thousand km, if the engine has a problem with the piston and fuel and oil consumption, then the resource is significantly reduced.

Absolute pressure sensor

As a rule, the sensor fails due to a poor connection between the inlet fitting and the intake manifold.

Engine temperature sensor

Refuses not often, as they say rarely but aptly.

Crankshaft oil seals

The problem with crankshaft oil seals is related to the elapsed engine life and the elapsed time from the date of manufacture. It manifests itself simply - a leak or squeezing oil. Even if the car has low mileage, the rubber from which the seals are made loses its physical qualities after 10 years.

Disadvantages of the 4A engine

  • Increased fuel consumption;
  • Engine idle speed floats or increased.
  • The engine does not start, stalls with floating speed;
  • The motor stalls;
  • Increased oil consumption;
  • Engine knocks.

Flaws motor 4A in detail…

Increased fuel consumption

The reason for the increased fuel consumption may be:

  1. malfunction of the lambda probe. The disadvantage is eliminated by its replacement. In addition, if there is soot on the candles, and black smoke from the exhaust and the engine vibrates at idle, check the absolute pressure sensor.
  2. Dirty nozzles, if so, they must be washed and purged.

Engine idle speed floats or increased

The cause may be a malfunction of the idle valve and soot on the throttle, or a failure in the setting of the throttle position sensor. Just in case, clean the throttle, flush the idle valve, check the spark plugs - the presence of carbon deposits also contributes to the problem with the engine idle speed. It will not be superfluous to check the nozzles, and the operation of the crankcase ventilation valve.

The engine does not start, stalls with floating speed

This problem indicates a malfunction of the engine temperature sensor.

The motor stalls

In this case, this may be due to a clogged fuel filter. In addition to finding the cause of the malfunction, check the operation of the fuel pump and the condition of the distributor.

Increased oil consumption

The manufacturer allows normal oil consumption up to 1 liter per 1000 km, if it is more, then there is a problem with the piston. Alternatively, replacing the piston rings and valve stem seals can help.

knocking engine

Engine knock is a signal of wear of the piston pins and a violation of the clearance of the gas distribution valves in the engine head. In accordance with the operating manual, the valves are adjusted after 100,000 km.

As a rule, all shortcomings and weaknesses are not a manufacturing or design defect, but are the result of non-compliance with proper operation. After all, if you do not service the equipment in a timely manner, it will eventually ask you to do it. You must understand that basically all breakdowns and problems begin after the development of a certain resource (300,000 km), this is the first cause of all malfunctions and shortcomings in work motor 4A.

Cars with Lean Burn version engines will be very expensive, they run on a lean mixture and from which their power is much lower, they are more capricious, and consumables are expensive.

All the weaknesses and shortcomings described are also relevant for 5A and 7A engines.


P.S. Dear Toyota owners with 4A engine and its modifications! You can add your comments to this article, for which I will be grateful to you.

). But here the Japanese "cheated" the average consumer - many owners of these engines encountered the so-called "LB problem" in the form of characteristic failures at medium speeds, the cause of which could not be properly established and cured - either the quality of local gasoline is to blame, or problems in the systems power supply and ignition (these engines are especially sensitive to the condition of candles and high-voltage wires), or all together - but sometimes the lean mixture simply did not ignite.

"The 7A-FE LeanBurn engine is low revving and even more torquey than the 3S-FE due to its maximum torque at 2800 rpm"
The special traction on the bottoms of the 7A-FE in the LeanBurn version is one of the common misconceptions. All civilian engines of the A series have a "double-humped" torque curve - with the first peak at 2500-3000 and the second at 4500-4800 rpm. The height of these peaks is almost the same (within 5 Nm), but for STD engines the second peak is slightly higher, and for LB - the first. Moreover, the absolute maximum torque for STD is still greater (157 versus 155). Now let's compare with 3S-FE - the maximum moments of 7A-FE LB and 3S-FE type "96 are 155/2800 and 186/4400 Nm, respectively, at 2800 rpm 3S-FE develops 168-170 Nm, and 155 Nm already produces in the area 1700-1900 rpm.

4A-GE 20V (1991-2002)- forced motor for small "sported" models replaced in 1991 the previous base engine of the entire A series (4A-GE 16V). To provide power of 160 hp, the Japanese used a block head with 5 valves per cylinder, a VVT system (the first use of variable valve timing in Toyota), a redline tachometer at 8 thousand. The downside is that such an engine even initially was inevitably more "ushatan" compared to the average production 4A-FE of the same year, since it was not bought in Japan for an economical and gentle ride.

engineV
NMCRD×SRONIGVD
4A-FE1587 110/5800 149/4600 9.5 81.0×77.091 dist.no
4A-FE hp1587 115/6000 147/4800 9.5 81.0×77.091 dist.no
4A-FE LB1587 105/5600 139/4400 9.5 81.0×77.091 DIS-2no
4A-GE 16V1587 140/7200 147/6000 10.3 81.0×77.095 dist.no
4A-GE 20V1587 165/7800 162/5600 11.0 81.0×77.095 dist.yes
4A-GZE1587 165/6400 206/4400 8.9 81.0×77.095 dist.no
5A-FE1498 102/5600 143/4400 9.8 78.7×77.091 dist.no
7A-FE1762 118/5400 157/4400 9.5 81.0×85.591 dist.no
7A-FE LB1762 110/5800 150/2800 9.5 81.0×85.591 DIS-2no
8A-FE1342 87/6000 110/3200 9.3 78.7.0×69.091 dist.-

* Abbreviations and symbols:
V - working volume [cm 3]
N - maximum power [hp at rpm]
M - maximum torque [Nm at rpm]
CR - compression ratio
D×S - cylinder bore × stroke [mm]
RON is the manufacturer's recommended octane rating for gasoline.
IG - type of ignition system
VD - collision of valves and piston when the timing belt / chain is destroyed

"E"(R4, belt)
The main "subcompact" series of engines. Used on models of classes "B", "C", "D" (Starlet, Tercel, Corolla, Caldina families).

4E-FE, 5E-FE (1989-2002)- base engines of the series
5E-FHE (1991-1999)- version with a high redline and a system for changing the geometry of the intake manifold (to increase maximum power)
4E-FTE (1989-1999)- a turbo version that turned the Starlet GT into a "crazy stool"

On the one hand, this series has few critical points, on the other hand, it is too noticeably inferior in durability to the A series. Very weak crankshaft seals and a smaller resource of the cylinder-piston group are characteristic, moreover, formally beyond repair. You should also remember that the engine power must correspond to the class of the car - therefore, quite suitable for Tercel, 4E-FE is already weak for Corolla, and 5E-FE for Caldina. Working at the maximum capacity, they have a shorter resource and increased wear compared to larger displacement engines on the same models.

engineV
NMCRD×SRONIGVD
4E-FE1331 86/5400 120/4400 9.6 74.0×77.491 DIS-2no*
4E-FTE1331 135/6400 160/4800 8.2 74.0×77.491 dist.no
5E-FE1496 89/5400 127/4400 9.8 74.0×87.091 DIS-2no
5E-FHE1496 115/6600 135/4000 9.8 74.0×87.091 dist.no
* Under normal conditions, there is no collision between valves and pistons, but under unfavorable circumstances (see below), contact is possible.

"G"(R6, belt)
1G-FE (1998-2008)- installed on rear-wheel drive models of class "E" (Mark II, Crown families).

It should be noted that under the same name there were two actually different engines. In the optimal form - proven, reliable and without technical frills - the engine was produced in 1990-98 ( 1G-FE type"90). Among the shortcomings is the drive of the oil pump by the timing belt, which traditionally does not benefit the latter (during a cold start with very thickened oil, the belt may jump or the teeth may be cut, there is no need for extra oil seals flowing inside the timing case), and traditionally weak oil pressure sensor. In general, an excellent unit, but you should not demand the dynamics of a racing car from a car with this engine.

In 1998, the engine was radically changed, by increasing the compression ratio and maximum speed, the power increased by 20 hp. The engine received a VVT system, an intake manifold geometry change system (ACIS), distributorless ignition and an electronically controlled throttle valve (ETCS). The most serious changes affected the mechanical part, where only the general layout was preserved - the design and filling of the block head completely changed, a belt tensioner appeared, the cylinder block and the entire cylinder-piston group were updated, the crankshaft changed. For the most part, 1G-FE type 90 and type 98 spare parts are not interchangeable. Valves when the timing belt breaks now bent. The reliability and resource of the new engine have certainly decreased, but most importantly - from the legendary indestructibility, ease of maintenance and unpretentiousness, one name remained in it.

engineV
NMCRD×SRONIGVD
1G-FE type"901988 140/5700 185/4400 9.6 75.0×75.091 dist.no
1G-FE type"981988 160/6200 200/4400 10.0 75.0×75.091 DIS-6yes

"K"(R4, chain + OHV)
The absolute record for longevity among Toyota engines belongs to the K series, the production of which lasted from 1966 to 2013. During the period under consideration, such motors were used on commercial versions of the LiteAce / TownAce family and on special equipment (loaders).
Extremely reliable and archaic (lower camshaft in the block) design with a good margin of safety. A common drawback is the modest characteristics corresponding to the time the series appeared.

5K (1978-2013), 7K (1996-1998)- carburetor versions. The main and practically the only problem is the too complicated power system, instead of trying to repair or adjust it, it is optimal to immediately install a simple carburetor for locally produced cars.
7K-E (1998-2007)- the latest injector modification.

EngineV
NMCRD×SRONIGVD
5K1496 70/4800 115/3200 9.3 80.5x75.091 dist.-
7K1781 76/4600 140/2800 9.5 80.5×87.591 dist.-
7K-E1781 82/4800 142/2800 9.0 80.5×87.591 dist.-

"S"(R4, belt)
One of the most successful mass series. They were installed on cars of classes "D" (Corona, Vista families), "E" (Camry, Mark II), minivans and vans (Ipsum, TownAce), SUVs (RAV4, Harrier).

3S-FE (1986-2003)- the base engine of the series is powerful, reliable and unpretentious. Without critical flaws, although not ideal - quite noisy, prone to age-related oil burnout (with a mileage of over 200 thousand km), the timing belt is overloaded with a pump and oil pump drive, and is inconveniently tilted under the hood. The best engine modifications have been produced since 1990, but the updated version that appeared in 1996 could no longer boast of the same trouble-free operation. Serious defects include broken connecting rod bolts, which occur mainly on the late type "96 - see Fig. "3S Engines and the Fist of Friendship" . Once again it is worth recalling that it is dangerous to reuse connecting rod bolts on the S series.

4S-FE (1990-2001)- variant with a reduced working volume, in design and operation is completely similar to 3S-FE. Its characteristics are sufficient for most models, with the exception of the Mark II family.

3S-GE (1984-2005)- a forced engine with a "Yamaha head block", produced in a variety of options with varying degrees of forcing and varying design complexity for sported models based on the D-class. Its versions were among the first Toyota engines with VVT, and the first with DVVT (Dual VVT - a variable valve timing system on the intake and exhaust camshafts).

3S-GTE (1986-2007)- turbocharged version. It is not superfluous to recall the features of supercharged engines: high maintenance costs (the best oil and the minimum frequency of its replacements, the best fuel), additional difficulties in maintenance and repair, a relatively low resource of a forced engine, and a limited resource of turbines. Ceteris paribus, it should be remembered: even the first Japanese buyer did not take a turbo engine to drive "to the bakery", so the question of the residual life of the engine and the car as a whole will always be open, and this is triple critical for a used car in the Russian Federation.

3S-FSE (1996-2001)- version with direct injection (D-4). Worst Toyota gasoline engine ever. An example of how easily an irrepressible thirst for improvement can turn an excellent engine into a nightmare. Take cars with this engine absolutely not recommended.
The first problem is the wear of the injection pump, as a result of which a significant amount of gasoline enters the engine crankcase, which leads to catastrophic wear of the crankshaft and all other "rubbing" elements. In the intake manifold, due to the operation of the EGR system, a large amount of carbon accumulates, which affects the ability to start. "Fist of Friendship" - standard end of career for most 3S-FSE (defect officially recognized by the manufacturer ... in April 2012). However, there are enough problems in other engine systems, which have little in common with normal S-series engines.

5S-FE (1992-2001)- version with increased working volume. The disadvantage is that, as on most gasoline engines with a volume of more than two liters, the Japanese used a gear-driven balancing mechanism here (non-switchable and difficult to adjust), which could not but affect the overall level of reliability.

engineV
NMCRD×SRONIGVD
3S-FE1998 140/6000 186/4400 9,5 86.0×86.091 DIS-2no
3S-FSE1998 145/6000 196/4400 11,0 86.0×86.091 DIS-4yes
3S-GE vvt1998 190/7000 206/6000 11,0 86.0×86.095 DIS-4yes
3S-GTE1998 260/6000 324/4400 9,0 86.0×86.095 DIS-4yes*
4S-FE1838 125/6000 162/4600 9,5 82.5×86.091 DIS-2no
5S-FE2164 140/5600 191/4400 9,5 87.0×91.091 DIS-2no

FZ (R6, chain+gears)
Replacing the old F-series, a solid classic large displacement engine. Installed in 1992-2009. on heavy jeeps (Land Cruiser 70..80..100), the carbureted version continues to be used on special vehicles.

engineV
NMCRD×SRONIGVD
1FZ-F4477 190/4400 363/2800 9.0 100.0×95.091 dist.-
1FZ-FE4477 224/4600 387/3600 9.0 100.0×95.091 DIS-3-


"JZ"(R6, belt)
The top series of classic engines, in different versions, was installed on all passenger rear-wheel drive Toyota models (Mark II, Crown, sports coupe families). These engines are the most reliable among the powerful and the most powerful among those available to the mass consumer.

1JZ-GE (1990-2007)- the base engine for the domestic market.
2JZ-GE (1991-2005)- "worldwide" option.
1JZ-GTE (1990-2006)- turbocharged version for the domestic market.
2JZ-GTE (1991-2005)- "worldwide" turbo version.
1JZ-FSE, 2JZ-FSE (2001-2007)- not the best options with direct injection.

The motors do not have significant drawbacks, they are very reliable with reasonable operation and proper care (except that they are sensitive to moisture, especially in the DIS-3 version, so it is not recommended to wash them). They are considered ideal blanks for tuning of varying degrees of viciousness.

After modernization in 1995-96. engines received a VVT system and distributorless ignition, became a little more economical and more powerful. It would seem that one of the rare cases when the updated Toyota motor did not lose reliability - however, more than once I had to not only hear about problems with the connecting rod and piston group, but also see the consequences of piston sticking, followed by their destruction and bending of the connecting rods.

engineV
NMCRD×SRONIGVD
1JZ-FSE2491 200/6000 250/3800 11.0 86.0×71.595 DIS-3yes
1JZ-GE2491 180/6000 235/4800 10.0 86.0×71.595 dist.no
1JZ-GE vvt2491 200/6000 255/4000 10.5 86.0×71.595 DIS-3-
1JZ-GTE2491 280/6200 363/4800 8.5 86.0×71.595 DIS-3no
1JZ-GTE vvt2491 280/6200 378/2400 9.0 86.0×71.595 DIS-3no
2JZ-FSE2997 220/5600 300/3600 11,3 86.0×86.095 DIS-3yes
2JZ-GE2997 225/6000 284/4800 10.5 86.0×86.095 dist.no
2JZ-GE vvt2997 220/5800 294/3800 10.5 86.0×86.095 DIS-3-
2JZ-GTE2997 280/5600 470/3600 9,0 86.0×86.095 DIS-3no

"MZ"(V6, belt)
One of the first heralds of the "third wave" were V-shaped sixes for the original front-wheel drive cars of the "E" class (Camry family), as well as SUVs and vans based on them (Harrier/RX300, Kluger/Highlander, Estima/Alphard).

1MZ-FE (1993-2008)- Improved replacement for the VZ series. The light-alloy lined cylinder block does not imply the possibility of a major overhaul with a bore for the repair size, there is a tendency to coking the oil and increased carbon formation due to intense thermal conditions and cooling features. On later versions, a mechanism for changing the valve timing appeared.
2MZ-FE (1996-2001)- a simplified version for the domestic market.
3MZ-FE (2003-2012)- Larger displacement variant for the North American market and hybrid powertrains.

engineV
NMCRD×SRONIGVD
1MZ-FE2995 210/5400 290/4400 10.0 87.5×83.091-95 DIS-3no
1MZ-FE vvt2995 220/5800 304/4400 10.5 87.5×83.091-95 DIS-6yes
2MZ-FE2496 200/6000 245/4600 10.8 87.5×69.295 DIS-3yes
3MZ-FE vvt3311 211/5600 288/3600 10.8 92.0×83.091-95 DIS-6yes
3MZ-FE vvt hp3311 234/5600 328/3600 10.8 92.0×83.091-95 DIS-6yes

"RZ"(R4, chain)
Base longitudinal petrol engines for medium jeeps and vans (HiLux, LC Prado, HiAce families).

3RZ-FE (1995-2003)- the largest in-line four in the Toyota range, on the whole it is characterized positively, you can only pay attention to the overcomplicated timing drive and balancing mechanism. The engine was often installed on models of the Gorky and Ulyanovsk automobile plants of the Russian Federation. As for consumer properties, the main thing is not to count on the high thrust-to-weight ratio of fairly heavy models equipped with this engine.

engineV
NMCRD×SRONIGVD
2RZ-E2438 120/4800 198/2600 8.8 95.0×86.091 dist.-
3RZ-FE2693 150/4800 235/4000 9.5 95.0×95.091 DIS-4-

"TZ"(R4, chain)
Horizontal engine designed specifically for placement under the floor of the body (Estima/Previa 10..20). This arrangement made the drive of mounted units (carried out by cardan gear) and the lubrication system (something like a "dry sump") much more complicated. Hence, great difficulties arose when carrying out any work on the engine, a tendency to overheat, and sensitivity to the condition of the oil. Like almost everything related to the first generation Estima - an example of creating problems from scratch.

2TZ-FE (1990-1999)- base engine.
2TZ-FZE (1994-1999)- forced version with a mechanical supercharger.

engineV
NMCRD×SRONIGVD
2TZ-FE2438 135/5000 204/4000 9.3 95.0×86.091 dist.-
2TZ-FZE2438 160/5000 258/3600 8.9 95.0×86.091 dist.-

UZ(V8, belt)
For almost two decades - the highest series of Toyota engines, designed for large business-class rear-wheel drive vehicles (Crown, Celsior) and heavy SUVs (LC 100..200, Tundra / Sequoia). Very successful motors with a good margin of safety.

1UZ-FE (1989-2004)- the base engine of the series, for passenger cars. In 1997, he received variable valve timing and distributorless ignition.
2UZ-FE (1998-2012)- version for heavy jeeps. In 2004 received variable valve timing.
3UZ-FE (2001-2010)- 1UZ replacement for passenger cars.

engineV
NMCRD×SRONIGVD
1UZ-FE3968 260/5400 353/4600 10.0 87.5×82.595 dist.-
1UZ-FE vvt3968 280/6200 402/4000 10.5 87.5×82.595 DIS-8-
2UZ-FE4663 235/4800 422/3600 9.6 94.0×84.091-95 DIS-8-
2UZ-FE vvt4663 288/5400 448/3400 10.0 94.0×84.091-95 DIS-8-
3UZ-FE vvt4292 280/5600 430/3400 10.5 91.0×82.595 DIS-8-

"VZ"(V6, belt)
In general, an unsuccessful series of engines, most of which quickly disappeared from the scene. They were installed on front-wheel drive business class cars (Camry family) and medium jeeps (HiLux, LC Prado).

Passenger options proved to be unreliable and capricious: a fair love for gasoline, eating oil, a tendency to overheat (which usually leads to warping and cracking of cylinder heads), increased wear on the crankshaft main journals, and a sophisticated fan hydraulic drive. And to everything - the relative rarity of spare parts.

5VZ-FE (1995-2004)- used on HiLux Surf 180-210, LC Prado 90-120, large vans of the HiAce SBV family. This engine turned out to be unlike its counterparts and quite unpretentious.

engineV
NMCRD×SRONIGVD
1VZ-FE1992 135/6000 180/4600 9.6 78.0x69.591 dist.yes
2VZ-FE2507 155/5800 220/4600 9.6 87.5×69.591 dist.yes
3VZ-E2958 150/4800 245/3400 9.0 87.5×82.091 dist.no
3VZ-FE2958 200/5800 285/4600 9.6 87.5×82.095 dist.yes
4VZ-FE2496 175/6000 224/4800 9.6 87.5×69.295 dist.yes
5VZ-FE3378 185/4800 294/3600 9.6 93.5×82.091 DIS-3yes

"AZ"(R4, chain)
Representatives of the 3rd wave - "disposable" engines with an alloy block that replaced the S series. Installed since 2000 on models of classes "C", "D", "E" (Corolla, Premio, Camry families), vans based on them (Ipsum, Noah, Estima), SUVs (RAV4, Harrier, Highlander).

Details about the design and problems - see the big review "A-Series" .

The most serious and massive defect is the spontaneous destruction of the thread for the cylinder head bolts, leading to a violation of the tightness of the gas joint, damage to the gasket and all the ensuing consequences.

Note. For Japanese cars 2005-2014 issue valid recall campaign on oil consumption.

engineV
NMCRD×SRON
1AZ-FE1998 150/6000 192/4000 9.6 86.0×86.091
1AZ-FSE1998 152/6000 200/4000 9.8 86.0×86.091
2AZ-FE2362 156/5600 220/4000 9.6 88.5×96.091
2AZ-FSE2362 163/5800 230/3800 11.0 88.5×96.091

"NZ"(R4, chain)
Replacement of the E and A series, installed since 1997 on models of classes "B", "C", "D" (Vitz, Corolla, Premio families).

For more information about the design and differences in modifications, see the large review "NZ Series" .

Despite the fact that the engines of the NZ series are structurally similar to the ZZ, they are sufficiently forced and work even on class "D" models, of all the engines of the 3rd wave they can be considered the most trouble-free.

engineV
NMCRD×SRON
1NZ-FE1496 109/6000 141/4200 10.5 75.0×84.791
2NZ-FE1298 87/6000 120/4400 10.5 75.0×73.591

"SZ"(R4, chain)
The SZ series owes its origin to the Daihatsu division and is an independent and rather curious "hybrid" of engines of the 2nd and 3rd waves. Installed since 1999 on class "B" models (Vitz family, Daihatsu and Perodua lineups).

engineV
NMCRD×SRON
1SZ-FE997 70/6000 93/4000 10.0 69.0×66.791
2SZ-FE1296 87/6000 116/3800 11.0 72.0×79.691
3SZ-VE1495 109/6000 141/4400 10.0 72.0×91.891

"ZZ"(R4, chain)
The revolutionary series replaced the good old A series. They were installed on models of classes "C" and "D" (Corolla, Premio families), SUVs (RAV4) and light minivans. Typical "disposable" (with an aluminum sleeved block) engines with a VVT system. The main mass problem is the increased oil consumption for waste caused by design features.

Details about the design and problems - see the review "Series ZZ. No room for error" .

1ZZ-FE (1998-2007)- the basic and most common engine of the series.
2ZZ-GE (1999-2006)- uprated engine with VVTL (VVT plus the first generation variable valve lift system), which has little in common with the base engine. The most "gentle" and short-lived of the charged Toyota engines.
3ZZ-FE, 4ZZ-FE (1999-2009)- versions for European market models. A special drawback - the lack of a Japanese analogue does not allow you to purchase a budget contract motor.

engineV
NMCRD×SRON
1ZZ-FE1794 127/6000 170/4200 10.0 79.0×91.591
2ZZ-GE1795 190/7600 180/6800 11.5 82.0×85.095
3ZZ-FE1598 110/6000 150/4800 10.5 79.0×81.595
4ZZ-FE1398 97/6000 130/4400 10.5 79.0×71.395

"AR"(R4, chain)
Mid-size transverse engine series with DVVT to complement and replace the AZ series. Installed since 2008 on "E" class models (Camry, Crown families), SUVs and vans (RAV4, Highlander, RX, Sienna). The base engines (1AR-FE and 2AR-FE) can be considered quite successful.

Details about the design and various modifications - see the review "AR Series" .

engineV
NMCRD×SRON
1AR-FE2672 182/5800 246/4700 10.0 89.9×104.991
2AR-FE2494 179/6000 233/4000 10.4 90.0×98.091
2AR-FXE2494 160/5700 213/4500 12.5 90.0×98.091
2AR-FSE2494 174/6400 215/4400 13.0 90.0×98.091
5AR-FE2494 179/6000 234/4100 10.4 90.0×98.0-
6AR-FSE1998 165/6500 199/4600 12.7 86.0×86.0-
8AR-FTS1998 238/4800 350/1650 10.0 86.0×86.095

"GR"(V6, chain)
A universal replacement for the MZ, VZ, JZ series, which appeared in 2003 - light-alloy blocks with an open cooling jacket, timing chain drive, DVVT, versions with D-4. Longitudinal or transverse, installed on many models of different classes - Corolla (Blade), Camry, rear-wheel drive (Mark X, Crown, IS, GS, LS), top versions of SUVs (RAV4, RX), medium and heavy jeeps (LC Prado 120 ..150, LC 200).

Details about the design and problems - see the big review "GR Series" .

engineV
NMCRD×SRON
1GR-FE3955 249/5200 380/3800 10.0 94.0×95.091-95
2GR-FE3456 280/6200 344/4700 10.8 94.0×83.091-95
2GR-FKS3456 280/6200 344/4700 11.8 94.0×83.091-95
2GR-FKS hp3456 300/6300 380/4800 11.8 94.0×83.091-95
2GR-FSE3456 315/6400 377/4800 11.8 94.0×83.095
3GR-FE2994 231/6200 300/4400 10.5 87.5×83.095
3GR-FSE2994 256/6200 314/3600 11.5 87.5×83.095
4GR-FSE2499 215/6400 260/3800 12.0 83.0×77.091-95
5GR-FE2497 193/6200 236/4400 10.0 87.5×69.2-
6GR-FE3956 232/5000 345/4400 - 94.0×95.0-
7GR-FKS3456 272/6000 365/4500 11.8 94.0×83.0-
8GR-FKS3456 311/6600 380/4800 11.8 94.0×83.095
8GR-FXS3456 295/6600 350/5100 13.0 94.0×83.095

"KR"(R3, chain)
Daihatsu branch engines. Three-cylinder replacement for the youngest engine of the SZ series, made according to the general canon of the 3rd wave (2004-) - with a light-alloy sleeved cylinder block and a conventional single-row chain.

engineV
NMCRD×SRON
1KR-FE996 71/6000 94/3600 10.5 71.0×83.991
1KR-FE996 69/6000 92/3600 12.5 71.0×83.991
1KR-VET996 98/6000 140/2400 9.5 71.0×83.991

"LR"(V10, chain)
Toyota's main "sport" engine for the Lexus LFA (2010-), an honest high-speed aspirated engine, traditionally made with the participation of Yamaha specialists. Some of the design features are 72° camber, dry sump, high compression ratio, titanium alloy connecting rods and valves, balancer mechanism, Dual VVT system, traditional port injection, individual throttle valves for each cylinder...

engineV
NMCRD×SRON
1LR-GUE4805 552/8700 480/6800 12.0 88.0×79.095

"NR"(R4, chain)
Subcompact series 4th wave (2008-), with DVVT and hydraulic lifters. It is installed on models of classes "A", "B", "C" (iQ, Yaris, Corolla), light SUVs (CH-R).

Details about the design and modifications - see the review "NR Series" .

engineV
NMCRD×SRON
1NR-FE1329 100/6000 132/3800 11.5 72.5×80.591
2NR-FE1496 90/5600 132/3000 10.5 72.5×90.691
2NR-FKE1496 109/5600 136/4400 13.5 72.5×90.691
3NR-FE1197 80/5600 104/3100 10.5 72.5×72.5-
4NR-FE1329 99/6000 123/4200 11.5 72.5×80.5-
5NR-FE1496 107/6000 140/4200 11.5 72.5×90.6-
8NR-FTS1197 116/5200 185/1500 10.0 71.5×74.591-95

"TR"(R4, chain)
A modified version of the RZ series engines with a new block head, VVT system, hydraulic compensators in the timing drive, DIS-4. It has been installed since 2003 on jeeps (HiLux, LC Prado), vans (HiAce), utility rear wheel drive vehicles (Crown 10).

Note. Some 2013 2TR-FE vehicles are under a global recall campaign to replace defective valve springs.

engineV
NMCRD×SRON
1TR-FE1998 136/5600 182/4000 9.8 86.0×86.091
2TR-FE2693 151/4800 241/3800 9.6 95.0×95.091

"UR"(V8, chain)
Replacing the UZ series (2006-) - engines for top-end rear-wheel drive vehicles (Crown, GS, LS) and heavy jeeps (LC 200, Sequoia), made in the modern tradition with an alloy block, DVVT and with D-4 versions.

1UR-FSE- the base engine of the series, for passenger cars, with a mixed injection D-4S and an electric drive for changing the phases at the inlet VVT-iE.
1UR-FE- with distributed injection, for cars and jeeps.
2UR-GSE- uprated version "with Yamaha heads", titanium inlet valves, D-4S and VVT-iE - for -F Lexus models.
2UR-FSE- for hybrid power plants of top Lexus - with D-4S and VVT-iE.
3UR-FE- the largest Toyota gasoline engine for heavy jeeps, with distributed injection.

engineV
NMCRD×SRON
1UR-FE4608 310/5400 443/3600 10.2 94.0×83.191-95
1UR-FSE4608 342/6200 459/3600 10.5 94.0×83.191-95
1UR-FSE hp4608 392/6400 500/4100 11.8 94.0×83.191-95
2UR-FSE4969 394/6400 520/4000 10.5 94.0×89.495
2UR-GSE4969 477/7100 530/4000 12.3 94.0×89.495
3UR-FE5663 383/5600 543/3600 10.2 94.0×102.191

"ZR"(R4, chain)
Mass series of the 4th wave, replacement of ZZ and two-liter AZ. Characteristic features - DVVT, Valvematic (on versions -FAE - a system for smoothly changing the valve lift height - for details, see "Valvematic system" ), hydraulic compensators, crankshaft deaxage. They have been installed since 2006 on models of classes "B", "C", "D" (Corolla, Premio families), minivans and SUVs based on them (Noah, Isis, RAV4).

Typical defects: increased oil consumption on some versions, sludge deposits in combustion chambers, knocking of VVT actuators at start-up, pump leaks, oil leak from under the chain cover, traditional EVAP problems, forced idle errors, hot start problems due to pressure fuel, defective alternator pulley, freezing of the starter retractor relay. Versions with Valvematic - vacuum pump noise, controller errors, controller separation from the VM drive control shaft, followed by engine shutdown.

engineV
NMCRD×SRON
1ZR-FE1598 124/6000 157/5200 10.2 80.5×78.591
2ZR-FE1797 136/6000 175/4400 10.0 80.5×88.391
2ZR-FAE1797 144/6400 176/4400 10.0 80.5×88.391
2ZR-FXE1797 98/5200 142/3600 13.0 80.5×88.391
3ZR-FE1986 143/5600 194/3900 10.0 80.5×97.691
3ZR-FAE1986 158/6200 196/4400 10.0 80.5×97.691
4ZR-FE1598 117/6000 150/4400 - 80.5×78.5-
5ZR-FXE1797 99/5200 142/4000 13.0 80.5×88.391
6ZR-FE1986 147/6200 187/3200 10.0 80.5×97.6-
8ZR-FXE1797 99/5200 142/4000 13.0 80.5×88.391

"A25A/M20A"(R4, chain)
A25A (2016-)- the firstborn of the 5th wave of motors under the common brand name "Dynamic Force". Installed on "E" class models (Camry, Avalon). Although it is a product of evolutionary development, and almost all solutions have been worked out on past generations, in their totality, the new engine looks like a dubious alternative to the proven engines from the AR series.

Design features. High "geometric" compression ratio, long-stroke, Miller/Atkinson cycle operation, balancing mechanism. Cylinder head - "laser-sprayed" valve seats (like the ZZ series), straightened inlet channels, hydraulic lifters, DVVT (at the inlet - VVT-iE with electric drive), built-in EGR circuit with cooling. Injection - D-4S (mixed, into the intake ports and into the cylinders), the requirements for the octane of gasoline are reasonable. Cooling - electric pump (a first for Toyota), electronically controlled thermostat. Lubrication - variable displacement oil pump.

M20A (2018-)- the third motor of the family, for the most part similar to the A25A, of noteworthy features - a laser notch on the piston skirt and GPF.

engineV
NMCRD×SRON
M20A-FKS1986 170/6600 205/4800 13.0 80.5×97.691
M20A-FXS1986 145/6000 180/4400 14.0 80.5×97.691
A25A-FKS2487 205/6600 250/4800 13.0 87.5×103.491
A25A-FXS2487 177/5700 220/3600-5200 14.1 87.5×103.491

"V35A"(V6, chain)
Replenishment in a number of turbo engines of the new time and the first Toyota turbo-V6. Installed since 2017 on "E+" class models (Lexus LS).

Design features - long-stroke, DVVT (intake - VVT-iE with electric drive), "laser-sprayed" valve seats, twin-turbo (two parallel compressors integrated into the exhaust manifolds, electronically controlled WGT) and two liquid intercoolers, mixed injection D-4ST (intake ports and cylinders), electronically controlled thermostat.


A few general words about the choice of engine - "Gasoline or diesel?"

"C"(R4, belt)
Classic swirl chamber diesels, with a cast-iron cylinder block, two valves per cylinder (SOHC scheme with pushers) and a timing belt drive. Installed in 1981-2004. on the original front-wheel drive cars of classes "C" and "D" (Corolla, Corona families) and the original rear-wheel drive vans (TownAce, Estima 10).
Atmospheric versions (2C, 2C-E, 3C-E) are generally reliable and unpretentious, but they had too modest characteristics, and fuel equipment on versions with electronically controlled high-pressure fuel pumps required qualified diesel operators to service them.
Turbocharged variants (2C-T, 2C-TE, 3C-T, 3C-TE) often showed a high tendency to overheat (with gasket burnout, cylinder head cracks and warping) and rapid wear of turbine seals. To a greater extent, this manifested itself in minibuses and heavy vehicles with more stressful working conditions, and the most canonical example of a bad diesel engine is the Estima with 3C-T, where the horizontally located engine regularly overheated, categorically did not tolerate fuel of "regional" quality, and at the first opportunity knocked out all the oil through the seals.
engineV
NMCRD×S
1C1838 64/4700 118/2600 23.0 83.0×85.0
2C1975 72/4600 131/2600 23.0 86.0×85.0
2C-E1975 73/4700 132/3000 23.0 86.0×85.0
2C-T1975 90/4000 170/2000 23.0 86.0×85.0
2C-TE1975 90/4000 203/2200 23.0 86.0×85.0
3C-E2184 79/4400 147/4200 23.0 86.0×94.0
3C-T2184 90/4200 205/2200 22.6 86.0×94.0
3C-TE2184 105/4200 225/2600 22.6 86.0×94.0

"L"(R4, belt)
A common series of swirl chamber diesel engines, installed in 1977-2007. for passenger cars of the classic "E" class layout (Mark II, Crown families), jeeps (HiLux, LC Prado families), large minibuses (HiAce) and light commercial models. The design is classic - cast iron block, SOHC with pushers, timing belt drive.
In terms of reliability, one can draw a complete analogy with the C series: relatively successful, but low-power aspirated (2L, 3L, 5L-E) and problematic turbodiesels (2L-T, 2L-TE). For supercharged versions, the head of the block can be considered a consumable item, and even critical modes are not required - a long drive along the highway is enough.
engineV
NMCRD×S
L2188 72/4200 142/2400 21.5 90.0×86.0
2L2446 85/4200 165/2400 22.2 92.0×92.0
2L-T2446 94/4000 226/2400 21.0 92.0×92.0
2L-TE2446 100/3800 220/2400 21.0 92.0×92.0
3L2779 90/4000 200/2400 22.2 96.0×96.0
5L-E2986 95/4000 197/2400 22.2 99.5×96.0

"N"(R4, belt)
Small-capacity vortex-chamber diesel engines were installed in 1986-1999. on class "B" models (Starlet and Tercel families).
They had modest characteristics (even with supercharging), worked in stressful conditions, and therefore had a small resource. Sensitive to oil viscosity, prone to crankshaft damage on cold start. There is practically no technical documentation (therefore, for example, it is impossible to perform the correct adjustment of the injection pump), spare parts are extremely rare.
engineV
NMCRD×S
1N1454 54/5200 91/3000 22.0 74.0×84.5
1N-T1454 67/4200 137/2600 22.0 74.0×84.5

"HZ" (R6, gears+belt)
To replace the old OHV engines of the H series, a line of very successful classic diesels was born. They were installed on heavy jeeps (LC 70-80-100 families), buses (Coaster) and commercial vehicles.
1HZ (1989-) - due to the simple design (cast iron, SOHC with pushers, 2 valves per cylinder, simple injection pump, swirl chamber, aspirated) and the lack of forcing, it turned out to be the best Toyota diesel engine in terms of reliability.
1HD-T (1990-2002) - received a chamber in the piston and turbocharging, 1HD-FT (1995-1988) - 4 valves per cylinder (SOHC with rocker arms), 1HD-FTE (1998-2007) - electronic injection pump control.
engineV
NMCRD×S
1HZ4163 130/3800 284/2200 22.7 94.0×100.0
1HD-T4163 160/3600 360/2100 18.6 94.0×100.0
1HD-FT4163 170/3600 380/2500 18.,6 94.0×100.0
1HD-FTE4163 204/3400 430/1400-3200 18.8 94.0×100.0

"KZ" (R4, gears+belt)
The vortex chamber turbodiesel of the second generation was produced in 1993-2009. Installed on jeeps (HiLux 130-180, LC Prado 70-120) and large vans (HiAce family).
Structurally, it was made more complicated than the L series - a gear-belt drive for the timing, injection pump and balancing mechanism, mandatory turbocharging, a quick transition to an electronic injection pump. However, the increased displacement and a significant increase in torque contributed to getting rid of many of the shortcomings of the predecessor, even despite the high cost of spare parts. However, the legend of "outstanding reliability" was actually formed at a time when there were disproportionately fewer of these engines than the familiar and problematic 2L-T.
engineV
NMCRD×S
1KZ-T2982 125/3600 287/2000 21.0 96.0×103.0
1KZ-TE2982 130/3600 331/2000 21.0 96.0×103.0


"WZ" (R4, belt / belt+chain)
Since the beginning of the 2000s, diesels from the PSA concern have been installed under this designation on some "badge engineering" and Toyota's own models.
1WZ- Peugeot DW8 (SOHC 8V) - a simple atmospheric diesel engine with a distribution injection pump.
The rest are traditional common rail turbocharged engines, also used by Peugeot/Citroen, Ford, Mazda, Volvo, Fiat...
2WZ-TV- Peugeot DV4 (SOHC 8V).
3WZ-TV- Peugeot DV6 (SOHC 8V).
4WZ-FTV, 4WZ-FHV- Peugeot DW10 (DOHC 16V).
engineV
NMCRD×S
1WZ1867 68/4600 125/2500 23.0 82.2×88.0
2WZ-TV1398 54/4000 130/1750 18.0 73.7×82.0
3WZ-TV1560 90/4000 180/1500 16.5 75.0×88.3
4WZ-FTV1997 128/4000 320/2000 16.5 85.0×88.0
4WZ-FHV1997 163/3750 340/2000 16.5 85.0×88.0

"WW"(R4, chain)
The designation of BMW engines installed in Toyota since the mid-2010s (1WW - N47D16, 2WW - N47D20).
The level of technology and consumer qualities corresponds to the middle of the last decade and is partly even inferior to the AD series. Alloy sleeve block with closed cooling jacket, DOHC 16V, common rail with electromagnetic injectors (injection pressure 160 MPa), VGT, DPF+NSR...
The most famous negative of this series is the inherent problems with the timing chain, which have been solved by the Bavarians since 2007.
engineV
NMCRD×S
1WW1598 111/4000 270/1750 16.5 78.0×83.6
2WW1995 143/4000 320/1750 16.5 84.0×90.0

"AD"(R4, chain)
The main passenger Toyota diesel. It has been installed since 2005 on models of classes "C" and "D" (Corolla, Avensis families), SUVs (RAV4) and even rear-wheel drive (Lexus IS).
3rd wave design - "disposable" light alloy sleeved block with open cooling jacket, 4 valves per cylinder (DOHC with hydraulic lifters), timing chain drive, variable geometry turbine (VGT), on engines with a displacement of 2.2 l balancing mechanism is installed. Fuel system - common-rail, injection pressure 25-167 MPa (1AD-FTV), 25-180 (2AD-FTV), 35-200 MPa (2AD-FHV), forced versions use piezoelectric injectors. Against the background of competitors, the specific characteristics of the AD series engines can be called decent, but not outstanding.
A serious congenital disease - high oil consumption and the resulting problems with widespread carbon formation (from clogging the EGR and intake tract to deposits on the pistons and damage to the cylinder head gasket), the guarantee covers the replacement of pistons, rings and all crankshaft bearings. Also characteristic: coolant leaving through the cylinder head gasket, pump leaks, failures of the particulate filter regeneration system, destruction of the throttle actuator, oil leakage from the sump, defective injector booster (EDU) and the injectors themselves, destruction of the injection pump internals.

More about the design and problems - see the big overview "A-Series" .

engineV
NMCRD×S
1AD-FTV1998 126/3600 310/1800-2400 15.8 86.0×86.0
2AD-FTV2231 149/3600 310..340/2000-2800 16.8 86.0×96.0
2AD-FHV2231 149...177/3600 340..400/2000-2800 15.8 86.0×96.0


"GD"(R4, chain)
A new series that came in 2015 to replace the KD diesels. Compared with its predecessor, we can note a timing chain drive, a more multi-stage fuel injection (pressure up to 220 MPa), electromagnetic injectors, the most advanced toxicity reduction system (up to urea injection) ...

For a short period of operation, special problems have not yet had time to manifest themselves, except that many owners have experienced in practice what "modern environmentally friendly Euro V diesel with DPF" means ...

engineV
NMCRD×S
1GD-FTV2755 177/3400 450/1600 15.6 92.0×103.6
2GD-FTV2393 150/3400 400/1600 15.6 92.0×90.0

"KD" (R4, gears+belt)
Upgrading the 1KZ engine to a new power system led to the emergence of a pair of long-lived motors that have become widespread. Installed since 2000 on jeeps / pickups (Hilux, LC Prado families), large vans (HiAce) and commercial vehicles.
Structurally close to KZ - a cast-iron block, a timing gear-belt drive, a balancing mechanism (on 1KD), however, a VGT turbine is already used. Fuel system - common-rail, injection pressure 32-160 MPa (1KD-FTV, 2KD-FTV HI), 30-135 MPa (2KD-FTV LO), electromagnetic injectors on older versions, piezoelectric on versions with Euro-5.
For a decade and a half on the assembly line, the series has become morally obsolete - technical characteristics are modest by modern standards, mediocre efficiency, a "tractor" level of comfort (in terms of vibrations and noise). The most serious design defect - the destruction of the pistons () - is officially recognized by Toyota.
engineV
NMCRD×S
1KD-FTV2982 160..190/3400 320..420/1600-3000 16.0..17.9 96.0×103.0
2KD-FTV2494 88..117/3600 192..294/1200-3600 18.5 92.0×93.8

"ND"(R4, chain)
The first Toyota diesel of the 3rd wave in terms of appearance. Installed since 2000 on class "B" and "C" models (Yaris, Corolla, Probox, Mini One families).
Design - "disposable" light alloy sleeved block with an open cooling jacket, 2 valves per cylinder (SOHC with rockers), timing chain drive, VGT turbine. Fuel system - common-rail, injection pressure 30-160 MPa, electromagnetic injectors.
One of the most problematic modern diesel engines in operation with a large list of only congenital "warranty" diseases is a violation of the tightness of the block head joint, overheating, destruction of the turbine, oil consumption and even excessive draining of fuel into the crankcase with a recommendation for the subsequent replacement of the cylinder block ...
engineV
NMCRD×S
1ND TV1364 90/3800 190..205/1800-2800 17.8..16.5 73.0×81.5

"VD" (V8, gears+chain)
Top Toyota diesel and the first diesel of the company with such an arrangement. Installed since 2007 on heavy jeeps (LC 70, LC 200).
Design - cast iron block, 4 valves per cylinder (DOHC with hydraulic lifters), timing gear-chain drive (two chains), two VGT turbines. Fuel system - common-rail, injection pressure 25-175 MPa (HI) or 25-129 MPa (LO), electromagnetic injectors.
In operation - los ricos tambien lloran: congenital oil waste is no longer considered a problem, everything is traditional with nozzles, but problems with liners have exceeded any expectations.
engineV
NMCRD×S
1VD-FTV4461 220/3600 430/1600-2800 16.8 86.0×96.0
1VD-FTV hp4461 285/3600 650/1600-2800 16.8 86.0×96.0

General remarks

Some explanations for the tables, as well as obligatory comments on the operation and selection of consumables, would make this material very heavy. Therefore, questions that are self-sufficient in meaning were moved to separate articles.

Octane number
General advice and recommendations from the manufacturer - "What gasoline do we pour into Toyota?"

Engine oil
General tips for choosing engine oil - "What kind of oil do we pour into the engine?"

Spark plug
General notes and catalog of recommended candles - "Spark plug"

Batteries
Some recommendations and a catalog of standard batteries - "Batteries for Toyota"

Power
A little more about the characteristics - "Rated performance characteristics of Toyota engines"

Refueling tanks
Manufacturer's Guide - "Filling volumes and liquids"

Timing drive in historical context

The development of the designs of gas distribution mechanisms at Toyota for several decades has gone in a kind of spiral.

The most archaic OHV engines for the most part remained in the 1970s, but some of their representatives were modified and remained in service until the mid-2000s (K series). The lower camshaft was driven by a short chain or gears and moved the rods through hydraulic pushers. Today, OHV is used by Toyota only in the truck diesel segment.

From the second half of the 1960s, SOHC and DOHC engines of various series began to appear - initially with solid double-row chains, with hydraulic compensators or adjusting valve clearances with washers between the camshaft and the pusher (less often with screws).

The first series with a timing belt drive (A) was born only in the late 1970s, but by the mid-1980s such engines - what we call "classics" - became an absolute mainstream. First SOHC, then DOHC with the letter G in the index - "wide Twincam" with the drive of both camshafts from the belt, and then the massive DOHC with the letter F, where one of the shafts connected by a gear was driven by a belt. Clearances in DOHC were adjusted by washers above the pushrod, but some motors with Yamaha-designed heads retained the principle of placing the washers under the pushrod.

When the belt broke on most mass-produced engines, valves and pistons did not occur, with the exception of forced 4A-GE, 3S-GE, some V6s, D-4 engines and, of course, diesel engines. In the latter, due to the design features, the consequences are especially severe - valves bend, guide bushings break, and the camshaft often breaks. For gasoline engines, chance plays a certain role - in a “non-bending” engine, the piston and valve covered with a thick layer of soot sometimes collide, and in a “bending”, on the contrary, valves can successfully hang in a neutral position.

In the second half of the 1990s, fundamentally new engines of the third wave appeared, on which the timing chain drive returned and mono-VVT (variable intake phases) became standard. As a rule, chains drove both camshafts on in-line engines, on V-shaped ones, a gear drive or a short additional chain was between the camshafts of one head. Unlike the old double-row chains, the new long single-row roller chains were no longer durable. Valve clearances were now almost always set by the selection of adjusting tappets of different heights, which made the procedure too laborious, time-consuming, costly, and therefore unpopular - for the most part, the owners simply stopped monitoring the clearances.

For engines with a chain drive, cases of breakage are traditionally not considered, however, in practice, when the chain slips or is incorrectly installed, in the vast majority of cases, valves and pistons meet each other.

A peculiar derivation among the engines of this generation was the forced 2ZZ-GE with variable valve lift (VVTL-i), but in this form the concept of distribution and development did not receive.

Already in the mid-2000s, the era of the next generation of engines began. In terms of timing, their main distinguishing features are Dual-VVT (variable phases at the inlet and outlet) and the revived hydraulic compensators in the valve drive. Another experiment was the second option for changing the valve lift - Valvematic on the ZR series.

A simple advertising phrase "the chain is designed to work throughout the life of the car" was taken literally by many, and on its basis they began to develop the legend of the unlimited resource of the chain. But, as they say, dreaming is not harmful ...

The practical advantages of a chain drive compared to a belt drive are simple: strength and durability - the chain, relatively speaking, does not break and requires less frequent scheduled replacements. The second gain, layout, is important only for the manufacturer: the drive of four valves per cylinder through two shafts (also with a phase change mechanism), the drive of the high-pressure fuel pump, pump, oil pump - require a sufficiently large belt width. Whereas installing a thin single-row chain instead of it allows you to save a couple of centimeters from the longitudinal size of the engine, and at the same time reduce the transverse size and distance between the camshafts, due to the traditionally smaller diameter of sprockets compared to pulleys in belt drives. Another small plus is less radial load on the shafts due to less preload.

But we must not forget about the standard minuses of the chains.
- Due to the inevitable wear and the appearance of play in the hinges of the links, the chain is stretched during operation.
- To combat chain stretch, either a regular "pulling" procedure is required (as on some archaic motors), or the installation of an automatic tensioner (which is what most modern manufacturers do). The traditional hydraulic tensioner works from the general engine lubrication system, which negatively affects its durability (therefore, on new generation chain engines, Toyota places it outside, simplifying replacement as much as possible). But sometimes the stretching of the chain exceeds the limit of the adjusting capabilities of the tensioner, and then the consequences for the engine are very sad. And some third-rate automakers manage to install hydraulic tensioners without ratchet, which allows even an unworn chain to “play” with every start.
- The metal chain in the process of work inevitably "saw through" the shoes of the tensioners and dampers, gradually wears out the sprockets of the shafts, and the wear products get into the engine oil. Even worse, many owners do not change sprockets and tensioners when replacing a chain, although they must understand how quickly an old sprocket can ruin a new chain.
- Even a serviceable timing chain drive always works noticeably noisier than a belt drive. Among other things, the speed of the chain is uneven (especially with a small number of sprocket teeth), and when the link enters the engagement, a blow always occurs.
- The cost of the chain is always higher than the timing belt kit (and some manufacturers are simply inadequate).
- Replacing the chain is more laborious (the old "Mercedes" method does not work on Toyotas). And in the process, a fair amount of accuracy is required, since the valves in Toyota chain engines meet pistons.
- Some Daihatsu-derived engines use toothed chains instead of roller chains. By definition, they are quieter in operation, more accurate and more durable, but for inexplicable reasons they can sometimes slip on sprockets.

As a result - have the maintenance costs decreased with the transition to timing chains? A chain drive requires this or that intervention at least as often as a belt drive - hydraulic tensioners are rented, on average, the chain itself stretches over 150 t.km ... and the costs "per circle" are higher, especially if you do not cut out the details and replace all the necessary components at the same time drive.

The chain can be good - if it is two-row, in an engine of 6-8 cylinders, and there is a three-beam star on the cover. But on classic Toyota engines, the timing belt was so good that the transition to thin long chains was a clear step back.

"Goodbye Carburetor"

But not all archaic solutions are reliable, and Toyota's carburetors are a vivid example of this. Fortunately, the vast majority of current Toyota drivers started immediately with injection engines (which appeared back in the 70s), bypassing Japanese carburetors, so they cannot compare their features in practice (although in the domestic Japanese market, individual carburetor modifications lasted until 1998, on the external - until 2004).

In the post-Soviet space, the carburetor power supply system for locally produced cars will never have competitors in terms of maintainability and budget. All deep electronics - EPHH, all vacuum - automatic UOZ and crankcase ventilation, all kinematics - throttle, manual suction and drive of the second chamber (Solex). Everything is relatively simple and understandable. A penny cost allows you to literally carry a second set of power and ignition systems in the trunk, although spare parts and "dokhtura" could always be found somewhere nearby.

Toyota carburetor is a completely different matter. Just look at some 13T-U of the turn of the 70-80s - a real monster with a lot of vacuum hose tentacles ... Well, the later "electronic" carburetors generally represented the height of complexity - a catalyst, an oxygen sensor, air bypass to exhaust, bypass exhaust gases (EGR), electric suction control, two or three stages of idle control on load (electrical consumers and power steering), 5-6 pneumatic actuators and two-stage dampers, ventilation of the tank and float chamber, 3-4 electro-pneumatic valves, thermo-pneumatic valves, EPHX, vacuum corrector , air heating system, a full set of sensors (coolant temperature, intake air, speed, detonation, DZ limit switch), catalyst, electronic control unit ... It's surprising why such difficulties were needed at all if there were modifications with normal injection, but either way otherwise, such systems, tied to vacuum, electronics and drive kinematics, worked in a very delicate balance. The balance was broken in an elementary way - not a single carburetor is immune from old age and dirt. Sometimes everything was even more stupid and simpler - an excessively impulsive "master" disconnected all the hoses in a row, but, of course, he did not remember where they were connected. Somehow it is possible to revive this miracle, but it is extremely difficult to establish the correct operation (to simultaneously maintain a normal cold start, normal warm-up, normal idle, normal load correction, normal fuel consumption). As you might guess, a few carburetors with knowledge of Japanese specifics lived only within Primorye, but after two decades, even local residents are unlikely to remember them.

As a result, Toyota distributed injection initially turned out to be simpler than late Japanese carburetors - there were not much more electrics and electronics in it, but the vacuum degenerated a lot and there were no mechanical drives with complex kinematics - which gave us such valuable reliability and maintainability.

At one time, the owners of the early D-4 engines realized that, due to their extremely dubious reputation, they simply could not resell their cars without tangible losses - and went on the offensive ... Therefore, listening to their "advice" and "experience", one had to remember that they are not only morally but chiefly financially interested in the formation of a decidedly positive public opinion regarding direct injection (DI) engines.

The most unreasonable argument in favor of the D-4 is as follows - "direct injection will soon replace traditional engines." Even if this were true, it would in no way indicate that there is no alternative to LV engines already Now. For a long time, D-4 was understood, as a rule, in general, one specific engine - 3S-FSE, which was installed on relatively affordable mass-produced cars. But they were completed only three Toyota models from 1996-2001 (for the domestic market), and in each case the direct alternative was at least the version with the classic 3S-FE. And then the choice between D-4 and normal injection was usually preserved. And since the second half of the 2000s, Toyota generally abandoned the use of direct injection on engines in the mass segment (see. "Toyota D4 - prospects?" ) and began to return to this idea only ten years later.

"The engine is excellent, we just have bad gasoline (nature, people ...)" - this is again from the field of scholasticism. Let this engine be good for the Japanese, but what is the use of this in the Russian Federation? - a country of not the best gasoline, a harsh climate and imperfect people. And where instead of the mythical advantages of the D-4, only its shortcomings come out.

It is extremely dishonest to appeal to foreign experience - "but in Japan, but in Europe" ... The Japanese are deeply concerned about the far-fetched problem of CO2, the Europeans combine blinkers on reducing emissions and efficiency (it's not for nothing that more than half of the market there is occupied by diesel engines). For the most part, the population of the Russian Federation cannot compare with them in terms of income, and the quality of local fuel is inferior even to states where direct injection was not considered until a certain time - mainly because of unsuitable fuel (besides, the manufacturer of a frankly bad engine can be punished there with a dollar) .

Stories that "the D-4 engine consumes three liters less" are just plain misinformation. Even according to the passport, the maximum savings of the new 3S-FSE compared to the new 3S-FE on one model was 1.7 l / 100 km - and this is in the Japanese test cycle with very quiet conditions (so the real savings were always less). With dynamic city driving, the D-4, operating in power mode, does not in principle reduce consumption. The same thing happens when driving fast on the highway - the zone of tangible efficiency of the D-4 in terms of speed and speed is small. And in general, it is incorrect to talk about the "regulated" consumption for a car that is by no means new - it depends to a much greater extent on the technical condition of a particular car and driving style. Practice has shown that some of the 3S-FSE, on the contrary, consume significantly more than 3S-FE.

One could often hear "yes, you will change the cheap pump quickly and there are no problems." Whatever you say, but the obligation to regularly replace the main assembly of the engine fuel system with respect to a fresh Japanese car (especially a Toyota) is simply nonsense. And even with a regularity of 30-50 t.km, even "penny" $ 300 became not the most pleasant waste (and this price concerned only 3S-FSE). And little was said about the fact that the nozzles, which also often required replacement, cost money comparable to high-pressure fuel pumps. Of course, the standard and, moreover, already fatal problems of the 3S-FSE in terms of the mechanical part were carefully hushed up.

Perhaps not everyone thought about the fact that if the engine has already "caught the second level in the oil pan", then most likely all the rubbing parts of the engine suffered from working on a benzo-oil emulsion (you should not compare grams of gasoline that sometimes get into the oil when cold start-up and evaporating with the engine warming up, with liters of fuel constantly flowing into the crankcase).

No one warned that on this engine you should not try to "clean the throttle" - that's all correct adjusting the elements of the engine control system required the use of scanners. Not everyone knew about how the EGR system poisons the engine and coke the intake elements, requiring regular disassembly and cleaning (conditionally - every 30 t.km). Not everyone knew that trying to replace the timing belt with the "similarity method with 3S-FE" leads to a meeting of pistons and valves. Not everyone could imagine if there was at least one car service in their city that successfully solved the problems of D-4.

Why is Toyota valued in the Russian Federation in general (if there are Japanese brands cheaper-faster-sportier-more comfortable-..)? For "unpretentiousness", in the broadest sense of the word. Unpretentiousness in work, unpretentiousness to fuel, to consumables, to the choice of spare parts, to repairs ... You can, of course, buy high-tech squeezes for the price of a normal car. You can carefully choose gasoline and pour a variety of chemicals inside. You can recalculate every cent saved on gasoline - whether the costs of the upcoming repairs will be covered or not (excluding nerve cells). It is possible to train local servicemen in the basics of repairing direct injection systems. You can remember the classic "something has not broken for a long time, when will it finally fall down" ... There is only one question - "Why?"

In the end, the choice of buyers is their own business. And the more people contact HB and other dubious technologies, the more customers the services will have. But elementary decency still requires to say - buying a car with a D-4 engine in the presence of other alternatives is contrary to common sense.

Retrospective experience allows us to assert that the necessary and sufficient level of emission reduction was already provided by the classic engines of the Japanese market models in the 1990s or by the Euro II standard in the European market. All that was required for this was distributed injection, one oxygen sensor and a catalyst under the bottom. Such cars worked for many years in a standard configuration, despite the disgusting quality of gasoline at that time, their own considerable age and mileage (sometimes completely exhausted oxygen tanks required replacement), and it was easy to get rid of the catalyst on them - but usually there was no such need.

The problems began with the Euro III stage and correlating standards for other markets, and then they only expanded - the second oxygen sensor, moving the catalyst closer to the outlet, switching to "cat collectors", switching to wide-band mixture composition sensors, electronic throttle control (more precisely, algorithms, deliberately worsening the response of the engine to the accelerator), increased temperature conditions, fragments of catalysts in the cylinders ...

Today, with the normal quality of gasoline and much more recent cars, the removal of catalysts with a flashing of an ECU of the Euro V> II type is massive. And if for older cars, in the end, it is possible to use an inexpensive universal catalyst instead of an obsolete one, then for the freshest and "intelligent" cars there is simply no alternative to breaking through the collector and software disabling emission control.

A few words on individual purely "environmental" excesses (gasoline engines):
- The exhaust gas recirculation (EGR) system is an absolute evil, as soon as possible it should be turned off (taking into account the specific design and the presence of feedback), stopping the poisoning and contamination of the engine with its own waste products.
- The evaporative emission system (EVAP) - works fine on Japanese and European cars, problems arise only on North American market models due to its extreme complexity and "sensitivity".
- Exhaust air supply (SAI) - an unnecessary but relatively harmless system for North American models.

Let's make a reservation right away that on our resource the concept of "best" means "the most problem-free": reliable, durable, maintainable. Specific power indicators, efficiency are already secondary, and various "high technologies" and "environmental friendliness" are, by definition, disadvantages.

In fact, the abstract recipe for the best engine is simple - gasoline, R6 or V8, aspirated, cast-iron block, maximum safety margin, maximum working volume, distributed injection, minimum boost ... but alas, in Japan this can only be found on cars clearly "anti-people "class.

In the lower segments available to the mass consumer, it is no longer possible to do without compromises, so the engines here may not be the best, but at least “good”. The next task is to evaluate the motors taking into account their actual application - whether they provide an acceptable thrust-to-weight ratio and in what configurations they are installed (an ideal engine for compact models will be clearly insufficient in the middle class, a structurally more successful engine may not be aggregated with all-wheel drive, etc.) . And, finally, the time factor - all our regrets about the excellent engines that were discontinued 15-20 years ago do not mean at all that today we need to buy ancient worn-out cars with these engines. So it only makes sense to talk about the best engine in its class and in its time period.

1990s Among classic engines, it is easier to find a few unsuccessful ones than to choose the best from a mass of good ones. However, the two absolute leaders are well known - 4A-FE STD type "90" in the small class and 3S-FE type "90 in the middle class. In a large class, 1JZ-GE and 1G-FE type "90 are equally worthy of approval.

2000s As for the engines of the third wave, there are only good words for the 1NZ-FE type "99 for the small class, while the rest of the series can only compete for the title of an outsider with varying success, in the middle class there are even no "good" engines. to pay tribute to 1MZ-FE, which turned out to be not bad at all against the background of young competitors.

2010s. In general, the picture has changed a little - at least the engines of the 4th wave still look better than their predecessors. In the lower class, there is still 1NZ-FE (unfortunately, in most cases this is the "modernized" type "03" for the worse). In the older segment of the middle class, the 2AR-FE performs well. As for the large class, according to a number of economic and political reasons for the average consumer it no longer exists.

The question arising from the previous ones is why the old engines in their older modifications are named the best? It may seem that both Toyota and the Japanese in general are organically incapable of anything consciously worsen. But alas, above engineers in the hierarchy are the main enemies of reliability - "environmentalists" and "marketers". Thanks to them, car owners get less reliable and durable cars at a higher price and with higher maintenance costs.

However, it is better to see with examples how the new versions of the engines turned out to be worse than the old ones. About 1G-FE type "90 and type" 98 has already been said above, but what is the difference between the legendary 3S-FE type "90" and type "96"? All deteriorations are caused by the same "good intentions", such as reducing mechanical losses, reducing fuel consumption, reducing CO2 emissions. The third point refers to the completely insane (but beneficial for some) idea of ​​a mythical fight against mythical global warming, and the positive effect of the first two turned out to be disproportionately less than the resource drop...

Deteriorations in the mechanical part refer to the cylinder-piston group. It would seem that the installation of new pistons with trimmed (T-shaped in projection) skirts to reduce friction losses could be welcomed? But in practice, it turned out that such pistons begin to knock when shifting to TDC at much shorter runs than in the classic type "90. And this knock does not mean noise in itself, but increased wear. It is worth mentioning the phenomenal stupidity of replacing fully floating piston pressable fingers.

Replacing the distributor ignition with DIS-2 in theory is characterized only positively - there are no rotating mechanical elements, longer coil life, higher ignition stability ... But in practice? It is clear that it is impossible to manually adjust the basic ignition timing. The resource of new ignition coils, in comparison with classic remote ones, even fell. The resource of high-voltage wires has expectedly decreased (now each candle sparked twice as often) - instead of 8-10 years, they served 4-6. It's good that at least the candles remained simple two-pin, and not platinum.

The catalyst has moved from under the bottom directly to the exhaust manifold in order to warm up faster and get to work. The result is a general overheating of the engine compartment, a decrease in the efficiency of the cooling system. It is unnecessary to mention the notorious consequences of the possible ingress of crushed catalyst elements into the cylinders.

Instead of pairwise or synchronous fuel injection, on many types of type "96, fuel injection became purely sequential (into each cylinder once per cycle) - more accurate dosage, loss reduction, "ecology" ... In fact, gasoline was now given before entering the cylinder much less time for evaporation, therefore, start-up characteristics at low temperatures automatically deteriorated.

In fact, the debate about "millionaires", "half-millionaires" and other centenarians is pure and meaningless scholasticism, not applicable to cars that have changed at least two countries of residence and several owners along their life path.

More or less reliably, we can only talk about the "resource before the bulkhead", when the engine of the mass series required the first serious intervention in the mechanical part (not counting the replacement of the timing belt). For most classic engines, the bulkhead fell on the third hundred run (about 200-250 t.km). As a rule, the intervention consisted in replacing worn or stuck piston rings and replacing valve stem seals - that is, it was just a bulkhead, and not a major overhaul (the geometry of the cylinders and hone on the walls were usually preserved).

Next generation engines often require attention already in the second hundred thousand kilometers of run, and in the best case, it costs to replace the piston group (in this case, it is advisable to change the parts to those modified in accordance with the latest service bulletins). With a noticeable waste of oil and the noise of piston shifting on runs over 200 t.km, you should prepare for a big repair - severe wear of the liners leaves no other options. Toyota does not provide for the overhaul of aluminum cylinder blocks, but in practice, of course, the blocks are re-sleeved and bored. Unfortunately, reputable companies that really do high quality and professionally overhaul modern "disposable" engines throughout the country can really be counted on the fingers. But peppy reports of successful re-engineering today come from mobile collective farm workshops and garage cooperatives - what can be said about the quality of work and the resource of such engines is probably understandable.

This question is posed incorrectly, as in the case of "absolutely the best engine." Yes, modern motors cannot be compared with classic ones in terms of reliability, durability and survivability (at least with the leaders of past years). They are much less maintainable mechanically, they become too advanced for unskilled service...

But the fact is that there is no alternative to them anymore. The emergence of new generations of motors must be taken for granted and each time re-learn how to work with them.

Of course, car owners should in every possible way avoid individual unsuccessful engines and especially unsuccessful series. Avoid engines of the earliest releases, when the traditional "running on the buyer" is still underway. If there are several modifications of a particular model, you should always choose a more reliable one - even if you sacrifice either finances or technical characteristics.

P.S. In conclusion, one cannot fail to thank Toyot for the fact that it once created engines “for people”, with simple and reliable solutions, without the frills inherent in many other Japanese and Europeans. And let the owners of cars from “advanced and advanced” manufacturers disparagingly called them kondovy - so much the better!













Timeline for the production of diesel engines

The phenomenon and repair of "diesel" noise on old (mileage 250-300 thousand km) 4A-FE engines.

"Diesel" noise occurs most often in throttle mode or engine braking mode. It is clearly audible from the passenger compartment at a speed of 1500-2500 rpm, as well as with the hood open when the gas is released. Initially, it may seem that this noise in frequency and sound resembles the sound of unadjusted valve clearances, or a dangling camshaft. Because of this, those who want to eliminate it often start repairs from the cylinder head (adjusting valve clearances, lowering the yokes, checking whether the gear on the driven camshaft is cocked). Another suggested repair option is an oil change.

I tried all these options, but the noise remained unchanged, as a result of which I decided to replace the piston. Even when changing the oil at 290000, I filled in the Hado 10W40 semi-synthetic oil. And he managed to push 2 repair tubes, but the miracle did not happen. The last of the possible reasons remained - play in the finger-piston pair.

The mileage of my car (Toyota Carina E XL station wagon, 95 onwards; English assembly) was 290,200 km at the time of repair (according to the odometer), moreover, I can assume that on a station wagon with air conditioning, the 1.6 liter engine was somewhat overloaded in terms of compared to a conventional sedan or hatchback. That is, the time has come!

To replace the piston, you need the following:

- Faith in the best and hope for success!!!

- Tools and fixtures:

1. Socket wrench (head) for 10 (for a square of 1/2 and 1/4 inches), 12, 14, 15, 17.
2. Socket wrench (head) (sprocket for 12 rays) for 10 and 14 (for a 1/2 inch square (necessarily no smaller square!) And from high-quality steel !!!). (Required for cylinder head bolts and connecting rod bearing nuts).
3. A socket wrench (ratchet) for 1/2 and 1/4 inches.
4. Torque wrench (up to 35 N*m) (for tightening critical connections).
5. Socket wrench extension (100-150 mm)
6. Wrench for 10 (for unscrewing hard-to-reach fasteners).
7. Adjustable wrench for turning the camshafts.
8. Pliers (remove spring clamps from hoses)
9. Small metalwork vise (jaw size 50x15). (I clamped the head in them by 10 and unscrewed the long stud screws securing the valve cover, and also with their help pressed out and pressed the fingers into the pistons (see photo with a press)).
10. Press up to 3 tons (for repressing fingers and clamping the head by 10 in a vice)
11. To remove the pallet, several flat screwdrivers or knives.
12. Phillips screwdriver with a hexagonal tip (for unscrewing the bolts of the RV yokes near the candle wells).
13. Scraper plate (for cleaning the surfaces of the cylinder head, BC and pan from the remnants of sealant and gaskets).
14. Measuring tool: micrometer 70-90 mm (for measuring the diameter of pistons), bore gauge set to 81 mm (for measuring the geometry of cylinders), vernier caliper (for determining the position of the finger in the piston during pressing), a set of feelers (for controlling valve clearance and gaps in the locks of the rings with the pistons removed). You can also take a micrometer and a 20 mm bore gauge (for measuring the diameter and wear of the fingers).
15. Digital camera - for a report and additional information during assembly! ;O))
16. A book with the dimensions of the CPG and the moments and methods for disassembling and assembling the engine.
17. Hat (so that the oil does not drip onto the hair when the pan is removed). Even if the pan has been removed for a long time, then a drop of oil that was going to drip all night will drip exactly when you are under the engine! Repeatedly checked by a bald spot !!!

- Materials:

1. Carburetor cleaner (large spray) - 1 pc.
2. Silicone sealant (oil-resistant) - 1 tube.
3. VD-40 (or other flavored kerosene for loosening the exhaust pipe bolts).
4. Litol-24 (for tightening the ski mounting bolts)
5. Cotton rags in unlimited quantities.
6. Several cardboard boxes for folding fasteners and camshaft yokes (PB).
7. Tanks for draining antifreeze and oil (5 liters each).
8. Tray (with dimensions 500x400) (substitute under the engine when removing the cylinder head).
9. Engine oil (according to the engine manual) in the required quantity.
10. Antifreeze in the required quantity.

- Parts:

1. A set of pistons (they usually offer a standard size of 80.93 mm), but just in case (not knowing the past of the car) I also took (with a return condition) a repair size that is 0.5 mm larger. - $75 (one set).
2. A set of rings (I also took the original in 2 sizes) - $ 65 (one set).
3. A set of engine gaskets (but you could get by with one gasket under the cylinder head) - $ 55.
4. Gasket exhaust manifold / downpipe - $ 3.

Before disassembling the engine, it is very useful to wash the entire engine compartment at the sink - there is no need for extra dirt!

I decided to disassemble to a minimum, because I was very limited in time. Judging by the set of engine gaskets, it was for a regular, not a lean 4A-FE engine. Therefore, I decided not to remove the intake manifold from the cylinder head (so as not to damage the gasket). And if so, then the exhaust manifold could be left on the cylinder head, undocking it from the exhaust pipe.

I will briefly describe the disassembly sequence:

At this point, in all instructions, the negative terminal of the battery is removed, but I deliberately decided not to remove it so as not to reset the computer's memory (for the purity of the experiment) ... and to listen to the radio during the repair; o)
1. Plentifully filled with VD-40 rusty bolts of the exhaust pipe.
2. I drained the oil and antifreeze by unscrewing the bottom plugs and caps on the filler necks.
3. I undocked the hoses of the vacuum systems, wires of temperature sensors, fan, throttle position, wires of the cold start system, lambda probe, high-voltage, spark plug wires, wires of HBO injectors and gas and gasoline supply hoses. In general, everything that fits the intake and exhaust manifold.

2. Removed the first yoke of the inlet RV and screwed in a temporary bolt through the spring-loaded gear.
3. Consistently loosened the bolts of the rest of the RV yokes (to unscrew the bolts - studs on which the valve cover is attached, I had to use a 10 head clamped in a vise (using a press)). The bolts located near the candle wells were unscrewed with a small 10 head with a Phillips screwdriver inserted into it (with a hexagonal sting and a spanner wrench worn on this hexagon).
4. Removed the inlet RV and checked whether the head fits 10 (asterisk) to the cylinder head bolts. Luckily, it fit perfectly. In addition to the sprocket itself, the outer diameter of the head is also important. It should not be more than 22.5 mm, otherwise it will not fit!
5. He removed the exhaust RV, first unscrewing the timing belt gear bolt and removing it (head by 14), then, sequentially loosening first the outer bolts of the yokes, then the central ones, removed the RV itself.
6. Removed the distributor by unscrewing the bolts of the distributor yoke and adjusting (head 12). Before removing the distributor, it is advisable to mark its position relative to the cylinder head.
7. Removed the bolts of the power steering bracket (head 12),
8. Timing belt cover (4 M6 bolts).
9. He removed the oil dipstick tube (M6 bolt) and took it out, also unscrewed the cooling pump pipe (head 12) (the oil dipstick tube is attached just to this flange).

3. Since access to the pallet was limited due to an incomprehensible aluminum trough connecting the gearbox to the cylinder block, I decided to remove it. I unscrewed 4 bolts, but the trough could not be removed because of the ski.

4. I thought about unscrewing the ski under the engine, but I could not unscrew the 2 front ski nuts. I think that before me this car was broken and instead of the studs with nuts there were bolts with M10 self-locking nuts. When trying to unscrew, the bolts turned, and I decided to leave them in place, unscrewing only the back of the ski. As a result, I unscrewed the main bolt of the front engine mount and 3 rear ski bolts.
5. As soon as I unscrewed the 3rd rear bolt of the ski, it bent back, and the aluminum trough fell out with a twist ... in my face. It hurt... :o/.
6. Next, I unscrewed the M6 ​​bolts and nuts securing the engine pan. And he tried to pull it off - and the pipes! I had to take all possible flat screwdrivers, knives, probes to tear off the pallet. As a result, having unbent the front sides of the pallet, I removed it.

Also, I did not notice some kind of brown connector of a system unknown to me, located somewhere above the starter, but it successfully undocked itself when removing the cylinder head.

Otherwise, the removal of the cylinder head was successful. I pulled it out myself. The weight in it is no more than 25 kg, but you have to be very careful not to demolish the protruding ones - the fan sensor and the lambda probe. It is advisable to number the adjusting washers (with an ordinary marker, after wiping them with a rag with a carb cleaner) - this is in case the washers fall out. He put the removed cylinder head on a clean cardboard - away from sand and dust.

Piston:

The piston was removed and installed alternately. To unscrew the connecting rod nuts, a 14-star head is required. The unscrewed connecting rod with the piston moves up with your fingers until it falls out of the cylinder block. In this case, it is very important not to confuse the drop-down connecting rod bearings !!!

I examined the dismantled assembly and measured it as much as possible. Piston changed before me. Moreover, their diameter in the control zone (25 mm from the top) was exactly the same as on the new pistons. The radial play in the piston-finger connection was not felt by the hand, but this is due to the oil. Axial movement along the finger is free. Judging by the soot on the upper part (up to the rings), some pistons were displaced along the axes of the fingers and rubbed against the cylinders by the surface (perpendicular to the axis of the fingers). Having measured the position of the fingers with a rod relative to the cylindrical part of the piston, he determined that some fingers were displaced along the axis up to 1 mm.

Further, when pressing new fingers, I controlled the position of the fingers in the piston (I chose the axial clearance in one direction and measured the distance from the end of the finger to the piston wall, then in the other direction). (I had to drive my fingers back and forth, but in the end I achieved an error of 0.5 mm). For this reason, I believe that landing a cold finger into a hot crank is only possible under ideal conditions, with a controlled finger stop. In my conditions it was impossible and I did not bother with landing "hot". I pressed it in, lubricating the hole in the piston and connecting rod with engine oil. Fortunately, on the fingers, the butt was filled with a smooth radius and did not shake either the connecting rod or the piston.

The old pins had noticeable wear in the piston boss areas (0.03 mm in relation to the central part of the pin). It was not possible to accurately measure the output on the piston bosses, but there was no particular ellipse there. All rings were movable in the piston grooves, and the oil channels (holes in the oil scraper ring area) were free of carbon deposits and dirt.

Before pressing in new pistons, I measured the geometry of the central and upper parts of the cylinders, as well as the new pistons. The goal is to fit larger pistons into more worn out cylinders. But the new pistons were almost identical in diameter. By weight, I did not control them.

Another important point when pressing in is the correct position of the connecting rod relative to the piston. There is an influx on the connecting rod (above the crankshaft liner) - this is a special marker indicating the location of the connecting rod to the front of the crankshaft (alternator pulley), (there is the same influx on the lower beds of the connecting rod liners). On the piston - at the top - two deep cores - also to the front of the crankshaft.

I also checked the gaps in the locks of the rings. To do this, the compression ring (first old, then new) is inserted into the cylinder and lowered by the piston to a depth of 87 mm. The gap in the ring is measured with a feeler gauge. On the old ones there was a gap of 0.3 mm, on the new rings 0.25 mm, which indicates that I changed the rings in vain! The allowable gap, let me remind you, is 1.05 mm for the N1 ring. The following should be noted here: If I had guessed to mark the positions of the locks of the old rings relative to the pistons (when pulling out the old pistons), then the old rings could be safely put on the new pistons in the same position. Thus, it would be possible to save $65. And engine break-in time!

Next, piston rings must be installed on the pistons. Installed without adaptation - with fingers. First - the oil scraper ring separator, then the lower scraper of the oil scraper ring, then the upper one. Then the 2nd and 1st compression rings. The location of the locks of the rings - necessarily according to the book !!!

With the pallet removed, it is still necessary to check the axial play of the crankshaft (I did not do this), it seemed visually that the play is very small ... (and permissible up to 0.3 mm). When removing - installing connecting rod assemblies, the crankshaft rotates manually by the generator pulley.

Assembly:

Before installing pistons with connecting rods, cylinders, piston pins and rings, connecting rod bearings, lubricate with fresh engine oil. When installing the lower beds of the connecting rods, it is necessary to check the position of the liners. They must stand in place (without displacement, otherwise jamming is possible). After installing all the connecting rods (tightening with a torque of 29 Nm, in several approaches), it is necessary to check the ease of rotation of the crankshaft. It should rotate by hand on the alternator pulley. Otherwise, it is necessary to look for and eliminate the skew in the liners.

Pallet and ski installation:

Cleaned of old sealant, the sump flange, like the surface on the cylinder block, is carefully degreased with a carb cleaner. Then a layer of sealant is applied to the pallet (see instructions) and the pallet is set aside for several minutes. Meanwhile, the oil receiver is installed. And behind it is a pallet. First, 2 nuts are baited in the middle - then everything else and tightened by hand. Later (after 15-20 minutes) - with a key (head at 10).

You can immediately put the hose from the oil cooler on the pallet and install the ski and the bolt of the front engine mount (it is advisable to lubricate the bolts with Litol - to slow down the rusting of the threaded connection).

Cylinder head installation:

Before installing the cylinder head, it is necessary to carefully clean the planes of the cylinder head and BC with a scraper plate, as well as the mounting flange of the pump pipe (near the pump from the back of the cylinder head (the one where the oil dipstick is attached)). It is advisable to remove oil and antifreeze puddles from the threaded holes so as not to split when tightening the BC with bolts.

Put a new gasket under the cylinder head (I smeared it a little with silicone in areas close to the edges - according to the old memory of repeated repairs of the Moscow 412 engine). I smeared the pump nozzle with silicone (the one with the oil dipstick). Next, the cylinder head can be set! Here it is necessary to note one feature! All cylinder head bolts on the intake manifold mounting side are shorter than on the exhaust side !!! I tighten the installed head with bolts by hand (using a 10 sprocket head with an extension). Then I screw on the pump nozzle. When all the cylinder head bolts are baited, I start tightening (the sequence and method are as in the book), and then another control tightening of 80 Nm (this is just in case).

After installing the cylinder head, the P-shafts are being installed. The contact planes of the yokes with the cylinder head are thoroughly cleaned of debris, and the threaded mounting holes are cleaned of oil. It is very important to put the yokes in their places (for this they are marked at the factory).

I determined the position of the crankshaft by the "0" mark on the timing belt cover and the notch on the alternator pulley. The position of the outlet RV is on the pin in the flange of the belt gear. If it is at the top, then the PB is in the TDC position of the 1st cylinder. Next, I put the RV oil seal in the place cleaned by the carb cleaner. I put the belt gear together with the belt and tightened it with a fixing bolt (14 head). Unfortunately, the timing belt could not be put in the old place (previously marked with a marker), but it was desirable to do so. Next, I installed the distributor, after removing the old sealant and oil with a carb cleaner, and applying a new sealant. The position of the distributor was set according to a pre-applied mark. By the way, as for the distributor, the photo shows burnt electrodes. This may be the cause of uneven operation, tripling, "weakness" of the engine, and the result is increased fuel consumption and a desire to change everything in the world (candles, explosive wires, lambda probe, car, etc.). It is eliminated in an elementary way - gently scraped off with a screwdriver. Similarly - on the opposite contact of the slider. I recommend cleaning every 20-30 t.km.

Next, the inlet RV is installed, be sure to align the necessary (!) Marks on the gears of the shafts. First, the central yokes of the inlet RV are installed, then, having removed the temporary bolt from the gear, the first yoke is placed. All fastening bolts are tightened to the required torque in the appropriate sequence (according to the book). Next, a plastic timing belt cover is installed (4 M6 bolts) and only then, carefully wiping the valve cover and cylinder head contact area with a rag with a carb cleaner and applying a new sealant - the valve cover itself. Here, in fact, are all the tricks. It remains to hang all the tubes, wires, tighten the power steering and generator belts, fill in antifreeze (before filling, I recommend wiping the neck of the radiator, creating a vacuum on it with your mouth (so to check the tightness)); fill with oil (do not forget to tighten the drain plugs!). Install an aluminum trough, a ski (lubricating the bolts with salidol) and a front pipe with gaskets.

The launch was not instant - it was necessary to pump empty fuel tanks. The garage was filled with thick oily smoke - this is from piston lubrication. Further - the smoke becomes more burnt in smell - this is oil and dirt burning out from the exhaust manifold and the exhaust pipe ... Further (if everything worked out) - we enjoy the absence of "diesel" noise !!! I think it will be useful when driving to observe a gentle mode - for engine break-in (at least 1000 km).

Toyota has produced many interesting models of motors. The 4A FE engine and other members of the 4A family occupy a worthy place in the Toyota powertrain lineup.

Engine history

In Russia and the world, Japanese cars from the Toyota concern are well-deservedly popular due to their reliability, excellent technical characteristics and relative affordability. A significant role in this recognition was played by Japanese engines - the heart of the concern's cars. For several years, a number of products from the Japanese automaker have been equipped with a 4A FE engine, the technical characteristics of which look good to this day.

Appearance:

Its production began in 1987 and lasted more than 10 years - until 1998. The number 4 in the title indicates the serial number of the engine in the "A" series of Toyota power units. The series itself appeared even earlier, in 1977, when the company's engineers faced the challenge of creating an economical engine with acceptable technical performance. The development was intended for a B-class car (subcompact according to the American classification) Toyota Tercel.

The result of engineering research was four-cylinder engines with a capacity of 85 to 165 horsepower and a volume of 1.4 to 1.8 liters. The units were equipped with a DOHC gas distribution mechanism, a cast-iron body and aluminum heads. Their heir was the 4th generation, considered in this article.

Interesting: The A-series is still produced at a joint venture between Tianjin FAW Xiali and Toyota: 8A-FE and 5A-FE engines are produced there.

Generation history:

  • 1A - years of production 1978-80;
  • 2A - from 1979 to 1989;
  • 3A - from 1979 to 1989;
  • 4A - from 1980 to 1998.

Specifications 4A-FE

Let's take a closer look at the engine markings:

  • number 4 - indicates the number in the series, as mentioned above;
  • A - engine series index, indicating that it was developed and began to be produced before 1990;
  • F - speaks of technical details: a four-cylinder, 16-valve unforced engine driven by one camshaft;
  • E - indicates the presence of a multipoint fuel injection system.

In 1990, the power units in the series were upgraded to allow operation on low-octane gasolines. To this end, a special feed system for leaning the mixture - LeadBurn - was introduced into the design.

System illustration:


Let us now consider what characteristics the 4A FE engine has. Basic engine data:

Parameter Meaning
Volume 1.6 l.
Developed power 110 HP
Engine weight 154 kg.
Engine compression ratio 9.5-10
Number of cylinders 4
Location inline
Fuel supply Injector
Ignition Tramblernoe
Valves per cylinder 4
Building BC cast iron
Cylinder head material Aluminium alloy
Fuel Unleaded gasoline 92, 95
Environmental Compliance Euro 4
Consumption 7.9 l. - on the highway, 10.5 - in urban mode.

The manufacturer claims an engine resource of 300 thousand km, in fact, the owners of cars with it report 350 thousand, without major repairs.

Device Features

Design features of 4A FE:

  • in-line cylinders, bored directly in the cylinder block itself without the use of liners;
  • gas distribution - DOHC, with two overhead camshafts, control occurs through 16 valves;
  • one camshaft is driven by a belt, the torque on the second comes from the first through a gear;
  • the phases of the injection of the air-fuel mixture are regulated by the VVTi clutch, the valve control uses a design without hydraulic compensators;
  • ignition is distributed from one coil by a distributor (but there is a late modification of the LB, where there were two coils - one for a pair of cylinders);
  • the model with the LB index, designed to work with low-octane fuel, has a power reduced to 105 forces and a reduced torque.

Interesting: if the timing belt breaks, the engine does not bend the valve, which adds to its reliability and attractiveness from the consumer.

Version history 4A-FE

Throughout the life cycle, the motor has gone through several stages of development:

Gen 1 (first generation) - from 1987 to 1993.

  • Engine with electronic injection, power from 100 to 102 forces.

Gen 2 - rolled off assembly lines from 1993 to 1998.

  • Power varied from 100 to 110 forces, the connecting rod and piston group was changed, injection was changed, the configuration of the intake manifold was changed. The cylinder head was also modified to work with the new camshafts, the valve cover received fins.

Gen 3 - produced in limited quantities from 1997 to 2001, exclusively for the Japanese market.

  • This motor had a power increased to 115 “horses”, achieved by changing the geometry of the intake and exhaust manifolds.

Pros and cons of the 4A-FE engine

The main advantage of the 4A-FE is its successful design, in which, in the event of a timing belt break, the piston does not bend the valve, avoiding costly overhauls. Other benefits include:

  • availability of spare parts and their availability;
  • relatively low operating costs;
  • good resource;
  • the engine can be repaired and maintained independently, since the design is quite simple, and attachments do not interfere with access to various elements;
  • the VVTi clutch and crankshaft are very reliable.

Interesting: when production of the Toyota Carina E began in the UK in 1994, the first 4A FE ICEs were equipped with a control unit from Bosh, which had the ability to flexibly configure. This became a lure for tuners, as the engine could be re-flashed to get more power from it while lowering emissions.

The main drawback is considered to be the LeadBurn system mentioned above. Despite the obvious efficiency (which led to the widespread use of LB in the Japanese car market), it is extremely sensitive to the quality of gasoline and in Russian conditions shows a serious drawdown in power at medium speeds. The condition of other components is also important - armored wires, candles, the quality of engine oil is critical.

Among other shortcomings, we note the increased wear of the camshaft beds and the “non-floating” fit of the piston pin. This may lead to the need for a major overhaul, but this is relatively easy to do on your own.

Oil 4A FE

Permissible viscosity indicators:

  • 5W-30;
  • 10W-30;
  • 15W-40;
  • 20W-50.

Oil should be selected according to the season and air temperature.

Where was 4A FE installed?

The motor was equipped exclusively with Toyota cars:

  • Carina - modifications of the 5th generation of 1988-1992 (sedan in the back of T170, before and after restyling), 6th generation of 1992-1996 in the back of T190;
  • Celica - 5th generation coupe in 1989-1993 (T180 body);
  • Corolla for European and US markets in various trim levels from 1987 to 1997, for Japan - from 1989 to 2001;
  • Corolla Ceres generation 1 - from 1992 to 1999;
  • Corolla FX - generation 3 hatchback;
  • Corolla Spacio - 1st generation minivan in the 110th body from 1997 to 2001;
  • Corolla Levin - from 1991 to 2000, in E100 bodies;
  • Corona - generations 9, 10 from 1987 to 1996, T190 and T170 bodies;
  • Sprinter Trueno - from 1991 to 2000;
  • Sprinter Marino - from 1992 to 1997;
  • Sprinter - from 1989 to 2000, in different bodies;
  • Premio sedan - from 1996 to 2001, T210 body;
  • Caldina;
  • Avensis;

Service

Rules for performing service procedures:

  • ICE oil change - every 10 thousand km .;
  • fuel filter replacement - every 40 thousand;
  • air - after 20 thousand;
  • candles must be replaced after 30 thousand, and need an annual check;
  • valve adjustment, crankcase ventilation - after 30 thousand;
  • replacement of antifreeze - 50 thousand;
  • replacement of the exhaust manifold - after 100 thousand, if it burned out.

Faults

Typical problems:

  • Knock from the engine.

Probably worn piston pins or valve adjustment required.

  • The engine "eats" oil.

Oil scraper rings and caps are worn out, replacement is needed.

  • The engine fires up and immediately shuts off.

There is a fuel system problem. You should check the distributor, injectors, fuel pump, replace the filter.

  • Floating turnovers.

The idle air control and throttle should be checked, cleaned and replaced, if necessary, injectors and spark plugs,

  • The motor vibrates.

The likely cause is clogged injectors or dirty spark plugs, should be checked and replaced if necessary.

Other engines in the series

4A

The basic model that replaced the 3A series. The engines created on its basis were equipped with SOHC- and DOHC-mechanisms, up to 20 valves, and the “plug” of output power was from 70 to 168 forces on a “charged” turbocharged GZE.

4A-GE

This is a 1.6-liter engine, structurally similar to the FE. The performance of the 4A GE engine is also largely identical. But there are also differences:

  • GE has a larger angle between intake and exhaust valves - 50 degrees, unlike 22.3 for FE;
  • 4A GE engine camshafts are rotated by a single timing belt.

Speaking about the technical characteristics of the 4A GE engine, one cannot mention the power: it is somewhat more powerful than the FE and develops up to 128 hp with equal volumes.

Interesting: a 20-valve 4A-GE was also produced, with an updated cylinder head and 5 valves per cylinder. He developed power up to 160 forces.

4A-FHE

This is an analogue of FE with a modified intake, camshafts and a number of additional settings. They gave the engine more performance.

This unit is a modification of the sixteen-valve GE, equipped with a mechanical air pressurization system. Produced by 4A-GZE in 1986-1995. The cylinder block and cylinder head have not changed, an air blower driven by a crankshaft has been added to the design. The first samples gave out a pressure of 0.6 bar, and the engine developed power up to 145 forces.


In addition to supercharging, the engineers reduced the compression ratio and introduced forged convex pistons into the design.

In 1990, the 4A GZE engine was updated and began to develop power up to 168-170 forces. The compression ratio has increased, the geometry of the intake manifold has changed. The supercharger gave out a pressure of 0.7 bar, and the MAP D-Jetronic DMRV was included in the engine design.

GZE is popular with tuners as it allows compressor and other modifications to be installed without major engine conversions.

4A-F

He was the carbureted predecessor of the FE and developed up to 95 forces.

4A GEU

The 4A-GEU engine, a subspecies of GE, developed power up to 130 hp. Motors with this marking were developed before 1988.

4A-ELU

An injector was introduced into this engine, which made it possible to increase power from the original 70 for 4A to 78 forces in the export version, and up to 100 in the Japanese version. The engine was also equipped with a catalytic converter.

The most common and most widely repaired of Japanese engines is the (4,5,7)A-FE series engines. Even a novice mechanic, diagnostician knows about the possible problems of the engines of this series. I will try to highlight (collect into a single whole) the problems of these engines. There are not many of them, but they bring a lot of trouble to their owners.

Sensors.

Oxygen sensor - Lambda probe.

"Oxygen sensor" - used to detect oxygen in the exhaust gases. Its role is invaluable in the process of fuel correction. Read more about sensor problems in article.




Many owners turn to diagnostics for the reason increased fuel consumption. One of the reasons is a banal break in the heater in the oxygen sensor. The error is fixed by the control unit code number 21. The heater can be checked with a conventional tester on the sensor contacts (R- 14 Ohm). Fuel consumption increases due to the lack of fuel correction during warm-up. You will not succeed in restoring the heater - only replacing the sensor will help. The cost of a new sensor is high, and it makes no sense to install a used one (their operating time is large, so this is a lottery). In such a situation, as an alternative, no less reliable universal sensors NTK, Bosch or original Denso can be installed.

The quality of the sensors is not inferior to the original, and the price is much lower. The only problem may be the correct connection of the sensor leads. When the sensor sensitivity decreases, fuel consumption also increases (by 1-3 liters). The operability of the sensor is checked by an oscilloscope on the diagnostic connector block, or directly on the sensor chip (number of switching). The sensitivity drops when the sensor is poisoned (contaminated) with combustion products.

Engine temperature sensor.

"Temperature sensor" is used to register the temperature of the motor. If the sensor does not work correctly, the owner will have a lot of problems. If the measuring element of the sensor breaks, the control unit replaces the sensor readings and fixes its value by 80 degrees and fixes error 22. The engine, with such a malfunction, will operate normally, but only while the engine is warm. As soon as the engine cools down, it will be problematic to start it without doping, due to the short opening time of the injectors. There are frequent cases when the resistance of the sensor changes randomly when the engine is running at H.X. - the revolutions will float in this case. This defect is easy to fix on the scanner, observing the temperature reading. On a warm engine, it should be stable and not randomly change values ​​from 20 to 100 degrees.

With such a defect in the sensor, a “black caustic exhaust” is possible, unstable operation on H.X. and, as a result, increased consumption, as well as the inability to start a warm engine. It will be possible to start the engine only after 10 minutes of sludge. If there is no complete confidence in the correct operation of the sensor, its readings can be replaced by including a 1 kΩ variable resistor or a constant 300 ohm resistor in its circuit for further verification. By changing the readings of the sensor, the change in speed at different temperatures is easily controlled.

Throttle position sensor.

The throttle position sensor tells the on-board computer what position the throttle is in.


A lot of cars went through the assembly disassembly procedure. These are the so-called "constructors". When removing the engine in the field and subsequent assembly, the sensors suffered, on which the engine is often leaned. When the TPS sensor breaks, the engine stops throttling normally. The engine bogs down when revving. The machine switches incorrectly. Error 41 is fixed by the control unit. When replacing a new sensor, it must be adjusted so that the control unit correctly sees the sign of X.X., with the gas pedal fully released (throttle closed). If there is no sign of idling, adequate X.X control will not be carried out, and there will be no forced idling mode during engine braking, which again will entail increased fuel consumption. On engines 4A, 7A, the sensor does not require adjustment, it is installed without the possibility of rotation-adjustment. However, in practice, there are frequent cases of bending the petal, which moves the sensor core. In this case, there is no sign of x / x. The correct position can be adjusted using a tester without using a scanner - on the basis of idling.

THROTTLE POSITION……0%
IDLE SIGNAL……………….ON

MAP absolute pressure sensor

The pressure sensor shows the computer the real vacuum in the manifold, according to its readings, the composition of the fuel mixture is formed.



This sensor is the most reliable of all installed on Japanese cars. His resilience is simply amazing. But it also has a lot of problems, mainly due to improper assembly. They either break the receiving “nipple”, and then seal any passage of air with glue, or violate the tightness of the inlet tube. With such a break, fuel consumption increases, the level of CO in the exhaust rises sharply up to 3%. It is very easy to observe the operation of the sensor on the scanner. The line INTAKE MANIFOLD shows the vacuum in the intake manifold, which is measured by the MAP sensor. If the wiring is broken, the ECU registers error 31. At the same time, the opening time of the injectors sharply increases to 3.5-5ms. When regassing, a black exhaust appears, the candles are planted, shaking appears on H.X. and stop the engine.

Knock sensor.

The sensor is installed to register detonation knocks (explosions) and indirectly serves as a "corrector" of the ignition timing.




The recording element of the sensor is a piezoelectric plate. In the event of a sensor malfunction, or a break in the wiring, at over 3.5-4 tons of revs, the ECU fixes error 52. Sluggishness is observed during acceleration. You can check the performance with an oscilloscope, or by measuring the resistance between the sensor output and the housing (if there is resistance, the sensor needs to be replaced).

crankshaft sensor.

The crankshaft sensor generates pulses, from which the computer calculates the speed of rotation of the engine crankshaft. This is the main sensor by which the entire operation of the motor is synchronized.




On 7A series engines, a crankshaft sensor is installed. A conventional inductive sensor is similar to the ABC sensor and is practically trouble-free in operation. But there are also confusions. With an interturn circuit inside the winding, the generation of pulses at a certain speed is disrupted. This manifests itself as a limitation of engine speed in the range of 3.5-4 tons of revolutions. A kind of cut-off, only at low speeds. It is quite difficult to detect an interturn circuit. The oscilloscope does not show a decrease in the amplitude of the pulses or a change in frequency (during acceleration), and it is rather difficult for a tester to notice changes in Ohm's shares. If you experience symptoms of speed limit at 3-4 thousand, simply replace the sensor with a known good one. In addition, a lot of trouble causes damage to the master ring, which mechanics break when replacing the front crankshaft oil seal or timing belt. Having broken the teeth of the crown, and restored them by welding, they achieve only a visible absence of damage. At the same time, the crankshaft position sensor ceases to adequately read information, the ignition timing begins to change randomly, which leads to loss of power, unstable engine operation and increased fuel consumption.

Injectors (nozzles).

Injectors are solenoid valves that inject pressurized fuel into the engine's intake manifold. Controls the operation of the injectors - the engine computer.





During many years of operation, the nozzles and needles of the injectors are covered with tar and gasoline dust. All this naturally interferes with the correct spray and reduces the performance of the nozzle. With severe pollution, a noticeable shaking of the engine is observed, fuel consumption increases. It is realistic to determine clogging by conducting a gas analysis; according to the readings of oxygen in the exhaust, one can judge the correctness of filling. A reading above one percent will indicate the need to flush the injectors (with the correct timing and normal fuel pressure). Or by installing the injectors on the stand, and checking the performance in tests, in comparison with the new injector. Nozzles are very effectively washed by Lavr, Vince, both on CIP machines and in ultrasound.

Idle valve.IAC

The valve is responsible for engine speed in all modes (warm-up, idling, load).





During operation, the valve petal becomes dirty and the stem is wedged. Turnovers hang on warming up or on X.X. (due to the wedge). Tests for changes in speed in scanners during diagnostics for this motor are not provided. The performance of the valve can be assessed by changing the readings of the temperature sensor. Enter the engine in the "cold" mode. Or, having removed the winding from the valve, twist the valve magnet with your hands. Jamming and wedge will be felt immediately. If it is impossible to easily dismantle the valve winding (for example, on the GE series), you can check its operability by connecting to one of the control outputs and measuring the duty cycle of the pulses, while simultaneously controlling the speed of X.X. and changing the load on the engine. On a fully warmed-up engine, the duty cycle is approximately 40%, by changing the load (including electrical consumers), an adequate increase in speed in response to a change in duty cycle can be estimated. When the valve is mechanically jammed, a smooth increase in the duty cycle occurs, which does not entail a change in the speed of H.X. You can restore work by cleaning soot and dirt with a carburetor cleaner with the winding removed. Further adjustment of the valve is to set the speed X.X. On a fully warmed up engine, by rotating the winding on the mounting bolts, they achieve tabular revolutions for this type of car (according to the tag on the hood). Having previously installed the jumper E1-TE1 in the diagnostic block. On the “younger” 4A, 7A engines, the valve has been changed. Instead of the usual two windings, a microcircuit was installed in the body of the valve winding. We changed the valve power supply and the color of the winding plastic (black). It is already pointless to measure the resistance of the windings at the terminals. The valve is supplied with power and a control signal of a rectangular shape with a variable duty cycle. To make it impossible to remove the winding, non-standard fasteners were installed. But the problem of the stem wedge remained. Now, if you clean it with an ordinary cleaner, the grease is washed out of the bearings (the further result is predictable, the same wedge, but already because of the bearing). It is necessary to completely dismantle the valve from the throttle body and then carefully flush the stem with the petal.

Ignition system. Candles.



A very large percentage of cars come to the service with problems in the ignition system. When operating on low-quality gasoline, spark plugs are the first to suffer. They are covered with a red coating (ferrosis). There will be no high-quality sparking with such candles. The engine will work intermittently, with gaps, fuel consumption increases, the level of CO in the exhaust rises. Sandblasting is not able to clean such candles. Only chemistry (silit for a couple of hours) or replacement will help. Another problem is the increase in clearance (simple wear). Drying of the rubber lugs of high-voltage wires, water that got in when washing the motor, provoke the formation of a conductive path on the rubber lugs.






Because of them, sparking will not be inside the cylinder, but outside it. With smooth throttling, the engine runs stably, and with a sharp one, it crushes. In this situation, it is necessary to replace both the candles and the wires at the same time. But sometimes (in the field), if replacement is impossible, you can solve the problem with an ordinary knife and a piece of emery stone (fine fraction). With a knife we ​​cut off the conductive path in the wire, and with a stone we remove the strip from the ceramics of the candle. It should be noted that it is impossible to remove the rubber band from the wire, this will lead to the complete inoperability of the cylinder.
Another problem is related to the incorrect procedure for replacing candles. The wires are pulled out of the wells with force, tearing off the metal tip of the rein. With such a wire, misfiring and floating revolutions are observed. When diagnosing the ignition system, you should always check the performance of the ignition coil on the high-voltage arrester. The simplest test is to look at the spark gap on the spark gap with the engine running.


If the spark disappears or becomes filiform, this indicates an inter-turn short circuit in the coil or a problem in the high voltage wires. A wire break is checked with a resistance tester. A small wire is 2-3k, then a long 10-12k is further increased. The resistance of a closed coil can also be checked with a tester. The resistance of the secondary winding of the broken coil will be less than 12 kΩ.




Coils of the next generation (remote) do not suffer from such ailments (4A.7A), their failure is minimal. Proper cooling and wire thickness eliminated this problem.




Another problem is the current oil seal in the distributor. Oil, falling on the sensors, corrodes the insulation. And when exposed to high voltage, the slider is oxidized (covered with a green coating). The coal turns sour. All this leads to disruption of sparking. In motion, chaotic shootings are observed (into the intake manifold, into the muffler) and crushing.

Subtle faults

On modern 4A, 7A engines, the Japanese have changed the firmware of the control unit (apparently for faster engine warm-up). The change is that the engine reaches idle speed only at 85 degrees. The design of the engine cooling system was also changed. Now a small cooling circle intensively passes through the head of the block (not through the pipe behind the engine, as it was before). Of course, the cooling of the head has become more efficient, and the engine as a whole has become more efficient. But in winter, with such cooling during movement, the temperature of the engine reaches a temperature of 75-80 degrees. And as a result, constant warm-up revolutions (1100-1300), increased fuel consumption and nervousness of the owners. You can deal with this problem by either insulating the engine more, or by changing the resistance of the temperature sensor (deceiving the computer), or by replacing the thermostat for the winter with a higher opening temperature.
Oil
Owners pour oil into the engine indiscriminately, without thinking about the consequences. Few people understand that different types of oils are not compatible and, when mixed, form an insoluble porridge (coke), which leads to the complete destruction of the engine.



All this plasticine cannot be washed off with chemistry, it is cleaned only mechanically. It should be understood that if it is not known what type of old oil, then flushing should be used before changing. And more advice to the owners. Pay attention to the color of the oil dipstick handle. He is yellow. If the color of the oil in your engine is darker than the color of the pen, it's time to change instead of waiting for the virtual mileage recommended by the engine oil manufacturer.
Air filter.

The most inexpensive and easily accessible element is the air filter. Owners very often forget about replacing it, without thinking about the likely increase in fuel consumption. Often, due to a clogged filter, the combustion chamber is very heavily polluted with burnt oil deposits, valves and candles are heavily contaminated. When diagnosing, it can be erroneously assumed that the wear of the valve stem seals is to blame, but the root cause is a clogged air filter, which increases the vacuum in the intake manifold when contaminated. Of course, in this case, the caps will also have to be changed.
Some owners do not even notice that garage rodents live in the air filter housing. Which speaks of their complete disregard for the car.




The fuel filter also deserves attention. If it is not replaced in time (15-20 thousand mileage), the pump starts to work with overload, the pressure drops, and as a result, it becomes necessary to replace the pump. The plastic parts of the pump impeller and check valve wear out prematurely.






The pressure drops. It should be noted that the operation of the motor is possible at a pressure of up to 1.5 kg (with a standard 2.4-2.7 kg). At reduced pressure, there are constant shots into the intake manifold, the start is problematic (after). Significantly reduced traction. It is correct to check the pressure with a pressure gauge (access to the filter is not difficult). In the field, you can use the "return filling test". If, when the engine is running, less than one liter flows out of the gasoline return hose in 30 seconds, it can be judged that the pressure is low. You can use an ammeter to indirectly determine the performance of the pump. If the current consumed by the pump is less than 4 amperes, then the pressure is squandered. You can measure the current on the diagnostic block.

When using a modern tool, the process of replacing the filter takes no more than half an hour. Previously, this took a lot of time. Mechanics always hoped in case they were lucky and the bottom fitting did not rust. But often that is what happened. I had to rack my brains for a long time, with which gas wrench to hook the rolled-up nut of the lower fitting. And sometimes the process of replacing the filter turned into a “movie show” with the removal of the tube leading to the filter. Today, no one is afraid to make this change.

Control block.

Until the year 98, control units did not have sufficiently serious problems during operation. The blocks had to be repaired only because of a hard polarity reversal. It is important to note that all conclusions of the control unit are signed. It is easy to find on the board the necessary sensor output to check or continuity of the wire. The parts are reliable and stable in operation at low temperatures.



In conclusion, I would like to dwell a little on gas distribution. Many “hands on” owners perform the belt replacement procedure on their own (although this is not correct, they cannot properly tighten the crankshaft pulley). Mechanics make a quality replacement within two hours (maximum). If the belt breaks, the valves do not meet the piston and fatal destruction of the engine does not occur. Everything is calculated to the smallest detail.
We tried to talk about the most common problems on the engines of this series. The engine is very simple and reliable, and subject to very tough operation on "water - iron gasoline" and dusty roads of our great and mighty Motherland and the "maybe" mentality of the owners. Having endured all the bullying, to this day he continues to delight with his reliable and stable work, having won the status of the most reliable Japanese engine.
Vladimir Bekrenev, Khabarovsk.
Andrey Fedorov, Novosibirsk.

  • Back
  • Forward

Only registered users can add comments. You are not allowed to post comments.

© 2023 globusks.ru - Car repair and maintenance for beginners