Силы, действующие в кривошипно-шатунном механизме двс. Расчет кинематики и динамики кшм Динамическая модель кривошипно шатунного механизма

Силы, действующие в кривошипно-шатунном механизме двс. Расчет кинематики и динамики кшм Динамическая модель кривошипно шатунного механизма

Исходной величиной при выборе размеров звеньев КШМ является величина полного хода ползуна, заданная стандартом или по техническим соображениям для тех типов машин, у которых максимальная величина хода ползуна не оговаривается (ножницы, и др.).

На рисунке введены следующие обозначения: dО, dА, dВ – диаметры пальцев в шарнирах; е – величина эксцентриситета; R – радиус кривошипа; L – длина шатуна; ω – угловая скорость вращения главного вала; α – угол недохода кривошипа до КНП; β – угол отклонения шатуна от вертикальной оси; S – величина полного хода ползуна.

По заданной величине хода ползуна S (м) определяется радиус кривошипа:

Для аксиального кривошипно-шатунного механизма функции перемещения ползуна S, скорости V и ускорения j от угла поворота кривошипного вала α определяются следующими выражениями:

S = R , (м)

V = ω R , (м/с)

j = ω 2 R , (м/с 2)

Для дезаксиального кривошипно-шатунного механизма функции перемещения ползуна S, скорости V и ускорения j от угла поворота кривошипного вала α соответственно:

S = R , (м)

V = ω R , (м/с)

j = ω 2 R , (м/с 2)

где λ – коэффициент шатуна, значение которого для универсальных прессов определяется в пределах 0,08…0,014;
ω– угловая скорость вращения кривошипа, которая оценивается, исходя из числа ходов ползуна в минуту (с -1):

ω = (π n) / 30

У номинальное усилие не выражает действительного усилия, развиваемого при помощи привода, а представляет собой предельное по прочности деталей пресса усилие, которое может быть приложено к ползуну. Номинальное усилие соответствует строго определенному углу поворота кривошипного вала. Для кривошипных прессов простого действия с односторонним приводом за номинальное принимается усилие, соответствующее углу поворота α = 15…20 о, считая от нижней мертвой точки.

Силы действующие на шейки коленчатого вала. К таким силам относятся: сила давления газов уравновешивается в самом двигателе и на его опоры не передается; сила инерции приложена к центру возвратнопоступательно движущихся масс и направлена вдоль оси цилиндра через подшипники коленчатого вала воздействуют на корпус двигателя вызывая его вибрацию на опорах в направлении оси цилиндра; центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости воздействуя через опоры коленчатого вала на корпус двигателя...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 12

ДИНАМИКА КШМ

12.1. Силы давления газов

12.2. Силы инерции

12 .2.1. Приведение масс деталей КШМ

12.3. Суммарные силы, действующие в КШМ

12.3.1. Силы , действующие на шейки коленчатого вала

12.4. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров

При работе двигателя в КШМ действуют силы и моменты, которые не только воздействуют на детали КШМ и другие узлы, но и вызывают неравномерность хода двигателя. К таким силам относятся:

  • сила давления газов уравновешивается в самом двигателе и на его опоры не передается;
  • сила инерции приложена к центру возвратно-поступательно движущихся масс и направлена вдоль оси цилиндра, через подшипники коленчатого вала воздействуют на корпус двигателя, вызывая его вибрацию на опорах в направлении оси цилиндра;
  • центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости, воздействуя через опоры коленчатого вала на корпус двигателя, вызывает колебания двигателя на опорах в направлении кривошипа.

Кроме того, возникают такие силы, как давление на поршень со стороны картера, и силы тяжести КШМ, которые не учитываются в виду их относительно малой величины.

Все действующие в двигателе силы взаимодействуют с сопротивлением на коленчатом валу, силами трения и воспринимаются опорами двигателя. В течение каждого рабочего цикла (720° — для четырехтактного и 360° для двухтактного двигателей) силы, действующие в КШМ, непрерывно меняются по величине и направлению и для установления характера изменения данных сил от угла поворота коленчатого вала их определяют через каждые 10—30° для определенных положений коленчатого вала.

12.1. Силы давления газов

Силы давления газов действуют на поршень, стенки и головку цилиндра. Для упрощения динамического расчета силы давления газов заменяются одной силой, направленной по оси цилиндра и прило женной к оси поршневого пальца.

Данную силу определяют для каждого момента времени (угла поворота коленчатого вала φ) по индикаторной диаграмме, полученной на основании теплового расчета или снятой непосредственно с двигателя с помощью специальной установки. На рис. 12.1 показаны развернутые индикаторные диаграммы сил, действующих в в частности изменение силы давления газов (Р г ) от величины угла поворота коленчатого вала.

Рис. 12.1. Развернутые индикаторные диаграммы сил,
действующих в КШМ

12.2. Силы инерции

Для определения сил инерции, действующих в КШМ, необходимо знать массы перемещающихся деталей. Для упрощения расчета массы движущихся деталей заменим системой условных масс, эквивалентных реально существующим массам. Такая замена называется приведением масс.

12.2.1. Приведение масс деталей КШМ

По характеру движения массы деталей КШМ можно разделить на три группы:

  • детали, движущиеся возвратно-поступательно (поршневая группа и верхняя головка шатуна);
  • детали, совершающие вращательное движение (коленчатый вал и нижняя головка шатуна);
  • детали, совершающие сложное плоско-параллельное движение (стержень шатуна).

Массу поршневой группы (т п ) считают сосредоточенной на оси поршневого пальца в точке А (рис. 12.2).

Рис. 12.2. Приведение масс шатуна

Массу шатунной группы заменяют двумя массами: т шп — сосредоточена на оси поршневого пальца в точке А, т шк — на оси кривошипа в точке В. Значения этих масс находят по формулам:

где L ш — длина шатуна;

L шк — расстояние от центра кривошипной головки до центра тяжести шатуна.

Для большинства существующих двигателей т шп находится в пределе от 0,2 т ш до 0,3 т ш , а т шк от 0,7 т ш до 0,8 т ш . Величина т ш может быть определена через конструктивную массу (табл. 12.1), полученную на основании статистических данных.

Массу кривошипа заменяют двумя массами, сосредоточенными на оси кривошипа в точке В (т к ) и на оси коренной шейки в точке О (т о ) (рис. 12.3).

Рис. 12.3. Приведение масс кривошипа: а — реальная; б — эквивалентная

Масса коренной шейки с частью щек, расположенных симметрично относительно оси вращения, является уравновешенной. Неуравновешенные массы кривошипа заменяют одной приведенной массой с соблюдением условия равенства центробежной силы инерции действительной массы центробежной силе приведенной массы. Эквивалентную массу приводят к радиусу кривошипа R и обозначают т к .

Массу шатунной шейки т шш с прилежащими частями щек принимают сосредоточенной посередине оси шейки, и так как центр тяжести ее удален от оси вала на расстояние равное R , приведение этой массы не требуется. Массу щеки т ш с центром тяжести на расстоянии р от оси коленчатого вала заменяют приведенной массой расположенной на расстоянии R от оси коленчатого вала. Приведенная масса всего кривошипа определяется суммой приведенных масс шатунной шейки и щек:

При проектировании двигателей величина т к может быть получена через конструктивные массы кривошипа т " к (см. табл. 12.1). У современных короткоходных двигателей величина т ш мала по сравнению с т шш и ею можно пренебречь.

Таблица 12.1. Значения конструктивных масс КШМ, кг/м 2

Элемент КШМ

Карбюраторные двигатели с D от 60 до 100 мм

Дизели с D от 80 до 120 мм

Поршневая группа (т" п = т ш / F п )

Поршень из алюминиевого сплава

80-50

150-300

Чугунный поршень

150-250

250-400

Шатун (т " к = т ш / F п )

Шатун

100-200

250-400

Неуравновешенные части одного колена коленчатого вала без противовесов (т " к = т к / F п )

Стальной кованый коленчатый вал со сплошными шейками

150-200

200-400

Чугунный литой коленчатый вал с полыми шейками

100-200

150-300

Примечания.

1. При использовании табл. 12.1 следует учитывать, что большие значения т " соответствуют двигателям с большим диаметром цилиндра.

2. Уменьшение S/D снижает т" ш и т" к .

3. V-образным двигателям с двумя шатунами на шейке соответствуют большие значения т" к .

Таким образом, система сосредоточенных масс, динамически эквивалентная КШМ, состоит из массы т А , сосредоточенной в точке А и совершающей возвратно-поступательное движение:

и массы т В , сосредоточенной в точке В и имеющей вращательное движение:

В V -образных двигателях со сдвоенным КШМ т В = т к + 2т шк .

При динамическом расчете двигателя значения т п и т ш определяют по данным прототипов или рассчитывают. Значения же т шш и т ш определяют исходя из размеров кривошипа и плотности материала коленчатого вала. Для приближенного определения значения т п , т ш и т к можно использовать конструктивные массы:

где .

12.2.2. Определение сил инерции

Силы инерции, действующие в КШМ, в соответствии с характером движения приведенных масс, делятся на силы инерции поступательно движущихся масс P j и центробежные силы инерции вращающихся масс Р ц .

Сила инерции от возвратно-поступательно движущихся масс может быть определена по формуле

(12.1)

Знак минус указывает на то, что сила инерции направлена в сторону противоположную ускорению. Ее можно рассматривать, как состоящую из двух сил (аналогично ускорению).

Первая составляющая

(12.2)

  • сила инерции первого порядка.

Вторая составляющая

(12.3)

  • сила инерции второго порядка.

Таким образом,

Центробежная сила инерции вращающихся масс постоянна по величине и направлена от оси коленчатого вала. Ее величина определяется по формуле

(12.4)

Полное представление о нагрузках, действующих в деталях КШМ, может быть получено лишь в результате совокупности действия различных сил, возникающих при работе двигателя.

12.3. Суммарные силы, действующие в КШМ

Рассмотрим работу одноцилиндрового двигателя. Силы, действую щие в одноцилиндровом двигателе, показаны на рис. 12.4. В КШМ действуют сила давления газов Р г , сила инерции возвратно-поступа тельно движущихся масс P j и центробежная сила Р ц . Силы Р г и P j приложены к поршню и действуют по его оси. Сложив эти две силы, получим суммарную силу, действующую по оси цилиндра:

(12.5)

Перемещенная сила Р в центр поршневого пальца раскладывается на две составляющие:

(12. 6 )

  • сила, направленная по оси шатуна;

(12. 7 )

  • сила, перпендикулярная стенке цилиндра.

Рис. 12.4. Силы, действующие в КШМ одноцилиндрового двигателя

Сила P N воспринимается боковой поверхностью стенки цилиндра и обусловливает износ поршня и цилиндра. Она считается положительной, если создаваемый ею момент относительно оси коленчатого вала направлен противоположно направлению вращения вала двигателя.

Сила Р ш считается положительной, если сжимает шатун, и отрицательной, если растягивает его.

Сила Р ш , приложенная к шатунной шейке (Р " ш ), раскладывается на две составляющие:

(12.8)

  • тангенциальную силу, касательную к окружности радиуса кривошипа;

(12.9)

  • нормальную силу (радиальную), направленную по радиусу кривошипа.

Сила Z считается положительной, если она сжимает щеки кривошипа. Сила Т считается положительной, если направление создаваемого ею момента совпадает с направлением вращения коленчатого вала.

По величине Т определяют индикаторный крутящий момент одного цилиндра:

(12.10)

Нормальная и тангенциальная силы, перенесенные в центр коленчатого вала (Z " и Т "), образуют равнодействующую силу Р"" ш , которая параллельна и равна по величине силе Р ш . Сила Р"" ш нагружает коренные подшипники коленчатого вала. В свою очередь силу Р"" ш можно разложить на две составляющие: силу P " N , перпендикулярную к оси цилиндра, и силу Р", действующую по оси цилиндра. Силы P " N и P N образуют пару сил, момент которой называется опрокидывающим. Его величина определяется по формуле

(12.11)

Данный момент равен индикаторному крутящему моменту и направлен в противоположную ему сторону:

Так как , то

(12.12)

Крутящий момент передается через трансмиссию ведущим колесам, а опрокидывающий момент воспринимается опорами двигателя. Сила Р " равна силе Р , и аналогично последней ее можно представить как

Составляющая P " г уравновешивается силой давления газов, приложенной к головке цилиндра, a P " j является свободной неуравновешенной силой, передающейся на опоры двигателя.

Центробежная сила инерции прикладывается к шатунной шейке кривошипа и направлена в сторону от оси коленчатого вала. Она так же как и сила P " j является неуравновешенной и передается через коренные подшипники на опоры двигателя.

12.3.1. Силы, действующие на шейки коленчатого вала

На шатунную шейку действуют радиальная сила Z , тангенциальная сила Т и центробежная сила Р ц от вращающейся массы шатуна. Силы Z и Р ц направлены по одной прямой, поэтому их равнодействующая

или

(12.13)

Здесь Р ц определяется не как , а как , поскольку речь идет о центробежной силе только шатуна, а не всего кривошипа.

Равнодействующая всех сил, действующих на шатунную шейку, рассчитывается по формуле

(12.14)

Действие силы R ш вызывает износ шатунной шейки. Результирующую силу, приложенную к коренной шейки коленчатого вала, находят графическим способом, как силы, передающиеся от двух смежных колен.

12.3.2. Аналитическое и графическое представление сил и моментов

Аналитическое представление сил и моментов, действующих в КШМ, представлено формулами (12.1)—(12.14).

Нагляднее изменение сил, действующих в КШМ в зависимости от угла поворота коленчатого вала, можно представить в качестве развернутых диаграмм, которые используются для расчета деталей КШМ на прочность, оценки износа трущихся поверхностей деталей, анализа равномерности хода и определения суммарного крутящего момента многоцилиндровых двигателей, а также построения полярных диаграмм нагрузок на шейку вала и его подшипники.

Обычно при расчетах строятся две развернутые диаграммы: на одной изображаются зависимости , и (см. рис. 12.1), на другой — зависимости и (рис. 12.5).

Рис. 12.5. Развернутые диаграммы тангенциальной и реальной сил, действующих в КШМ

Развернутые диаграммы, действующих в КШМ сил, дают возможность сравнительно простым способом определять крутящий момент многоцилиндровых двигателей.

Из уравнения (12.10) следует, что крутящий момент одноцилиндрового двигателя можно выразить как функцию Т=f (φ). Значение силы Т в зависимости от изменения угла поворота значительно изменяется, как видно на рис. 12.5. Очевидно, что и крутящий момент будет изменяться аналогично.

В многоцилиндровых двигателях переменные крутящие моменты отдельных цилиндров суммируются по длине коленчатого вала, в результате чего на конце вала действует суммарный крутящий момент. Значения этого момента можно определить графически. Для этого проекцию кривой Т=f (φ) на оси абсцисс разбивают на равные отрезки (число отрезков равняется числу цилиндров). Каждый отрезок делят на несколько равных частей (здесь на 8). Для каждой полученной точки абсциссы определяют алгебраическую сумму ординат двух кривых (над абсциссой значения со знаком «+», ниже абсциссы значения со знаком «-»). Полученные значения откладывают соответственно в координатах х, у и полученные точки соединяют кривой (рис. 12.6). Эта кривая и является кривой результирующего крутящего момента за один рабочий цикл двигателя.

Рис. 12.6. Развернутая диаграмма результирующего крутящего момента
за один рабочий цикл двигателя

Для определения среднего значения крутящего момента подсчитывается площадь F , ограниченная кривой крутящего момента и осью ординат (выше оси значение положительное, ниже — отрицательное):

где L — длина диаграммы по оси абсцисс; м М — масштаб.

При известном масштабе тангенциальной силы м Т найдем масштаб крутящего момента м М = м Т R , R — радиус кривошипа.

Так как при определении крутящего момента не учитывались потери внутри двигателя, то, выражая эффективный крутящий момент через индикаторный, получим

где М к — эффективный крутящий момент; η м — механический КПД двигателя.

12.4. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров

В многоцилиндровом двигателе расположение кривошипов коленчатого вала должно, во-первых, обеспечивать равномерность хода двигателя, и, во-вторых, обеспечить взаимную уравновешенность сил инерции вращающихся масс и возвратно-поступательно движущихся масс.

Для обеспечения равномерности хода необходимо создать условия для чередования в цилиндрах вспышек через равные интервалы угла поворота коленчатого вала. Поэтому для однорядного двигателя угол ф, соответствующий угловому интервалу между вспышками при четырехтактном цикле рассчитывается по формуле φ = 720°/ i , где i — число цилиндров, а при двухтактном по формуле φ = 360°/ i .

На равномерность чередования вспышек в цилиндрах многорядного двигателя, кроме угла между кривошипами коленчатого вала, влияет и угол γ между рядами цилиндров. Для получения оптимальной равномерности хода n -рядного двигателя этот угол должен быть в n раз меньше угла между кривошипами коленчатого вала, т. е.

Тогда угловой интервал между вспышками для четырехтактного двигателя

Для двухтактного

Для удовлетворения требования уравновешенности необходимо, чтобы число цилиндров в одном ряду и соответственно число кривошипов коленчатого вала было четным, причем кривошипы должны быть расположены симметрично относительно середины коленчатого вала. Симметричное относительно середины коленчатого вала расположение кривошипов называется «зеркальным». При выборе формы коленчатого вала, кроме уравновешенности двигателя и равномерности его хода, учитывают также порядок работы цилиндров.

Оптимальный порядок работы цилиндров, когда очередной рабочий ход происходит в цилиндре, наиболее удаленном от предыдущего, позволяет снизить нагрузки на коренные подшипники коленчатого вала и улучшить охлаждение двигателя.

На рис. 12.7 приведены последовательности работ цилиндров однорядных (а ) и V -образных (б ) четырехтактных двигателей.

Рис. 12.7. Последовательность работ цилиндров четырехтактных двигателй:

а — однорядных; б — V -образных

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

10783. Динамика конфликта 16.23 KB
Динамика конфликта Вопрос 1. Общее представление о динамике конфликта предконфликтная ситуация Всякий конфликт может быть представлен тремя этапами: 1 начало 2 развитие 3 завершение. Таким образом общая схема динамики конфликта складывается из следующих периодов: 1 Предконфликтная ситуация латентный период; 2 Открытый конфликт собственно конфликт: инцидент начало конфликта эскалация развитие конфликта завершение конфликта; 3 Послеконфликтный период. Предконфликтная ситуация это возможность конфликта...
15485. Динамика асослари 157.05 KB
Моддий нуқта динамикасининг биринчи асосий масаласини ечиш 5. Моддий нуқта динамиканинг иккинчи асосий масаласини ечиш 6. Динамикада моддий нуқта моддий нуқталар системаси ва абсолют жисмнинг ҳаракати шу ҳаракатни вужудга келтирувчи кучлар билан биргаликда ўрганилади. Динамикада дастлаб моддий нуқтанинг ҳаракати ўрганилади.
10816. Динамика популяций 252.45 KB
Динамика популяции – одно из наиболее значимых биологических и экологических явлений. Образно говоря жизнь популяции проявляется в ее динамике. Модели динамики и роста популяции.
1946. Динамика механизмов 374.46 KB
Задачи динамики: Прямая задача динамики силовой анализ механизма – по за данному закону движения определить действующие на его звенья силы а также реакции в кинематических парах механизма. К механизму машинного агрегата во время его движения приложены различные силы. Это движущие силы силы сопротивления иногда их называют силами полезного сопротивления силы тяжести силы трения и многие другие силы. Своим действием приложенные силы сообщают механизму тот или иной закон движения.
4683. ДИНАМИКА НАУЧНОГО ЗНАНИЯ 14.29 KB
Важнейшей особенностью научного знания является его динамика – изменение и развитие формальных и содержательных характеристик в зависимости от временных и социокультурных условий производства и воспроизводства новой научной информации.
1677. Лидерство и групповая динамика 66.76 KB
Целью данной работы является выявление потенциальных лидеров в ученическом коллективе а также: Основные темы в исследовании лидерства; Взаимодействие лидер и группы; Функции лидера Теоретические подходы к лидерству различных исследователей. Данная работа состоит из двух глав: первая глава – теоретическая часть обзор основных тем в исследовании лидерства взаимоотношения лидера и группы функции лидера и теоретические подходы к лидерству вторая глава – экспериментальное исследование одной таблицы шести диаграмм и двух...
6321. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ 108.73 KB
Сила действующая на частицу в системе совпадает с силой действующей на частицу в системе. Это следует из того что сила зависит от расстояний между данной частицей и действующими на нее частицами и возможно от относительных скоростей частиц а эти расстояния и скорости полагаются в ньютоновской механике одинаковыми во всех инерциальных системах отсчета. В рамках классической механики имеют дело с гравитационными и электромагнитными силами а также с упругими силами и силами трения. Гравитационные и...
4744. СТРУКТУРА И ДИНАМИКА ОБЩЕСТВА КАК СИСТЕМЫ 22.85 KB
Общество – это исторически развивающаяся целостная система отношений и взаимодействий между людьми, их общностями и организациями, складывающаяся и изменяющаяся в процессе их совместной деятельности.
21066. ДИНАМИКА РАЗВИТИЯ ЗООПЛАНКТОНА В НОВОРОССИЙСКОЙ БУХТЕ 505.36 KB
Новороссийская бухта – наиболее крупная бухта Северо-Восточной части Черного моря. Вместе с прилегающей к ней открытой акваторией она долгие годы являлась одним из важных рыбопромысловых и нерестовых районов Российского сектора Черного моря. Особенности географического положения, большие глубины и площадь, достаточный водообмен с открытым морем, хорошая кормовая база – все эти факторы способствовали массовым заходам в бухту различных видов рыб для размножения и нагула
16846. Современная финансово-экономическая динамика и политэкономия 12.11 KB
Основным противоречием современной финансово-экономической системы является противоречие между производством реальной стоимости и движением ее денежных и финансовых форм. превращения стоимости воплощенной в разнообразных ресурсах в источник получения прибавочной стоимости заключенной в произведенных благах. Увеличение капитализации создает дополнительный спрос на деньги для обслуживания возрастающего оборота стоимости что приводит к росту монетизации экономики которая в свою очередь создает дополнительные возможности капитализации...

3.1.1. Корректировка индикаторной диаграммы

Индикаторную диаграмму следует перестроить под другие координаты: по оси абсцисс – под угол поворота коленчатого вала φ и под соответствующее перемещение поршня S . Индикаторная диаграмма далее используется для нахождения графическим путем текущего значения давления цикла, действующего на поршень. Для перестроения под индикаторной диаграммой строят схему кривошипно-шатунного механизма (рис.3), где прямая АС соответствует длине шатуна L в мм, прямая АО – радиусу кривошипа R в мм. Для различных углов поворота коленчатого вала φ графически определяют точки на оси цилиндра ОО / , соответствующие положению поршня при этих углах φ . За начало отсчета т.е. φ=0 принимают верхнюю мертвую точку. Из точек на оси ОО / следует провести вертикальные прямые (ординаты), пересечение которых с политропами индикаторной диаграммы дает точки, соответствующие абсолютным значениям давления газов р ц . При определении р ц следует учитывать направление протекания процессов по диаграмме и соответствие их углу φ пкв.

Измененную индикаторную диаграмму следует поместить в данном разделе пояснительной записки. Кроме того для упрощения дальнейших расчетов сил, действующих в КШМ принимают, что давление р ц =0 на впуске (φ =0 0 -180 0) и выпуске (φ =570 0 -720 0).

Рис.3. Индикаторная диаграмма, совмещенная

с кинематикой кривошипно-шатунного механизма

3.1.2 Кинематический расчет кривошипно-шатунного механизма

Расчет состоит в определении перемещения, скорости и ускорения поршня для различных углов поворота коленчатого вала, при постоянной частоте вращения. Исходными данными для расчета являются радиус кривошипа R = S /2 , длина шатунаL и кинематический параметр λ = R / L – постоянная КШМ. Отношениеλ = R / L зависит от типа двигателя, его быстроходности, конструкции КШМ и находится в пределах
=0,28 (1/4,5…1/3). При выборе необходимо ориентироваться на заданный прототип двигателя и принимать ближайшее значение по таблице 8.

Угловая скорость кривошипа

Определение кинематических параметров производят по формулам:

Перемещение поршня

S = R [(1-
) +
(1-
)]

Скорость поршня

W п = R ( sin
sin
2)

Ускорение поршня

j п = R
(
+

)

Анализ формул скорости и ускорения поршня показывает, что эти параметры подчиняются периодическому закону, меняя в процессе движения положительные значения на отрицательные. Так, ускорение достигает максимальных положительных значений при пкв φ = 0, 360 0 и 720 0 , а минимальных отрицательных при пквφ = 180 0 и 540 0 .

Расчет выполняют для углов поворота коленчатого вала φ от 0º до 360º, через каждые 30º результаты вносят в таблицу 7. Кроме того, по индикаторной диаграмме находят текущий угол отклонения шатуна для каждого текущего значения углаφ . Уголсчитается со знаком (+) если шатун отклоняется в сторону вращения кривошипа и со знаком (-), если в противоположную сторону. Наибольшие отклонения шатуна ±
≤ 15º…17º будут соответствовать пкв.=90º и 270º.

Таблица 7.

Кинематические параметры КШМ

φ , град

Перемещение, S м

Скорость, W п м/с

Ускорение, j п м/с 2

Угол отклонения шатуна, β град

Задача кинематического расчета - нахождение перемещений, скоростей и ускорений в зависимости от угла поворота коленчатого вала. На основе кинематического расчета проводятся динамический расчет и уравновешивание двигателя.

Рис. 4.1. Схема кривошипно-шатунного механизма

При расчетах кривошипно-шатунного механизма (рис. 4.1) соотношение между перемещением поршня S x и углом поворота коленчатого вала б определяется следующим образом:

Отрезок равен длине шатуна, а отрезок - радиусу кривошипа R. С учетом этого, а также выразив отрезки и через произведение и R соответственно на косинусы углов б и в, поучим:

Из треугольников и находим или, откуда

Разложим это выражение в ряд с помощью бинома Ньютона, при этом получим

Для практических расчетов необходимая точность вполне обеспечивается двумя первыми членами ряда, т. е.

С учетом того, что

его можно записать в виде

Из этого получим приближенное выражение для определения величины хода поршня:

Продифференцировав полученное уравнение по времени получим уравнение для определения скорости поршня:

При кинематическом анализе кривошипно-шатунного механизма считают, что скорость вращения коленчатого вала постоянна. В этом случае

где щ - угловая скорость коленчатого вала.

С учетом этого получим:

Продифференцировав его по времени, получим выражение для определения ускорения поршня:

S - ход поршня (404 мм);

S x - путь поршня;

Угол поворота коленчатого вала;

Угол отклонения оси шатуна от оси цилиндра;

R - радиус кривошипа

Длина шатуна = 980 мм;

л - отношение радиуса кривошипа к длине шатуна;

щ - угловая скорость вращения коленчатого вала.

Динамический расчет КШМ

Динамический расчет кривошипно-шатунного механизма выполняется с целью определения суммарных сил и моментов, возникающих от давления газов и от сил инерции. Результаты динамического расчета используются при расчете деталей двигателя на прочность и износ.

В течение каждого рабочего цикла силы, действующие в кривошипно-шатунном механизме, непрерывно изменяются по величине и направлению. Поэтому для характера изменения сил по углу поворота коленчатого вала их величины определяют для ряда различных положений вала через каждые 15 град ПКВ.

При построении схемы сил, исходной является удельная суммарная сила, действующая на палец - это алгебраическая сумма сил давления газов, действующих на днище поршня, и удельных сил инерции масс деталей, движущихся возвратно-поступательно.

Значения давления газов в цилиндре определяются из индикаторной диаграммы, построенной по результатам теплового расчета.

Рисунок 5.1 - двухмассовая схема КШМ

Приведение масс кривошипа

Для упрощения динамического расчета, заменим действительный КШМ динамически эквивалентной системой сосредоточенных масс и (рисунок 5.1).

совершает возвратно-поступательное движение

где - масса поршневого комплекта, ;

Часть массы шатунной группы, отнесенная к центру верхней головки шатуна и движущаяся возвратно-поступательно вместе с поршнем,

совершает вращательное движение

где - часть массы шатунной группы, отнесенная к центру нижней (кривошипной) головки и движущаяся вращательно вместе с центром шатунной шейки коленчатого вала

Неуравновешенная часть кривошипа коленчатого вала,

при этом:

где - плотность материала коленчатого вала,

Диаметр шатунной шейки,

Длина шатунной шейки,

Геометрические размеры щеки. Для облегчения расчетов примем щеку как параллелепипед с размерами: длина щеки, ширина, толщина

Силы и моменты, действующие на кривошип

Удельная сила инерции деталей КШМ, движущихся возвратно-поступательно определяются из зависимости:

Полученные данные с шагом заносим в таблицу 5.1.

Эти силы действуют по оси цилиндра и как и силы давления газов считаются положительными, если направлены к оси коленчатого вала, и отрицательными, если направлены от коленвала.

Рисунок 5.2. Схема сил и моментов, действующих на КШМ

Силы давления газов

Силы давления газов в цилиндре двигателя в зависимости от хода поршня определяются по индикаторной диаграмме, построенной по данным теплового расчета.

Сила давления газов на поршень действует по оси цилиндра:

где - давление газов в цилиндре двигателя, определяемое для соответствующего положения поршня по индикаторной диаграмме, полученной при выполнении теплового расчета; для переноса диаграммы из координат в координаты, используем метод Брикса.

Для этого строим вспомогательную полуокружность. Точка соответствует ее геометрическому центру, точка смещена на величину (поправка Брикса). По оси ординат в сторону НМТ. Отрезок соответствует разнице перемещений, которые совершает поршень за первую и вторую четверть поворота коленчатого вала.

Проведя Из точек пересечения ординаты с индикаторной диаграммой линии, параллельные оси абсцисс до пересечения с ординатами при угле, получим точку величины в координатах (см. диагр. 5.1).

Давление в картере;

Площадь поршня.

Результаты заносим в таблицу 5.1.

Суммарная сила:

Суммарная сила - это алгебраическая сумма сил, действующих в направлении оси цилиндра:

Сила перпендикулярная оси цилиндра.

Эта сила создает боковое давление на стенку цилиндра.

Угол наклона шатуна относительно оси цилиндра,

Сила, действующая вдоль оси шатуна

Сила, действующая вдоль кривошипа:

Сила, создающая крутящий момент:

Крутящий момент одного цилиндра:

Вычисляем силы и моменты, действующие в КШМ через каждые15 поворота кривошипа. Результаты вычислений заносим в таблицу 5.1

Построение полярной диаграммы сил, действующих на шатунную шейку

Строим координатную систему и с центром в точке 0, в которой отрицательная ось направлена вверх.

В таблице результатов динамического расчёта каждому значению б=0, 15°, 30°…720° соответствует точка с координатами. Наносим на плоскость и эти точки. Последовательно соединяя точки, получаем полярную диаграмму. Вектор, соединяющий центр с любой точкой диаграммы, указывает направление вектора и его величину в соответствующем масштабе.

Строим новый центр отстоящий от по оси на величину удельной центробежной силы от вращающейся массы нижней части шатуна. В этом центре условно располагают шатунную шейку с диаметром.

Вектор, соединяющий центр с любой точкой построенной диаграммы, указывает направление действия силы на поверхность шатунной шейки и ее величину в соответствующем масштабе.

Для определения средней результирующей за цикл, а так же ее максимального и минимального значений полярной диаграммы перестраивают в прямоугольную систему координат в функции угла поворота коленчатого вала. Для этого на ось абсцисс откладываем для каждого положения коленчатого вала углы поворота кривошипа, а на оси ординат - значения, взятые из полярной диаграммы, в виде проекций на вертикальную ось. При построении диаграммы все значения считаются положительными.

двигатель тепловой показатель прочность

При работе двигателя в КШМ каждого цилиндра действуют силы: давления газов на поршень Р, массы поступательно-движу­щихся частей КШМ G , инерции поступательно-движущихся частей P и и трения в КШМ Р т .

Силы трения не поддаются точному расчету; их считают вклю­ченными в сопротивление гребного винта и не принимают во вни­мание. Следовательно, в общем случае на поршень действует дви­жущая сила P д = Р + G + P и .

Силы, отнесенные к 1 м 2 площади поршня,

Движущее усилие Р д приложено к центру поршневого пальца (пальца крейцкопфа) и направлено вдоль оси цилиндра (рис. 216). На пальце поршня P д раскладывается на составляющие:

Р н - нормальное давление, действующее перпендикулярно к оси цилиндра и прижимающее поршень к втулке;

Р ш - усилие, действующее вдоль оси шатуна и передаваемое на ось шейки кривошипа, где оно в свою очередь раскладывается на составляющие Р ? и Р R (рис. 216).

Усилие Р ? действует перпендикулярно к кривошипу, вызывает его вращение и называется касательным. Усилие Р R действует вдоль кривошипа и называется радиальным. Из геометрических соотношений имеем:

Численное значение и знак тригонометрических величин

для двигателей с различными постоянными КШМ? =R / L можно принять по данным

Величину и знак Р д определяют из диаграммы движущих сил, представляющей графическое изображение закона изменения дви­жущей силы за один оборот коленчатого вала для двухтактных двигателей и за два оборота для четырехтактных в зависимости от угла поворота коленчатого вала. Чтобы получить значение дви­жущей силы, необходимо предварительно построить следующие три диаграммы.

1. Диаграмма изменения давления р в цилиндре в зависимости от угла поворота кривошипа?. По данным расчета рабочего про­цесса двигателя строят теоретическую индикаторную диаграмму, по которой определяют давление в цилиндре р в зависимости от его объема V. Для того, чтобы перестроить индикаторную диа­грамму из координат рV в координаты р-? (давление - угол по­ворота вала), линии в. м. т. и н. м. т. следует продлить вниз и провести прямую АВ, параллельную оси V (рис. 217). Отрезок АВ делится точкой О пополам и из этой точки радиусом АО описы­вается окружность. От центра окружности точки О в сторону н. м. т. откладывают отрезок OO " = 1 / 2 R 2 / L поправка Брикса. Так как

Значение постоянной КШМ? = R / L принимают по опытным дан­ным. Чтобы получить величину поправки OO", в масштабе диа­граммы в формулу OO" = 1 / 2 ?R вместо R подставляют значение отрезка АО. Из точки О", которая называется полюсом Брикса, опи­сывают произвольным радиусом вторую окружность и делят ее на любое число равных частей (обычно через каждые 15°). Из полюса Брикса О " через точки деления проводят лучи. Из точек пересечения лучей с окружностью радиусом АО проводят вверх прямые, парал­лельные оси р. Затем на свободном месте чертежа строят с по­мощью измерителя координаты давления газов р - угол поворота кривошипа?°; принимая за начало отсчета линию атмосферного давления, снимают с диаграммы р-V значения ординат процессов наполнения и расширения для углов 0°, 15°, 30°, …, 180° и 360°, 375°, 390°, ..., 540°, переносят их в координаты для этих же углов и со­единяют полученные точки плавной кривой. Аналогично строят участки сжатия и выпуска, но в этом случае поправку Брикса ОО " откладывают на отрезке АВ в сторону в. м. т. В результате ука­занных построений получают развернутую индикаторную диа­грамму (рис. 218, а ), по которой можно определить давление газов р на поршень для любого угла? поворота кривошипа. Масштаб давлений развернутой диаграммы будет такой же, как и на диа­грамме в координатах р-V. При построении диаграммы p = f(?) силы, способствующие движению поршня, считаются положитель­ными, а силы, препятствующие этому движению,- отрицатель­ными.

2. Диаграмма сил массы возвратно-поступательно-движущихся частей КШМ. В тронковых двигателях внутреннего сгорания масса поступательно-движущихся частей включает массу поршня и часть массы шатуна. В крейцкопфных дополнительно входят массы штока и ползуна. Массу частей можно подсчитать, если имеются чертежи с размерами этих деталей. Часть массы шатуна, совер­шающая возвратно-поступательное движение, G 1 = G ш l 1 / l , где G ш - масса шатуна, кг; l - длина шатуна, м; l 1 - расстояние от центра тяжести шатуна до оси кривошипной шейки, м :

Для предварительных расчетов удельные значения массы по­ступательно-движущихся частей могут быть приняты: 1) для тронковых быстроходных четырехтактных двигателей 300-800 кг/м 2 и тихоходных 1000-3000 кг/м 2 ; 2) для тронковых быстроходных двухтактных двигателей 400-1000 кг/м 2 и тихоходных 1000- 2500 кг/м 2 ; 3) для крейцкопфных быстроходных четырехтактных двигателей 3500-5000 кг/м 2 и тихоходных 5000-8000 кг/м 2 ;

4) для крейцкопфных быстроходных двухтактных двигателей 2000-3000 кг/м 2 и тихоходных 9000-10 000 кг/м 2 . Так как вели­чина массы поступательно-движущихся частей КШМ и их направ­ление не зависят от угла поворота кривошипа?, то диаграмма сил массы будет иметь вид, показанный на рис. 218, б . Строится эта диаграмма в том же масштабе, что и предыдущая. На тех участках диаграммы, где сила массы способствует движению поршня, она считается положительной, а там, где препятствует,- отрицательной.

3. Диаграмма сил инерции поступательно-движущихся частей. Известно, что сила инерции поступательно-движущегося тела Р и =Ga н (G - масса тела, кг; а - ускорение, м/сек 2 ). Масса посту­пательно-движущихся частей КШМ, отнесенная к 1 м 2 площади поршня, m = G / F. Ускорение движения этой массы определяют по формуле (172). Таким образом, сила инерции поступательно-движущихся частей КШМ, отнесенная к 1 м 2 площади поршня, может быть определена для любого угла поворота кривошипа по формуле

Расчет Р и для различных? целесообразно производить в таб­личной форме. По данным таблицы строят диаграмму сил инерции поступательно-движущихся частей в том же масштабе, что и пре­дыдущие. Характер кривой P и = f (?) дан на рис. 218, в . В начале каждого хода поршня силы инерции препятствуют его движению. Поэтому силы Р и имеют отрицательный знак. В конце же каждого хода силы инерции Р и способствуют этому движению и поэтому приобретают положительный знак.

Силы инерции можно определить также графическим методом. Для этого берут отрезок АВ, длина которого соответствует ходу поршня в масштабе оси абсцисс (рис. 219) развернутой индикатор­ной диаграммы. От точки А вниз по перпендикуляру откладывают в масштабе ординат индикаторной диаграммы отрезок АС, выра­жающий силу инерции поступательно-движущихся частей в в. м. т. (? = 0), равную P и(в. м. т) = G / F R ? 2 (1 + ?). В том же масштабе от точки В откладывают отрезок ВД - силу инерции в н. м. т. (? = 180°), равную Р и(н.м.т) = - G / F R ? 2 (1 - ?). Точки С и Д соединяют прямой. От точки пересечения СД и АВ откладывают в масштабе ординат отрезок ЕК, равный 3? G/А R? 2 . Точку К соединяют прямыми с точками С и Д, и полученные отрезки КС и КД делят на одина­ковое число равных частей, но не менее чем на пять. Точки деле­ния нумеруют в одном направлении и одноименные соединяют прямыми 1-1 , 2-2 , 3-3 и т. д. Через точки С и Д и точки пере­сечения прямых, соединяющих одинаковые номера, проводят плав­ную кривую, выражающую закон изменения сил инерции при ни­сходящем движении поршня. Для участка, соответствующего дви­жению поршня к в. м. т., кривая сил инерции будет зеркальным отображением построенной.

Диаграмма движущих сил P д = f (?) строится путем алгебраи­ческого суммирования ординат соответствующих углов диаграмм

При суммировании ординат этих трех диаграмм сохраняется ука­занное выше правило знаков. По диаграмме Р д = f (?) молено опре­делить движущее усилие, отнесенное к 1 м 2 площади поршня для любого угла поворота кривошипа.

Сила, действующая на 1 м 2 площади поршня, будет равна соот­ветствующей ординате на диаграмме движущих усилий, умножен­ной на масштаб ординат. Полная сила, движущая поршень,

где р д - движущая сила, отнесенная к 1 м 2 площади поршня, н/м 2 ; D - диаметр цилиндра, м.

По формулам (173) с использованием диаграммы движущих сил можно определить значения нормального давления р н силы Р ш , касательной силы Р ? и радиальной силы P R при различных по­ложениях кривошипа. Графическое выражение закона изменения силы Р ? в зависимости от угла? поворота кривошипа называется диаграммой касательных сил. Расчет значений Р ? для разных? производится с использованием диаграммы P д = f : (?) и по фор­муле (173).

По данным расчета строят диаграмму касательных сил для одного цилиндра двухтактного (рис. 220, а) и четырехтактного дви­гателей (рис. 220,6). Положительные значения откладывают вверх от оси абсцисс, отрицательные - вниз. Касательная сила считается положительной, если она направлена в сторону вращения коленча­того вала, и отрицательной, если она направлена против вращения коленчатого вала. Площадь диаграммы Р ? = f (?) выражает в оп­ределенном масштабе работу касательной силы за один цикл. Ка­сательные усилия для любого угла? поворота вала можно определить следующим простым способом. Описывают две окружности - одну радиусом кривошипа R и вторую вспомогательную - радиу­сом?R (рис. 221). Проводят для данного угла? радиус ОА и про­длевают его до пересечения со вспомогательной окружностью в точке В. Строят?ВОС, у которого ВС будет параллельна оси цилиндра, а СО - параллельна оси шатуна (для. данного?). От точки А откладывают в выбранном масштабе величину движущего усилия Р д для данного?; тогда отрезок ЕD, проведенный перпен­дикулярно к оси цилиндра до пересечения с прямой AD , парал­лельной СО , и будет искомым Р ? для выбранного?.

Изменение касательной силы? Р ? двигателя можно представить в виде суммарной диаграммы касательных сил? Р ? = f (?). Для ее построения необходимо столько диаграмм Р ? = f (?), сколько ци­линдров имеет двигатель, но сдвинутых одна относительно другой на угол? всп поворота кривошипа между двумя последующими вспышками (рис. 222, а-в ). Алгебраически сложив ординаты всех диаграмм при соответствующих углах, получают для различных по­ложений кривошипа суммарные ординаты. Соединив их концы, по­лучают диаграмму? P ? = f (?). Диаграмма суммарных касатель­ных усилий для двухцилинд­рового двухтактного двига­теля показана на рис. 222, в. Аналогичным образом строят диаграмму и для многоцилиндрового четырех­тактного двигателя.

Диаграмму? Р ? = f (?) можно построить также аналитическим путем, располагая только одной диаграммой касательных усилий для одного цилиндра. Для этого необходимо разбить диаграмму Р ? = f (?) на участки через каждые? всп градусов. Каждый участок разделяют на одинаковое число равных отрезков и нумеруют, рис. 223 (для четырехтактного z = 4). Ординаты кривой Р ? = f (?), соответствующие одним и тем же номерам точек, алгебраически суммируют, в результате чего получают ординаты суммарной кри­вой касательных усилий.

На диаграмму? Р ? = f (?) наносят среднюю величину касатель­ной силы Р ? cp . Для определения средней ординаты Р ? cp суммар­ной диаграммы касательных сил в масштабе чертежа необходимо площадь между кривой и осью абсцисс на участке длиной? всп поделить на длину этого участка диаграммы. Если кривая суммар­ной диаграммы касательных сил пересекает ось абсцисс, то для определения Р ? ср нужно алгебраическую сумму площади между кривой и осью абсцисс разделить на длину участка диаграммы. От­ложив на диаграмме величину Р ? ср вверх от оси абсцисс, полу­чают новую ось. Участки между кривой и этой осью, расположен­ные над линией Р ? , выражают положительную работу, а под осью - отрицательную. Между Р ? ср и силой сопротивления приво­димого в действие агрегата должно существовать равенство.

Можно установить зависимость Р ? ср от среднего индикаторного давления р i : для двухтактного двигателя Р ? cp = p i z /? и для четырехтактного двигателя P ? cp = p i z /2? (z – число цилиндров). По P ? cp определяют средний крутящий момент на валу двигателя

где D - диаметр цилиндра, м; R - радиус кривошипа, м.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков