Правила эксплуатации никель-кадмиевых аккумуляторов. Как заряжать Ni-Cd-аккумуляторы: описание процесса

Правила эксплуатации никель-кадмиевых аккумуляторов. Как заряжать Ni-Cd-аккумуляторы: описание процесса

Никель-кадмиевый аккумулятор

Никель-кадмиевые аккумуляторы

Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) - вторичный , в котором катодом является гидрат закиси никеля Ni(OH) 2 с графитовым порошком (около 5-8 %) , электролитом - гидроксид калия KOH плотностью 1,19-1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21-25 %), анодом - гидрат закиси кадмия Cd(OH) 2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора около 1,37 В, удельная энергия около 45-65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 9000 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20-25 лет. Никель-кадмиевые аккумуляторы (Ni-Cd) - единственный вид аккумуляторов, которые могут храниться разряженными, в отличие от никель-металл-гидридных аккумуляторов (Ni-MH), которые нужно хранить полностью заряженными и от литий-ионных аккумуляторов (Li-ion), которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора.

История изобретения

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч /кг .
  • Удельная энергоёмкость: 45-65 Вт·ч/кг.
  • Удельная энергоплотность: 50-150 Вт·ч/дм ³.
  • Удельная мощность: 150..500 Вт/кг.
  • ЭДС = 1,37 .
  • Рабочее напряжение = 1,35..1,0 В.
  • Нормальный ток зарядки = 0,1…1 C, где С - емкость.
  • Саморазряд: 10 % в месяц.
  • Рабочая температура: −50…+40 °C .

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно, в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за 5 минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжелых условиях эксплуатации.

Цикл разряда начинается от 1,35 В и заканчивается на 1,0 В (соответственно 100 % емкости и 1 % оставшейся емкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти ». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0.1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование емкости аккумулятора. Тем не менее, в типичном случае, контроллер побуждает пользователя производить все новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть, можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть, использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде, тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Лучше всего подключить цепочку из диода и резистора на каждую банку, чтобы ограничить напряжение на уровне 0,5-0,7 В на элемент. Это также способствует выравниванию характеристик элементов, из которых состоит батарея. После длительного хранения батареи необходимо провести 2-3 цикла заряд/разряд током, численно равным номинальной емкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно, если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганец-цинковых и марганец-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов, винтовёртов и дрелей.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например, фонарей для дайвинга .

Дисковые никель-кадмиевые аккумуляторы

В СССР для питания электронных устройств были распространены герметичные (взрываются) дисковые никель-кадмиевые аккумуляторы.

Название
аккумулятора
диаметр
мм
высота
мм
напряжение
вольт
Ёмкость
А/час
Рекомендуемый ток разряда, мА Применение
Д-0,03 11,6 5,5 1,2 0,03 3 фотоаппараты ,
слуховые аппараты
Д-0,06 15,6 6,4 1,2 0,06 12 фотоаппараты , фотоэкспонометры ,
слуховые аппараты
Д-0,125 20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики
Д-0,26 25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки
Д-0,55 34,6 9,8 1,2 0,55 55 фотовспышки
7Д-0,125 8,4 0,125 12,5 замена батарее Крона

Производители

Ni-Cd аккумуляторы производят множество фирм, в том числе крупные интернациональные фирмы, такие как GP Batteries Int. Ltd., VARTA, GAZ, KONNOC, METABO, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, ANSMANN и другие. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), КОСМОС и ЗАО "Опытный завод НИИХИТ".

Безопасная утилизация

Плавка продуктов утилизации NiCd аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например, пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации является более дорогим, чем для утилизации свинцовых батарей.

См. также

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • ГОСТ 15596-82 . Источники тока химические. Термины и определения.

Примечания

Все о никель-кадмиевых аккумуляторах: характеристики, эксплуатация, плюсы и минусы

Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.


В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni─Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.



Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH — ⇒ NiOOH + H 2 O + e —

В процессе разряда

NiOOH + H 2 O + e — ⇒ Ni(OH) 2 + OH —

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • α- Ni(OH) 2 ;
  • β-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма β-Ni(OH) 2 превращается в β-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование γ-NiOOH. Количество фаз β и γ гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза γ интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования γ-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы β составляет 4,15, а фазы γ─3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства β и γ также отличаются. Для формы γ-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы β. Форма γ также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для β.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e − ⇒ Cd + 2OH −

При разряде

Cd + 2OH − ⇒ Cd(OH) 2 + 2e −

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20─70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10─15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40─45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03─0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15─18 Вт-ч на килограмм и 35─45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.


Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5─10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3─5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7─10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.



Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0─40 градусов Цельсия. Рекомендуемый интервал 10─30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6─7 часов током 0,2 от ёмкости;
  • 3─4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120─140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

Никель-кадмиевый аккумулятор (НК) является одним и старейших и наиболее хорошо изученных типов химических источников тока. Никель-кадмиевая химическая система была предложена в 1899 году Вальдемаром Джунгером, что в историческом смысле ставит НК на второе место после свинцово-кислотных аккумуляторов. Спустя сравнительно короткое время, НК аккумуляторы начали активно использоваться в различных областях индустрии, а после изобретения способа изготовления герметичных никель-кадмиевых аккумуляторов (НКГ) последовало резкое улучшение эксплуатационных качеств, что еще более расширило границы применения НКГ.

Именно по этой причине, компания АО "НИАИ "Источник" специализируется на производстве НКГ аккумуляторов, обладающих высочайшими потребительскими характеристиками:

  • Отсутствие необходимости в обслуживании
  • Отсутствие выделения газа и электролита
  • Способность работать в любом положении
  • Устойчивость к тяжелым климатическим условиям
  • Механическая прочность и устойчивость к сверхзаряду
  • Большой срок службы (до 7 лет)
  • Высокая сохраняемость заряда и высокая стабильность характеристик.

Никель-кадмиевый аккумулятор состоит из двух рабочих электродов. В разряженном состоянии положительный электрод содержит гидрат закиси никеля, а отрицательный - гидроксид кадмия. Электроды и сепаратор имеют достаточно большую пористость и пропитаны водным раствором щёлочи.

Основная реакция, протекающая в аккумуляторе, описывается уравнением:

2 Ni (OH) 2 +Cd (OH) 2 2Ni OOH+Cd+H 2 O

Во время заряда из активной массы электродов в электролит выделяется вода, которая разбавляет электролит и увеличивает его объём. Во время разряда происходит обратный процесс.

В конце заряда на положительном электроде идёт побочная реакция выделения кислорода:

4 OH - O 2 + 2 H 2 O +4e

Выделившийся на положительном электроде кислород ионизируется на отрицательном электроде.

Конструкция аккумуляторов и аккумуляторных батарей (АБ)

Электроды . В герметичных призматических никель-кадмиевых аккумуляторах применяются спечённые (металлокерамические) электроды, состоящие из подложки, выполненной из растяжной никелевой решётки, на которую нанесён высокопористый слой никеля. Пористый слой заполняется активной массой с помощью химической пропитки. В последнее время в качестве основы электродов стал применяться пеноникель, получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. В пеноникель вмазывается активная электродная масса.

Аккумуляторы . Герметичные аккумуляторы производятся в металлических корпусах. Улотнение борнов призматических аккумуляторов осуществляется, как правило, при помощи резиновых колец. В качестве сепараторов используются ткани и нетканные материалы (войлоки, фетры) из поливинилхлорида, полипропилена, полиамида, капрона и других материалов. Могут комбинироваться несколько слоёв сепараторов из различных материалов.

В герметичных аккумуляторах ёмкость отрицательного электрода должна быть больше, чем ёмкость положительного. Экспериментально определяемое соотношение емкостей должно быть не менее 1,2. Такое соотношение позволяет избежать выделения водорода на отрицательном электроде.

В качестве электролита используются 20-40 % раствор КОН с добавкой LiOH. Конкретный состав электролита выбирается в зависимости от температуры при эксплуатации. Если аккумуляторы предназначены для работы при отрицательной температуре, то концентрацию КОН повышают, а содержание LiOH уменьшают до нуля. Улучшение работоспособности при повышенной температуре достигается использованием 20-30 процентный раствора КОН с добавкой 15-50 Г/л LiOH. Для герметичных аккумуляторов большое значение имеет правильный выбор количества электролита, что также определяется условиями эксплуатации аккумулятора. Для поглощения кислорода, выделяющегося при заряде, необходимо, чтобы часть порового пространства отрицательного электрода и сепаратора была свободна от электролита. При слишком большом количестве электролита поглощение кислорода замедляется, и аккумулятор во время заряда может деформироваться (при заряде по времени) или преждевременно отключиться от заряда при срабатывании сигнализатора давления. При недостаточном количестве электролита, особенно при малых токах заряда и повышенной температуре окружающей среды аккумулятор может попасть в так называемый «тепловой разгон», когда из-за повышенной скорости ионизации кислорода аккумулятор начинает разогреваться, в результате чего напряжение на нём снижается. При ещё большем уменьшении количества электролита это начинает сказывается на разрядных характеристиках аккумулятора. В различных типах аккумуляторов количество электролита колеблется от 2 до 4 см 3 /Ач. С увеличением концентрации электролита его плотность растёт, а объём уменьшается.

Батареи . Крепление аккумуляторов в батарее должно обеспечить отсутствие перемещения любого из них при механических перегрузках. Расположение герметичных аккумуляторов в пространстве произвольное, но вниз крышкой не рекомендуется, особенно для аккумуляторов с аварийным клапаном, т.к. в конце заряда часть электролита из блока электродов стекает на крышку аккумулятора. Межэлементные соединения должны быть рассчитаны на минимальные потери напряжения и не вызывать механических нагрузок на токовыводы аккумуляторов. Пайка непосредственно к корпусу или крышке аккумулятора не допускается. В батареях из герметичных аккумуляторов рекомендуется предусматривать выводы от каждого аккумулятора, выполняемые по двухпроводной схеме, при помощи которых осуществляется поэлементный доразряд и контроль за напряжением аккумуляторов. Если поэлементный контроль вызывает затруднения, то допускается контролировать напряжение на группах из 2-5 аккумуляторов. Напряжение на каждой группе должно контролироваться автоматическим устройством, прекращающем разряд при достижении предельно допустимого напряжения. Потребление устройства на собственные нужды должно быть минимальным при работе и равным нулю при хранении батареи в составе изделия. Значения уставок должны составлять:

Если в батарее не более пяти аккумуляторов, контроль напряжения ведётся на выводах батареи. Если батарея не делится на одинаковое количество групп, то допустим перекрёстный контроль нескольких аккумуляторов соседними отключающими устройствами.

Обозначение аккумуляторов и батарей

В наименовании аккумуляторов буквы НК указывают на электрохимическую систему (никель-кадмиевая). Буква Г относятся к конструктивному исполнению аккумуляторов - герметичные. После букв через тире проставляют номинальную ёмкость аккумулятора. За значением номинальной ёмкости проставляются буквы, указывающие режим разряда: К - короткий (менее 1 часа), С - средний (2-8 ч), Д - длинный (10-20 ч). Буква А ставится в тех случаях, когда аккумулятор снабжён датчиком давления. Цифры перед буквенным обозначением аккумулятора соответствуют количеству аккумуляторов в батарее. В отдельных случаях в конце обозначения записывается климатическое исполнение и категория размещения.

С 1993 г. введён ГОСТ 26367.3-93 (МЭК 622-88) на герметичные призматические никель-кадмиевые аккумуляторы, являющийся прямым применением соответствующего стандарта МЭК, которым предусматриваются следующие обозначения аккумуляторов латинским шрифтом. Первая буква K относится к никель-кадмиевой электрохимической системе. Далее записывается одна из букв, обозначающих форму корпуса: С - призматический (герметичный), R - В - дисковый. После этого для герметичных призматических аккумуляторов указывается вид положительной пластины: Р - ламельная, S - спечённая (металлокерамическая). Затем для всех типов аккумуляторов записывается режим разряда: L - длительный, М - средний, Н - короткий, Х - сверхкороткий, после чего для призматических аккумуляторов указывается номинальная ёмкость, а для дисковых и цилиндрических - диаметр и высота (через дробь). Для дисковых аккумуляторов габариты указываются в десятых долях миллиметра. В конце обозначения записывают класс стойкости к воздействию температуры. Класс I - температура от -30 до 50 о С (без обозначения); класс II - от -40 до 60 о С; класс III - от -60 до 60 о С.

Обозначение батареи состоит, как правило, из обозначения аккумулятора, перед которым стоит цифра, указывающая количество аккумуляторов в батарее. В конце иногда указывают климатическое исполнение батареи (например, 10НКГ-8К-В1). В некоторых случаях производитель даёт батарее условный индекс (например, 11МО1).

Способы заряда

Заряд аккумуляторов, как правило, проводится постоянным током, при этом аккумуляторам сообщается 105-150 % номинальной ёмкости. Ток заряда обычно составляет 0,1-0,3 Сн. Для герметичных аккумуляторов кроме контроля времени заряда применяется также контроль конечного напряжения заряда, внутреннего давления (при помощи сигнализаторов давления) и сообщенной ёмкости (при помощи электронных счётчиков ампер-часов). В некоторых случаях применяют датчики максимального напряжения, уставка срабатывания которых зависит от температуры и (или) тока заряда, или термореле, выдающие сигнал на отключение заряда при повышении температуры до заданного значения.

Хотя герметичные аккумуляторы дороже открытых и для первых требуется более сложное зарядное и контрольно-испытательное оборудование, эксплуатационные расходы для них меньше, чем для открытых аккумуляторов, так как для герметичных аккумуляторов не требуются устройства вентиляции и периодическая доливка электролита, что связано с содержанием дополнительного персонала.

Эффективность заряда зависит от температуры и тока заряда. С увеличением тока заряда напряжение заряда возрастает. Для герметичных аккумуляторов следует избегать условий, при которых напряжение заряда достигает значений 1,6 В, т.к. это способствует выделению водорода. Для аккумуляторов, предназначенных для коротких режимов разряда, с увеличением тока заряда разрядная ёмкость возрастает, а для аккумуляторов, предназначенных для средних режимов, проходит через максимум. Оптимальным является заряд при температуре 15-25 о С током 0,1-0,5 Сн. С повышением температуры заряда и снижением тока заряда отдаваемая при разряде ёмкость снижается и может составлять до 50-70 % от номинальной. В диапазоне температур 15-25 о С возможен заряд герметичных аккумуляторов при постоянном напряжении 1,45 - 1,50 В. При напряжениях выше 1,5 В заряд при постоянном напряжении не рекомендуется, т.к. в результате перегрева аккумуляторы могут быть перезаряжены. Перезаряд аккумуляторов при заряде их от источника с постоянным напряжением опасен в результате явления, получившего название «тепловой разгон». Суть его заключается в том, что когда аккумуляторы полностью заряжены, весь ток расходуется на выделение на положительном электроде кислорода, большая часть кислорода, в свою очередь, поглощается на кадмиевом электроде, в результате чего практически всё проходящее электричество превращается в тепло, и аккумулятор начинает быстро разогреваться. С повышением температуры напряжение аккумуляторов снижается, что приводит к повышению тока заряда и дальнейшему лавинообразному разогреву. Если при комнатной температуре «тепловой разгон» открытых аккумуляторов начинается при напряжениях, близких к 1,7 В, то после длительного перезаряда, сопровождавшегося перегревом, тепловой разгон может начинаться и при напряжении 1,3 В. Обычно это происходит в процессе длительного заряда при постоянном напряжении, когда в результате разогрева аккумулятора ток ионизации кислорода на отрицательном электроде возрастает настолько, что скорость прохода кислорода через сепаратор и скорость выхода кислорода из блока электродов становятся соизмеримыми. После нескольких циклов в таких условиях кадмиевый электрод пассивируется до такой степени, что при заряде на нём выделятся водород. Для герметичных аккумуляторов тепловой разгон может начаться при напряжениях ниже 1,7 В, поскольку в них весь выделяющийся при заряде кислород должен поглотиться внутри аккумулятора. Для того чтобы избежать теплового разгона следует размещать батарею вдали от источников тепла (двигатели, мощные приборы и т.п.), тщательно выбирать режим заряда, а сам заряд проводить на автоматизированных стендах, имеющих несколько уровней зашиты (по времени заряда, напряжению, току, по ёмкости и т.д.). Необходимо, чтобы погрешность стабилизации напряжения была не более ±1 %. При выборе напряжения заряда необходимо, чтобы после сообщения аккумулятору 110 - 150 % номинальной ёмкости значение зарядного тока не превышало 0,02 - 0,003 Сн А. Заряд при повышенных напряжениях можно использовать только при одновременном ограничении его длительности. При низкой температуре заряд при постоянном напряжении теряет свою эффективность из-за значительного снижения токов заряда.

При параллельном соединении батарей заряжать их надо через разделительные диоды или подключать каждую батарею к собственному зарядному устройству. Батареи не следует длительное время хранить в заряженном или полузаряженном состоянии (кроме, конечно, батарей хранения), т.к. из-за различия токов саморазряда аккумуляторов может появиться разбаланс по степени заряженности, что с одной стороны создаёт опасность перезаряда наиболее полно заряженных аккумуляторов, что снижает ёмкость батареи вследствие падения напряжения наиболее разряженных аккумуляторов. Разбаланс по уровню заряженности может привести к переполюсовке одного из аккумуляторов во время разряда и выделению на оксидно-никелевом электроде водорода, что может сопровождаться срабатыванием клапана или сигнализатора давления и даже деформацией герметичных аккумуляторов. Перед длительным хранением в разряженном состоянии рекомендуется доразрядить каждый аккумулятор на индивидуальные резисторы до напряжения не выше 0,1 В, что позволяет выровнять заряженность аккумуляторов.

Срок службы никель-кадмиевых батарей

Ресурс аккумуляторов определяется как их конструкцией, так и режимом эксплуатации. Если конкретный тип аккумулятора не имеет явных конструктивных недостатков, то определяющим фактором являются условия эксплуатации. В большинстве случаев циклирование аккумуляторов является наиболее часто употребимым способом их эксплуатации. Достаточно широкое распространение получило использование аккумуляторов в аварийных режимах, когда заряженные аккумуляторы большую часть времени хранятся в заряженном состоянии, как правило, при небольшом токе подзаряда, который компенсирует саморазряд аккумуляторов и небольшое снятие ёмкости при кратковременных подключениях аккумуляторов на нагрузку.

Работоспособность аккумуляторов при различных режимах циклирования

К основным параметрам режима эксплуатации относятся ток разряда, разрядная ёмкость, способ защиты от переразряда, ток заряда, способ защиты от перезаряда, температура. При разряде никель- кадмиевые аккумуляторы нагреваются, а в начале заряда до того как начнётся интенсивное выделение кислорода - охлаждаются.

Увеличение тока разряда и снижение температуры ведут к снижению среднего напряжения разряда и потере ёмкости, если защита от перезаряда основана на прекращении разряда при снижении напряжения до достаточно высокого уровня (выше чем 1 В на аккумулятор). Срок службы существенно зависит и от глубины разряда. Он уменьшается почти в 10 раз при её изменении от 10 до 70 %.

Снижение тока заряда ведёт к увеличению длительности заряда и уменьшению коэффициента использования тока, в результате чего снижается разрядная ёмкость, особенно, если температура заряда превышает 30 о С. Увеличение тока заряда также может приводить к снижению разрядной ёмкости, если заряд прекращается при достижении достаточно низкого напряжения (менее 1,5 В при 25 о С). КПД по энергии колеблется от 70 до 85 % и растёт при увеличении напряжения разряда, снижении напряжения заряда и увеличении КПД по току.

Срок службы герметичных аккумуляторов зависит также от сочетания значений конечного напряжения заряда и конечного напряжения разряда. Наибольшие потери ёмкости происходят при циклировании режимами, где заряд ограничивается низким напряжением (около 1,48 В), а разряд - высоким напряжением (1,10 - 1,16 В). Достаточно быстро снижается ёмкость и в тех случаях, когда заряд постоянно прекращается по срабатыванию сигнализатора давления, а глубина разряда находится на уровне 15 - 20 % с ограничением разряда по напряжению (не ниже 1,09 В). В этом случае кислород не успевает поглощаться, и избыточное давление в аккумуляторе находится на уровне 123 - 147 кПа, при этом увеличивается крутизна зарядных и разрядных кривых. Изменение характеристик связано с пассивацией активных масс электродов.

Снижение напряжения разряда может вызвано образованием в активной массе кадмиевого электрода интерметаллического соединения Ni5Cd21, которое разряжается при напряжении на аккумуляторе 1,05 - 0,95 В (так называемая «вторая площадка» или «эффект памяти»). Наиболее характерно образование этого сплава для электродов, полученных пропиткой спечённых основ. Образованию сплава способствуют заряды при повышенной температуре. Интерметаллическое соединение полностью разрушается при разряде аккумулятора до 0,8 - 0,5 В. Лучше всего проводить поэлементный разряд батареи на сопротивления, при этом напряжение каждого аккумулятора снижается до нуля вольт без опасности переполюсовки. После поэлементного доразряда ёмкость аккумуляторов восстанавливается до значений, близких к первоначальным.

Потери ёмкости уменьшаются при снижении конечного напряжения разряда с 1,16 до 1,04 В и увеличении конечного напряжения заряда с 1,48 до 1,54 В. Наибольшей стабилизации ёмкости можно добиться, уменьшив конечное напряжение разряда до 0,5-0,8 В. При дополнительном проведении периодических закорачиваний на сопротивления каждого аккумулятора батареи до нуля вольт ёмкость может даже увеличиться по сравнению с начальной

Работоспособность аккумуляторов при подзаряде

В режиме длительного подзаряда используются в основном призматические аккумуляторы. Срок эксплуатации в зависимости от тока подзаряда составляет от 2 до 15 лет и более. Оптимальным является ток, численно равный 0,001 - 0,005 Сн А. При увеличении тока подзаряда срок службы и надёжность сокращаются. При эксплуатации в режиме подзаряда типы отказов те же, что и при циклировании, но их интенсивность ниже.

На первом разряде после длительного подзаряда напряжение батареи несколько ниже, чем у свежезаряженных, но после нескольких циклов оно быстро возвращается к нормальному уровню. Снижение напряжения разряда после длительного подзаряда связано с уменьшением уровня заряженности положительного электрода.

Ёмкость аккумулятора после 10 лет подзаряда до 25 %, а после 16 лет - до 35 % выше начальной, что свидетельствует об увеличении ёмкости положительного электрода. При определении ёмкости электродов в избытке электролита в негерметичном виде установлено, что ёмкость положительного электрода возросла на 58 - 70 %, а ёмкость отрицательных электродов на 10 - 13 %. Ёмкость отрицательного электрода падает. После длительного подзаряда практически весь избыток ёмкости отрицательного электрода находится в заряженном состоянии, поэтому на разряде ёмкость аккумулятора ограничивается не положительным электродом, как в начале срока службы, а обоими электродами сразу. Напряжение заряда аккумуляторов после 10 лет подзаряда находится на обычном уровне и не превышает 1,5 В. После 16 лет подзаряда на контрольном цикле напряжение заряда повышается до 1,55 - 1,58 В, а у трети аккумуляторов оно достигает 1,6 - 1,7 В, причём, повышение с 1,55 до 1,65 В происходит в конце заряда, что также является следствием избыточной заряженности отрицательного электрода. Причины этих явлений те же, что и при циклировании аккумуляторов.

Герметичные никель-кадмиевые аккумуляторы нашего производства нашли самое широкое применение в космической, военной, общепромышленной и бытовой технике.

В настоящее время, АО «НИАИ Источник» является единственным в России разработчиком и одновременно изготовителем герметичных никель-кадмиевых аккумуляторных батарей для космических аппаратов. Нами выпускается 10 типов аккумуляторов НКГ, которые применяются в 21 батареях, работающих и работавших на таких космических аппаратах, как:

  • Международная космическая станция
  • Орбитальные станции «Мир», «Салют» и «Алмаз».
  • Межпланетные станции «Марс», «Венера» и «Вега»
  • Спутники серий «Метеор», «Молния», «Астрон», «Надежда» и «Космос».

Кроме того, аккумуляторы типа НКГ применяются в наземных установках ракетных войск стратегического назначения, на кораблях, подводных лодках и прочих объектах, где требуется обеспечение энергий вне зависимости от обстоятельств.

Руководитель отдела никель-кадмиевых аккумуляторов,

кандидат технических наук,

Электроинструмент, работающий на аккумуляторах, сейчас пользуется небывалым спросом, так как дает возможность работать автономно от сети электропитания довольно длительный срок. Такое оборудование при эксплуатации не требует дополнительной прокладки питающих удлинителей и сетевых фильтров по всему помещению, которые постоянно мешают рабочему процессу.

Многие задаются вопросом о том, какие аккумуляторы лучше подходят для аккумуляторного инструмента. Ответить на него можно, лишь сравнив достоинства и недостатки каждого типа АКБ.

Виды аккумуляторов

Аккумулятор для шуруповерта (АКБ) – это элемент устройства, в котором аккумулируется энергетический запас, необходимый для его работы. Правильный выбор этого важного компонента влияет на будущие эксплуатационные и технические свойства оборудования.

Сегодня аккумуляторные изделия применяются повсеместно: от детских игрушек и приборов для гигиены до ноутбуков и автомобилей.

Аккумуляторы бывают различных типов и подтипов, но в комплектации электроинструмента нашли широкое применение только нижеследующие:

  • никель-кадмиевые аккумуляторы (Ni-Cd);
  • никель-металлгидридные элементы (Ni-MH);
  • литий-ионные АКБ (Li-Ion);
  • литий-полимерные аккумулирующие элементы (Li-Pol).

Каждый из этих видов АКБ имеет свои отрицательные и положительные стороны, основываясь на которых нужно выбирать электроинструмент.

Важно! При первом использовании и в дальнейшей эксплуатации важные технические характеристики аккумуляторной батареи можно измерять универсальным прибором – мультиметром.

Никель-кадмиевые аккумулирующие элементы

Никель-кадмиевые батареи – самый популярный вид АКБ в шуруповертах, разработанный более века назад. Широкое распространение получил из-за достаточной энергетической емкости и высокой надежности при низкой цене.

Никель кадмиевые аккумуляторы для шуруповерта выделяются от других видов нижеследующими достоинствами:

  1. Верная эксплуатация АКБ позволяет увеличить срок ее службы до 3-4 лет;
  2. Ni-Cd аккумуляторная батарея может эксплуатироваться при низком температурном фоне без существенной потери его заряда, что дает возможность работать с инструментом на открытом воздухе зимой;
  3. Неприхотливость даже к самым экстремальным условиям работы, надежность;
  4. АКБ может разряжаться и вновь заряжаться до 1000 раз;
  5. Отличная нагрузочная способность;
  6. Вышедшие из строя компоненты можно реанимировать целым комплексом мероприятий;
  7. Такой элемент питания может довольно долгое время находиться в разряженном состоянии без потери своих основных свойств. Инструментом с таким аккумулятором можно работать вплоть до полного разряда и только после этого ставить на подзарядку – емкость АКБ не изменится в сторону уменьшения.

Имея в своем запасе немало положительных сторон, никель-кадмиевые АКБ не лишены и слабых мест, а именно:

  • высокая токсичность веществ, которыми наполнены составляющие батареи (банки), что вызывает проблемы с утилизацией отработанных элементов;
  • достаточно большой вес в сравнении с другими типами аккумуляторов;
  • высокий показатель саморазряда, который ведет к утрате емкостных качеств и общему уменьшению напряжения;
  • эффект памяти – явление, возникающее при неполной разрядке аккумуляторного элемента, когда аккумулятор запоминает это значение при включении в сеть для зарядки и при дальнейшей эксплуатации будет отключаться именно при этой отметке, а не до полного разряда.

Из-за эффекта памяти в никель-кадмиевых аккумуляторах требуется регулярно проводить реанимационные мероприятия по его устранению, которые называются «прошивка памяти».

Суть этого мероприятия заключается в воздействии на аккумулирующие компоненты высокого напряжения большего от номинального показателя. Такими процедурами удается внести коррективы в эффект памяти и увеличить потерянную емкость батареи.

Интересно знать. Многие европейские государства запретили применение никель-кадмиевых аккумуляторов в различном оборудовании и приборах в целях поддержания экологии на своих территориях.

Никель-металлгидридные аккумуляторы

Ni-MH батареи были созданы с целью устранения существенных недостатков никель-кадмиевых АКБ и обладают следующими преимуществами:

  • слабо выраженный эффект памяти;
  • практически нетоксичны;
  • высокие емкостные свойства;
  • небольшой вес и габариты;
  • компоненты аккумуляторной батареи поддаются восстановительным процедурам;
  • высокая устойчивость к повреждениям механического характера.

Однако наряду со многими плюсами выделяются и существенные минусы никель-металлгидридных аккумулирующих энергию элементов:

  • долгий заряд до полной отметки;
  • инструмент с такими элементами питания не рекомендуется эксплуатировать при минусовых температурах окружающей среды;
  • довольно высокая цена;
  • уменьшенное количество зарядных циклов (около 500-600);
  • более низкий срок службы в сравнении с другими типами батареек для шуруповертов;
  • могут быстро разряжаться;
  • батарею нельзя полностью разряжать.

На основе сравнения батарей такого типа с никель-кадмиевыми АКБ можно сделать вывод, что по эксплуатационным характеристикам последние значительно лучше.

Литий-ионные батареи

Аккумуляторы, элементы которых содержат такой химический элемент, как литий, называются литий-ионными. Этот тип элементов питания обладает огромным количеством преимуществ перед прочими типами аккумуляторов.

Плюсы Li-Ion элементов питания:

  • быстро заряжаются;
  • практически отсутствует эффект памяти;
  • почти нулевой саморазряд;
  • не утрачивают показатель емкости при процессе зарядке на любой стадии разряда АКБ;
  • не содержат в своем составе токсичных веществ и их примесей;
  • хороший срок службы – 4-7 лет;
  • небольшие размеры и вес.

Минусы литий-ионных элементов питания:

  • низкая устойчивость к повреждениям механического типа (возможен взрыв от сильного удара);
  • достаточно высокая стоимость;
  • быстро выходит из строя при глубоком разряде;
  • со временем происходит процесс разложения лития, что ведет к выходу из строя некоторых составных частей аккумуляторной системы;
  • не подлежат реанимационным мероприятиям – при выходе из строя какого-либо элемента его можно только заменить на новый;
  • быстрая разрядка при отрицательных температурах.

Важно! Литий-ионные АКБ бывают различных видов, отличаясь друг от друга габаритами, емкостью и прочими характеристиками. За свои отличные показатели емкости широкое применение получили литий-ионные аккумуляторы 18650, которые чаще всего используют при переделке Ni Cd батарей в литий-ионные.

Литий-полимерные АКБ

Li-Pol аккумуляторы – элементы питания последнего поколения, разработанные на базе литий-ионной технологии. Главное отличие таких АКБ от литий-ионных аккумуляторов заключается в замене жидкого электролита на полимерное гелеобразное вещество. Результатом изготовителю таких аккумуляторов удалось значительно увеличить их емкостные характеристики, уменьшить вес и габаритные размеры, тем самым создавая ультратонкие элементы питания.

Также стоит отметить, что такие Li-Pol аккумулирующие изделия стали менее взрывоопасны, чем их предшественники.

Явными минусами литий-полимерных АКБ для шуруповертов являются:

  • низкий срок службы – всего 2-3 года;
  • малое количество циклов заряд-разряд – всего 500;
  • дороговизна;
  • высокие требования к условиям работы.

Обратите внимание! Дрели и шуруповерты на базе литий-полимерных батарей встречаются достаточно редко из-за стоимости этой технологии. Как правило, они могут внедряться производителями в свою премиальную линейку электроинструмента.

Сравнительный рейтинг аккумуляторов

Если сравнить все типы аккумуляторов между собой по основным характеристикам, выставляя оценки от 1 до 5, то получится нижеследующая рейтинговая таблица.

Сравнительная таблица аккумуляторов по видам на 12в

Параметр Никель-кадмиевый Литий-ионный Литий-полимерный Никель-металлгидридный
Цена 5 2 1 3
Боязнь отрицательных температур 4 2 5 2
Емкость 2 4 5 3
Эффект памяти элемента 1 5 5 3
Саморазряд 2 4 5 3
Число циклов разряда-заряда 3 4 2 1
Токсичность 1 5 5 3
Боязнь глубокого разряда 5 2 3 3
Габариты 1 4 5 3
Итого баллов 24 32 36 24

Получить однозначный ответ на вопрос о том, какой аккумулятор лучше для шуруповерта, нельзя, так как каждый тип батарей имеет свои отличительные черты и подходит для различных эксплуатационных условий.

Так никель-кадмиевые батареи в шуруповерте за свою неприхотливость могут использоваться при любой температуре окружающей среды, а из-за своей низкой стоимости и возможности находиться долгое время без зарядки этот вариант электроинструмента идеален для нечастой эксплуатации в домашних условиях.

Профессионалы отдают выбор шуруповёрту на основе литий-ионных АКБ, так как такие батареи имеют высокую емкость, быстро заряжаются, не имеют саморазряда, что дает возможность эксплуатировать его длительное время без долгих зарядок.

Важно! Есть возможность переделки одного типа аккумулятора в другой, если соблюдать определенные правила и инструкции, например, из никель-кадмиевого АКБ можно сделать литий-ионный аккумулятор, закупив необходимые компоненты, новую зарядку и прочие материалы.

Выбор шуруповерта, дрели и аккумулятора для него – дело непростое, но важное, так как именно от этого элемента зависит, справится ли инструмент с возложенными на него задачами. Рекомендуется делать свой выбор, основываясь на целях использования приборов, а также оценке достоинств и недостатков каждого типа АКБ.

Видео

  • На современном этапе существует множество аккумуляторов, которые имеют разный химический состав и, по причине присутствия в них тех или иных элементов, свои характерные особенности и преимущества в эксплуатации. Никель-кадмиевые аккумуляторы появились давно. Но до сих пор являются популярными и нужными в разных сферах человеческой деятельности.

    Из истории создания

    Первые щелочные Ni-Сd аккумуляторы появились еще в конце ХХ века. Их изобрел шведский ученый Вальдмар Юнгнер, в качестве положительного заряда использовав никель, а кадмий - в качестве отрицательного. Несмотря на очевидную пользу этого изобретения, по тем временам массовое производство таких батарей было весьма дорогостоящим и энергоемким. Поэтому было отложено на промежуток почти в 50 лет.

    30-е годы прошлого столетия замечательны тем, что именно тогда была создана техника внедрения химически активных материалов пластин на пористый электрод, покрытый никелем. Массовое же производство Ni-Cd аккумуляторов началось после 50-х годов.

    Основные характеристики и преимущества

    Никель-кадмиевые аккумуляторы, в большинстве случаев, имеют цилиндрическую форму. Поэтому в простонародье их часто называют «банками». Есть и плоские Ni батарейки - например, для часов. Все зарядные элементы такого типа имеют сравнительно небольшую емкость, если сопоставлять их с (Ni-MH), появившимися значительно позже с целью усовершенствования Ni-Cd аккумуляторов.

    Однако более низкие показатели емкости не являются тем недостатком, который мог бы стать причиной для того, чтобы старый добрый кадмиевый аккумулятор был окончательно снят с производства. Один из его несомненных плюсов - это то, что при эксплулатации он нагревается не так быстро, как MH. Это значительно снижает риск его перегрева и преждевременного выхода из строя.

    Более медленный процесс нагревания Ni-Cd обусловлен тем, что химические реакции, протекающие внутри них, являются эндотермическими. Иными словами, выделяемое во время реакций тепло поглощается внутри. Что касается MH, они отличаются от кадмиевых экзотермическими реакциями с выделением большого количества тепла. В связи с этим MH нагреваются гораздо быстрее и могут «перегореть», если вовремя не прекратить их использование.

    Ni-Сd аккумуляторы имеют плотный металлический корпус, отличающийся повышенной прочностью и хорошей герметичностью. Они способны устоять при любых химических реакциях внутри и выдержать большое давление газов даже в самых худших условиях. Вплоть до понижения температуры до -40°С. Никель кадмиевые-аккумуляторы не подвержены риску самовозгорания, в отличие от современных .

    Среди них есть мощные и надежные промышленные аккумуляторы Ni, которые могут полноценно работать в течение 20-25 лет. И, несмотря на то, что на смену этим АКБ уже давно пришли MH и литиевые с большей емкостью, Ni-Cd аккумуляторы продолжают активно применяться и по сей день.

    Если говорить о ценовой категории, стоимость Ni-Cd значительно ниже, чем у других батарей. Это также является одним из их основных плюсов.

    Сфера применения

    Небольшие Ni-Cd аккумуляторы широко используются для питания различной бытовой техники и аппаратуры, преимущественно, в тех случаях, когда тот или иной прибор потребляет большое количество тока. Стандартные «банки» до сих пор обеспечивают работу электродрелей и шуруповертов. Элементы больших размеров незаменимы в общественном транспорте. Например, в троллейбусах или трамваях с целью питания цепей их управления, в судоходном деле и особенно в сфере авиации как бортовые вторичные источники тока.

    Особенности эксплуатации

    Поскольку Ni-Cd аккумуляторы заметно нагреваются, только если они заряжены полностью, большая часть устройств «понимает» это в качестве сигнала, по которому следует прекращать процесс зарядки. Для того чтобы они работали дольше, их рекомендуется быстро заряжать, а использовать - до полного разряда: в отличие от MH, никель-кадмиевые аккумуляторы глубокой разрядки не боятся.

    Этот вид АКБ - единственный из элементов питания, которые рекомендуется хранить полностью разряженными, в то время, как MH следует хранить заряженными полностью, и им периодически нужна проверка напряжения на выходе. Такая разница, при существенном отличии в эксплуатации, безусловно, является еще одним очевидным пунктом в пользу Ni-Cd.

    При долгом хранении без использования в разряженном виде с батарейками не случится ничего страшного. Но, чтобы привести их в рабочее состояние, нужно два-три раза провести им полный цикл «заряд-разряд». Лучше делать это незадолго до применения, можно за сутки, и тогда никель-кадмиевые аккумуляторы будут работать с оптимальной токоотдачей.

    Любой Ni-Cd, применяемый в быту, при его питании током небольшой величины и периодической неполной разрядкой может значительно потерять емкость, что создает впечатление полного выхода АКБ из строя. Если Ni-Cd долгое время находился на подзарядке, например, в устройстве с постоянным питанием, он тоже лишится определенного показателя ёмкости, хотя уровень его напряжения, при этом, будет верным.

    Это значит, что использовать Ni-Cd в режиме постоянной подпитки и «недоразряда» не стоит, а если такое все же произошло с батарейкой, одного цикла глубокой разрядки с последующим полным зарядом будет достаточно для того, чтобы емкость была восстановлена.

    Такой эффект называется «эффектом памяти» и возникает, когда не до конца разряженная батарея подвергалась подзарядке раньше, чем она разрядится полностью. Дело в том, что при производстве никель-кадмиевых аккумуляторов используются так называемые прессованные электроды. Это очень удобно, так как «прессовка» высокотехнологична и обходится дешевле. Но именно ее химический состав склонен к «эффекту памяти» - иными словами, к появлению в электрохимическом составе АКБ «лишнего» двойного электрического слоя в виде крупных кристаллов, что обусловливает снижение напряжения.

    Именно поэтому Ni-Cd элементы так «любят» полный и глубокий разряд, после которого, «очистив память», они могут долгое время работать полноценно.

    Восстановление никель-кадмиевого аккумулятора

    Восстановление водой

    Можно попробовать провести восстановление работоспособности Ni-Cd аккумуляторов с помощью самого обычного электролита в виде дистилированной воды.

    Для этого понадобится несколько нехитрых инструментов и приспособлений:

    • паяльная кислота ;
    • одноразовый шприц ;
      паяльник ;
    • немного дистилированной воды .

    Обычно аккумуляторный блок, находящийся внутри дрели или шуруповерта, выглядит как связка из нескольких металлических «банок», обернутых плотной бумагой. Для того чтобы понять, какая «банка» в связке самая слабая, нужно вначале измерить напряжение на полюсах каждого элемента. Как проверить напряжение? Очень просто, с помощью мультиметра или тестера. Чаще всего, показатель напряжения у самых слабых «банок» близок или равен нулю.

    Для того чтобы начать процесс восстановления, нужно просверлить в батарейке небольшое отверстие, предварительно освободив ее от бумаги или этикетки. Сделать это можно с помощью шуруповерта, используя острый саморез №16. Важно позаботиться о том, чтобы не повредить внутренность аккумулятора, а просверлить только его внешнюю оболочку.

    В данном случае стоит отметить еще одно несомненное преимущество: в таких батареях, вследствие их конструкции, повышенной герметичности и особенности протекающих химических реакций, не происходит самопроизвольного возгорания. Поэтому любительские методы возвращения никель-кадмиевых элементов к жизни являются безопасными, в отличие от проведения подобного рода манипуляций с современными литиевыми батареями, склонными к взрывам и вздутиям.

    В одноразовый шприц набирается 1 мл дистилированной воды, и АКБ постепенно заполняется ею. При этом важно не торопиться, следить за тем, чтобы вода постепенно проникала внутрь батареи. Дистилированная вода нужна для возвращения и создания необходимой плотности электролита внутри АКБ. После того как вода будет залита, отверстие закрывается паяльной кислотой, которая берется на спичку, и запаивается хорошо разогретым паяльником.

    Некоторые умельцы утверждают, что, если вместо дистилированной воды залить внутрь батареи электролит от шахтерских фонариков, АКБ будет работать гораздо лучше и дольше.

    В заключение нужно снова провести замеры напряжения мультиметром и поставить аккумулятор на зарядку. Конечно, паяная батарея прослужит недолго, но это может помочь выиграть какое-то время перед приобретением новой.

    Восстановление методом запзаппинга

    Для никель-кадмиевых аккумуляторов существует проверенный, но весьма рискованный метод восстановления, который называется запзаппинг. Суть его заключается в том, что батарейки подвергаются коротким разрядам очень высоких токов, в десятки раз превышающих норму. Каждый элемент в буквальном смысле слова «прожигается» короткосекундными токовыми импульсами в 10, 20 ампер и выше.

    Запзаппинг требует хорошей подготовки любителя электроники и соблюдения техники безопасности в виде защитных очков и, желательно, спецодежды. Утверждается, что он восстанавливает элементы, не употреблявшиеся 20 лет и более. Следует помнить о том, что запзаппинг применим исключительно к никель-кадмиевым аккумуляторам. Восстановление Ni-MH аккумуляторов таким способом проводить не рекомендуется.

    Цикл разряд-заряд

    Для того чтобы устранить «эффект памяти» , нужно разрядить АКБ до 0,8-1 вольта, после чего полностью зарядить ее снова . Если батарея не восстанавливалась в течение долгого времени, таких циклов можно провести несколько, а для минимизации «эффекта памяти» тренировать батарею таким образом желательно раз в месяц.

    Что же касается популярного «школьного» метода, подразумевающего заморозку NiСd или NiMH аккумуляторов в морозильной камере - невзирая на то, что эффективность этого способа весьма сомнительна, в сети можно найти большое количество информации о «восстановлении» батареек путем помещения их в холодильник. На самом деле, лучше применить способ восстановления элементов дистиллированной водой - по крайней мере, в данном случае шансов реанимировать их будет гораздо больше.

    Итак, никель-кадмиевые аккумуляторы не уступают современным батареям по ряду преимуществ своих технических характеристик. Они по-прежнему надежные, прочные, недорогие и максимально безопасны в применении.



    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков