Устройство двигателя внутреннего сгорания. ДВС что это? Преимущества двигателей внутреннего сгорания

Устройство двигателя внутреннего сгорания. ДВС что это? Преимущества двигателей внутреннего сгорания

05.04.2019

Двигатель, пожалуй, можно назвать самой важной частью автомобиля. Ведь без двигателя автомобиль не сдвинется с места, но и без колес тоже далеко не уедешь, поэтому не будем делить автомобильные системы по важности, а просто попробуем узнать чуточку больше, об автомобильном двигателе.

Двигатель – это силовая установка, источник энергии автомобиля. Он используется для того чтобы машина могла выполнять свою основную функцию – перевозку грузов и пассажиров, но кроме этого, энергия, вырабатываемая двигателем, используется для обеспечения функционирования всех вспомогательных систем, например для работы кондиционера.

Впрочем, все вспомогательные системы, как правило, работают от электричества, вырабатываемого генератором или забираемой от аккумуляторов. А вот генератор как раз приводится в действие с помощью двигателя, передавая ему механическую энергию вращения вала.

Для обеспечения движения автомобиля так же используется механическая энергия вала двигателя, которая передается от двигателя на колеса через трансмиссию.

То есть, по сути, двигатель нужен для того, чтобы преобразовать какой-либо вид энергии в механическую энергию вращения вала, которая через систему механических связей передается на колеса, заставляя автомобиль двигаться.

Двигатель внутреннего сгорания

Когда мы говорим о двигателе автомобиля, то чаще всего представляем себе двигатель внутреннего сгорания, в качестве топлива для которого используется бензин, дизельное топливо, газ, а в последнее время пробуют и водород.

В двигателе внутреннего сгорания, как несложно догадаться, происходит преобразование энергии, выделяемой при сгорании легковоспламеняющихся веществ в механическую энергию. Конструкции двигателей внутреннего сгорания могут отличаться, бывают поршневые двигатели, роторные и газотурбинные.

Но принцип их работы остается неизменным. Энергия, выделяемая при сгорании топлива, в конечном итоге преобразуется в механическую энергию вращения вала двигателя и через систему механических связей передается на колеса, заставляя их вращаться.

Основной недостаток двигателей внутреннего сгорания их неэкологичность. При сжигании топлива выделяется много вредных веществ. Исключение в этом составляет водород, продуктом горения которого является обыкновенная вода, но проблема с его использованием на сегодняшний день заключается в дороговизне, хотя вероятно, что в будущем это будет основной вид топлива.

Но двигатели внутреннего сгорания – не единственные автомобильные двигатели.

Электро-двигатель

Существуют машины, которые используют в качестве исходной энергии – электричество. Наиболее популярный и близкий к автомобилю вид транспорта, работающий на электричестве – это всем известный троллейбус.

Но полноценным автомобилем его не назовешь, поскольку двигаться троллейбус может только лишь вдоль натянутых проводов, от которых он запитывается электричеством.

Но вы наверняка слышали о машинах, которые называются электромобилями. Электромобили – это автомобили, в которых в качестве силового агрегата используется электродвигатель.

Электродвигатель, как вы понимаете, работает от электрической энергии, которую он получает, как правило, от аккумуляторных батарей.

Электромобили, по сравнению с автомобилями, использующими двигатели внутреннего сгорания, имеют массу преимуществ.

Они экологичны, практически бесшумны (что не всегда плюс), быстро набирают скорость, им не нужна коробка скоростей можно даже обойтись без трансмиссии, если поставить двигатели на каждое из колес. То есть такие автомобили могли бы быть намного дешевле, чем автомобили с ДВС, если бы стали массовыми.

Но есть два существенных момента, которые очень сильно ограничивают применение электродвигателей на современных автомобилях. До сих пор не придумали аккумуляторов, которые бы могли запасти в себе достаточное количество электрической энергии.

То есть запас хода электромобиля сегодня ограничен несколькими десятками километров. Если не включать фары, магнитолу, кондиционер, то можно и до сотни километров проехать, но все равно это очень мало. Примерно в 5-6 раз меньше, чем на одной заправке бензином. Впрочем, над этим разработчики постоянно работают и возможно, что когда вы читаете эти строки, уже существует электромобиль с запасом хода более 500 км.

Но даже малый запас хода был бы не так страшен, если бы не время, требуемое на перезарядку аккумуляторов. Если заправка бензином, дизтопливом или газом занимает 5-10 минут, то аккумуляторы придется заряжать часов 12, а то и сутки.

Поэтому, пока электромобили могут использоваться лишь для непродолжительных поездок по городу, после чего всю ночь на зарядке.

Гибридные силовые агрегаты

Но преимущество электродвигателей над ДВС настолько велико, что желание их использовать хотя бы частично привело к появлению гибридных силовых установок, которые сегодня достаточно активно используются на автомобилях.

Гибридные силовые установки – это объединенные на одном автомобиле двигатель внутреннего сгорания и электродвигатель (как правило, их 4, по одному на каждое колесо). Такие автомобили называют гибридными.

Существуют три схемы гибридных установок.

В первой энергия ДВС используется исключительно для выработки электрической энергии при помощи генератора. А уже от генератора энергия передается на зарядку аккумуляторов и на электродвигатели, обеспечивающие вращение колес.

Но более популярна другая схема. Во второй схеме привод на колеса осуществляется как от ДВС, так и от электродвигателей. ДВС и электродвигатели могут использоваться как самостоятельно, так и вместе.

Третий вариант – это сочетание первого и второго.

На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.

При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.

Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:

  • бензиновые моторы;
  • двигатели, потребляющие дизельное топливо;
  • газовые установки;
  • газодизельные устройства;
  • роторные варианты.

Принцип работы ДВС этих типов практически одинаковый.

Такты ДВС

В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.

В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.

Такты :

  1. открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
  2. происходит герметизация камеры и уменьшение ее объема в такте сжатия
  3. взрывается смесь и выталкивает поршень, который получает импульс механической энергии
  4. камера сгорания освобождается от продуктов горения

В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.

Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.

Работа карбюратора

Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

Устройство карбюратора

Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

Недостатки карбюраторных систем:

  • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
  • превышение лимитов вредных веществ в выхлопных газах;
  • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

Работа инжекторных моторов

Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.

Конструкция инжектора

Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.

За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:

  • увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
  • заметная экономия бензина;
  • улучшение экологических характеристик по выбросам.

Но при таких достоинствах есть и недостатки. Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.

Способы впрыска топлива

В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

Одноточечный вариант впрыска

Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.

Моноточечный вариант подачи топлива

Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

Прямой впрыск в камеру

Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

В подавляющем большинстве автомобилей используются в качестве топлива для двигателей производные нефти. При сгорании этих веществ выделяются газы. В замкнутом пространстве они создают давление. Сложный механизм воспринимает эти нагрузки и трансформирует их сначала в поступательное движение, а затем - во вращательное. На этом основан принцип работы двигателя внутреннего сгорания. Далее вращение уже передается на ведущие колеса.

Поршневой двигатель

В чем преимущество такого механизма? Что дал новый принцип работы двигателя внутреннего сгорания? В настоящее время им оборудуются не только автомобили, но и сельскохозяйственный и погрузочный транспорт, локомотивы поездов, мотоциклы, мопеды, скутера. Двигатели такого типа устанавливаются на военной технике: танках, бронетранспортерах, вертолетах, катерах. Еще можно вспомнить о бензопилах, косилках, мотопомпах, генераторных подстанциях и другом мобильном оборудовании, в котором используется для работы дизельное топливо, бензин или газовая смесь.

До изобретения принципа внутреннего сгорания топливо, чаще твердое (уголь, дрова), сжигалось в отдельной камере. Для этого применялся котел, который грел воду. В качестве первоисточника движущей силы использовался пар. Такие механизмы были массивными и габаритными. Ими оборудовались локомотивы паровозов и теплоходы. Изобретение двигателя внутреннего сгорания дало возможность в разы уменьшить габариты механизмов.

Система

При работе двигателя постоянно происходит ряд цикличных процессов. Они должны быть стабильными и проходить за строго определенный промежуток времени. Это условие обеспечивает бесперебойную работу всех систем.

У дизельных двигателей топливо предварительно не подготавливается. Система подачи топлива доставляет его из бака, и оно подается под высоким давлением в цилиндры. Бензин же по пути предварительно смешивается с воздухом.

Принцип работы двигателя внутреннего сгорания таков, что система зажигания воспламеняет эту смесь, а кривошипно-шатунный механизм принимает, трансформирует и передает энергию газов на трансмиссию. Газораспределительная система выпускает из цилиндров продукты горения и выводит их за пределы транспортного средства. Попутно снижается звук выхлопа.

Система смазки обеспечивает возможность вращения подвижных узлов. Тем не менее трущиеся поверхности нагреваются. Система охлаждения следит за тем, чтобы температура не выходила за пределы допустимых значений. Хотя все процессы происходят в автоматическом режиме, за ними все же необходимо наблюдать. Это обеспечивает система управления. Она передает данные на пульт в кабину водителя.

Достаточно сложный механизм должен иметь корпус. В нем монтируются основные узлы и агрегаты. Дополнительное оборудование для систем, обеспечивающих нормальную его работу, размещается поблизости и монтируется на съемных креплениях.

В блоке цилиндров располагается кривошипно-шатунный механизм. Основная нагрузка от сгоревших газов топлива передается на поршень. Он шатуном соединен с коленчатым валом, который преобразует поступательное движение во вращательное.

Также в блоке размещается цилиндр. По его внутренней плоскости перемещается поршень. На нем прорезаны канавки, в которых помещаются уплотнительные кольца. Это необходимо для минимизации зазора между плоскостями и создания компрессии.

Сверху к корпусу крепится головка блока цилиндров. В ней монтируется газораспределительный механизм. Он состоит из вала с эксцентриками, коромысел и клапанов. Их поочередное открытие и закрытие обеспечивают впуск топлива внутрь цилиндра и выпуск затем отработанных продуктов горения.

К низу корпуса монтируется поддон блока цилиндров. Туда стекает масло после того, как оно смажет трущиеся соединения деталей узлов и механизмов. Внутри двигателя еще расположены каналы, по которым циркулирует охлаждающая жидкость.

Принцип работы ДВС

Суть процесса заключается в преобразовании одного вида энергии в другой. Это происходит при сжигании топлива в замкнутом пространстве цилиндра двигателя. Выделяющиеся при этом газы расширяются, и внутри рабочего пространства создается избыточное давление. Его воспринимает поршень. Он может двигаться вверх-вниз. Поршень посредством шатуна соединен с коленчатым валом. По сути это главные детали кривошипно-шатунного механизма - основного узла, отвечающего за преобразование химической энергии топлива во вращательное движение вала.

Принцип работы двигателя внутреннего сгорания основан на поочередной смене циклов. При поступательном движении поршня вниз совершается работа - на определенный угол проворачивается коленчатый вал. На одном его конце закреплен массивный маховик. Получив ускорение, он по инерции продолжает движение, и это еще проворачивает коленчатый вал. Теперь шатун толкает поршень вверх. Он занимает рабочее положение и снова готов принять на себя энергию воспламененного топлива.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором - воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Потери

Несмотря на то что ДВС отличается надежностью и стабильностью работы, его эффективность недостаточно высока, как это может показаться на первый взгляд. В математическом измерении КПД двигателя внутреннего сгорания составляет в среднем 30-45 %. Это говорит о том, что большая часть энергии сгораемого топлива расходуется вхолостую.

КПД лучших бензиновых двигателей может составлять лишь 30 %. И только массивные экономные дизели, у которых много дополнительных механизмов и систем, могут эффективно преобразовать до 45 % энергии топлива в пересчете на мощность и полезную работу.

Устройство двигателя внутреннего сгорания не может исключить потери. Часть топлива не успевает сгорать и уходит с отработанными газами. Другая статья потерь - это расход энергии на преодоление различного рода сопротивлений при трении сопряженных поверхностей деталей узлов и механизмов. И еще какая-то часть ее тратится на приведение в действие систем двигателя, обеспечивающих его нормальную и бесперебойную работу.

Однако светильный газ годился не только для освещения.

Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару . Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу - она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения - была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Типы двигателей внутреннего сгорания

Поршневой ДВС

Роторный ДВС

Газотурбинный ДВС

  • Поршневые двигатели - камера сгорания содержится в цилиндре , где тепловая энергия топлива превращается в механическую энергию, которая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма .

ДВС классифицируют:

а) По назначению - делятся на транспортные, стационарные и специальные.

б) По роду применяемого топлива - легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси - внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, "двойной веер", ромбовидные, трехлучевые и некоторые другие.

Бензиновые

Бензиновые карбюраторные

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики - инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения . Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW , Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя - исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ ) до 20-30 градусов до нижней мёртвой точки (НМТ ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20-30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания - дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД . В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил , увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс - Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20-30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х - 40х годах ХХ века были предложены схемы с парами расходящихся поршней - ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один - выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки - петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы - изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки - относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия . Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля , в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха - приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

См. также

  • Филипп Лебон - французский инженер , получивший в 1801 году патент на двигатель внутреннего сгорания со сжатием смеси газа и воздуха.
  • Роторный двигатель: конструкции и классификация
  • Роторно-поршневой двигатель (двигатель Ванкеля)

Примечания

Ссылки

  • Бен Найт «Увеличиваем пробег» //Статья о технологиях, которые уменьшают расход топлива автомобильным ДВС

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют "атмосферник" - основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это - многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания - самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС , а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме "плюсов" имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде - самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья "СО2", который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Кривошипно-шатунный механизм (КШМ).
  2. Система впуска.
  3. Топливная система.
  4. Система смазки.
  5. Система зажигания (в бензиновых моторах).
  6. Выпускная система.
  7. Система охлаждения.
  8. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ - преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор - охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством , которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название - четырехтактный двигатель.

  1. Первый такт - впуск.
  2. Второй - сжатие.
  3. Третий - рабочий ход.
  4. Четвертый - выпуск.

Во время первых двух тактов - впуска и рабочего такта, движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта "рабочий ход" смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт "выпуск" , после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков