Правила эксплуатации никель-кадмиевых аккумуляторов. Никель-кадмиевые аккумуляторы (NiCd) в электроинструментах

Правила эксплуатации никель-кадмиевых аккумуляторов. Никель-кадмиевые аккумуляторы (NiCd) в электроинструментах

Все о никель-кадмиевых аккумуляторах: характеристики, эксплуатация, плюсы и минусы

Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.


В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni─Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.



Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH — ⇒ NiOOH + H 2 O + e —

В процессе разряда

NiOOH + H 2 O + e — ⇒ Ni(OH) 2 + OH —

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • α- Ni(OH) 2 ;
  • β-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма β-Ni(OH) 2 превращается в β-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование γ-NiOOH. Количество фаз β и γ гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза γ интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования γ-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы β составляет 4,15, а фазы γ─3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства β и γ также отличаются. Для формы γ-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы β. Форма γ также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для β.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e − ⇒ Cd + 2OH −

При разряде

Cd + 2OH − ⇒ Cd(OH) 2 + 2e −

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20─70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10─15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40─45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03─0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15─18 Вт-ч на килограмм и 35─45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.


Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5─10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3─5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7─10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.



Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0─40 градусов Цельсия. Рекомендуемый интервал 10─30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6─7 часов током 0,2 от ёмкости;
  • 3─4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120─140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

/ Никель-кадмиевые аккумуляторы в электроинструментах

Никель-кадмиевые аккумуляторы (NiCd) в электроинструментах

В настоящее время на рынке ручных строительных инструментов с каждым годом увеличивается доля, приходящаяся на инструменты с питанием от аккумуляторной батареи. Аккумуляторные блоки питания (АКБ) электроинструментов бывают нескольких типов: никель-кадмиевые, никель-металлогидридные и литий-ионные . На сегодняшний день наиболее распространены АКБ на основе никеля. В этой статье будут подробно рассмотрены характеристики никель-кадмиевой батареи.

Корпус никель-кадмиевых аккумуляторных элементов (NiCd) выполнен из никелированной листовой стали, которая одновременно является отрицательным полюсом. Сами электроды изготовлены в виде фольги из никель-кадмиевых соединений согласно технологии агломерации. Такая фольга размещается как обмотка вместе с изолирующим слоем (сепаратором), через который просачивается электролит. Сам электролит имеет пастообразную консистенцию и состоит в основном из воды и гидроксида калия (калийного щелока).

Аккумуляторный элемент представляет собой замкнутую систему, которая изолирована от внешней среды. Благодаря этому электролит не может просочиться наружу. При обычной зарядке и разрядке газообмен происходит внутри электролита. При нестандартных рабочих состояниях, например коротком замыкании или слишком высоком значении зарядного тока, в аккумуляторном элементе в результате происходящего тепловыделения может образоваться избыточное давление. Чтобы предотвратить разрушение аккумуляторного элемента, высококачественные аккумуляторные элементы снабжаются предохранительным клапаном, который снижает давление. В заряженном статическом состоянии напряжение аккумуляторного элемента между отрицательным и положительным полюсами составляет 1,2 В.

Техническое обслуживание:

Никель-кадмиевые аккумуляторы, используемые в электроинструментах, не нуждаются в техобслуживании. Они могут храниться как в заряженном, так и незаряженном состоянии. После того как аккумулятор разрядился, нет необходимости его немедленно заряжать. В этом заключается существенное отличие данных аккумуляторов от свинцово-кислотных. Никель-кадмиевые батареи следует по возможности разряжать полностью, но не до глубокого разряда. Говорить о полном разряде аккумулятора в электроинструменте можно уже тогда, когда мощность прибора заметно снижена. Разряд до полной остановки двигателя или полный разряд электрического карманного фонарика, когда уже не светится лампочка, вызывает глубокий разряд и способен повредить сам аккумулятор.


Вольт-амперная характеристика:

Вольт-амперная характеристика никель-кадмиевых аккумуляторов зависит от их размера (емкости) и конструкции. Чем больше аккумуляторный элемент оптимизирован к сопротивлению тока большой силы, тем стабильнее напряжение при разряде. Если сравнить аккумуляторные батареи одной конструкции, но разной емкости, то зачастую аккумулятор повышенной емкости имеет большее сопротивление тока большой силы. В результате многочисленных проверок и испытаний производители высококачественных электроинструментов нашли оптимальный баланс между энергоемкостью и сопротивлением тока большой силой.

Эффект памяти:

Пользуясь никель-кадмиевыми аккумуляторами, их необходимо всегда и полностью разряжать и только после этого снова заряжать. При несоблюдении данного правила может возникнуть так называемый эффект памяти. Подобные частичные разряды и следующие за ними частичные заряды способны привести к образованию кристаллов на отрицательном электроде, из-за чего уменьшается первоначальная емкость аккумулятора и падает напряжение при разряде. При подключении электронного прибора в сеть функция стабилизации напряжения срабатывает в результате преждевременного отключения прибора. Приборы с двигателем, например электроинструменты, реагируют на это снижением скорости вращения. Не слишком ярко выраженный эффект памяти является обратимым. Для этого необходимо повторить несколько "обычных" циклов разряда-заряда, во время которых следует использовать так называемые быстрозарядные устройства с высоким зарядным током.

Саморазряд:

В процессе хранения никель-кадмиевые аккумуляторы разряжаются сами. Процесс саморазряда главным образом зависит от температуры и качества аккумуляторного элемента. Хранение при высоких температурах и некачественно изготовленные аккумуляторные элементы способствуют саморазряду. При комнатной температуре время разряда составляет примерно 3-4 мес.

Температурная характеристика:

Как почти любой химический процесс, химическая реакция при низких температурах протекает медленнее, чем при высоких. В первую очередь это относится к густым электролитам никель-кадмиевых аккумуляторов. Таким образом, при низкой температуре они дают менее высокий ток разряда, чем при комнатной температуре. Кроме того, их нельзя заряжать током большой силы при низкой температуре. Нижняя предельная температура равна примерно -15С.

Экологическая безопасность:

Никель-кадмиевые аккумуляторы содержат как никелевые, так и кадмиевые соединения. Кадмиевые соединения являются высокотоксичными. При ненадлежащей утилизации кадмий из аккумуляторов способен образовывать очень ядовитые соединения, потенциально опасные для окружающей среды. Следовательно, по окончании срока службы никель-кадмиевые аккумуляторы следует утилизировать надлежащим образом и отправить их на вторичную переработку, как это предусмотрено соответствующими законодательными нормами. При надлежащей утилизации процент пригодных к вторичной переработке никель-кадмиевых аккумуляторов является самым высоким по сравнению с другими аккумуляторными системами. Благодаря вторичной переработке никель-кадмиевые батареи не наносят ущерба окружающей среде. Поэтому производители высококачественных электроинструментов предоставляют специальные услуги по вторичной переработке NiCd-аккумуляторов.

Несмотря на то, что никель-кадмиевые аккумуляторы с этого года запрещены к производству в странах Евросоюза, эти неустанные труженики до сих пор используются во многих недорогих и мощных автономных устройствах (шуруповерты, электробритвы, фонари).

Даже если в инструкции по эксплуатации о типе аккумулятора устройства ничего не сказано, определить то, что именно никель-кадмиевый аккумулятор служит источником тока достаточно просто - чаще всего время зарядки указывается в диапазоне 5-12 часов и присутствует указание на необходимость самостоятельного отключение зарядного по истечению времени заряда.

Для никель-кадмиевых батарей предпочтительнее быстрая импульсная зарядка чем медленная постоянным током. Эти батареи могут выдать большую мощность, что что определяет их выбор для мощных автономных устройств. Никель-кадмиевые батареи единственный тип батарей, который выдерживает полную разрядку при большой нагрузке без каких-либо последствий. Остальные типы батарей требуют неполной разрядки при относительно невысоких мощностных нагрузках.

Никель-кадмиевые батареи не любят длительной зарядки при эпизодической небольшой нагрузке. Периодическая полная разрядка необходима для них как воздух для человека - при отсутствии полной разрядки на электродах образуются большие кристаллы металла (что приводит к проявлению так называемого "эффекта памяти") - аккумулятор скачкообразно теряет свою емкость. Для долгой и эффективной работы NiCd батарей необходимы циклы обслуживания батареи - полная разрядка с последующей полной зарядкой, исходя из большинства рекомендаций - раз в месяц, в крайнем случае раз в 2-3 месяца.

Никель-кадмиевые аккумуляторы являются самыми «дуракоустойчивыми» из современных массовых аккумуляторов - для их использования не требуется даже системы мониторирования параметров аккумулятора, что определяет их использование в недорогих и мощных устройствах.

Зарядка малыми токами за 5-12 часов позволяет обойтись без каких-либо предосторожностей в виде систем контроля заряда-разряда. При перезаряде аккумулятор просто медленно будет терять емкость (на радость производителя). Необходимо помнить об этом при использовании «bad-boy» зарядных устройств (зарядных без механизма автоматического контроля заряда). Поэтому, лучше всего заряжать полностью разряженный аккумулятор и строго соблюдать время зарядки, что позволит сохранить емкость NiCd аккумулятора достаточно долгое время.

При использовании «быстрой» зарядки (со временем заряда менее 5 часов) желательно иметь зарядное устройство с температурным датчиком, поскольку при заряде повышается температура аккумулятора, вместе с температурой растет емкость, с ростом емкости зарядный прибор может перезарядить батарею свыше необходимого уровня, что приводит к еще большему росту температуры (явление «терморазгона» аккумулятора) и, как минимум, к ухудшению параметров батареи. Подобная ситуация существует и при заряде батареи при низких температурах. Температурный датчик позволяет сдвинуть параметры заряда в зависимости от температуры аккумулятора, а также отключить батарею от заряда при превышении скорости роста температуры выше 1 градуса Цельсия в минуту или по достижении температуры батареи в 60 градусов Цельсия что позволяет избежать трагических последствий терморазгона.

В качестве иллюстрации необходимости термодатчика в зарядном могу привести пример двухлетней давности заряда никель-кадмиевой батареи для профессионального шуруповерта на зарядном без термодатчика (на фото - это самое зарядное устройство), позволяющего заряжать батарею ускоренным темпом – за час. В то время была температура в квартире около 30°C, зарядное автоматически должно заряжать аккумулятор до достижения целевого напряжения и автоматически отключаться, что английским по-белому было сказано в инструкции в разделе безопасность. Утром первый аккумулятор из комплекта был заряжен без всяких эксцессов – через 50 минут зарядное отключилось, ближе к вечеру второй аккумулятор при заряде преподнес сюрприз: из-за отсутствия термодатчика в зарядном, батарея вошла в режим терморазгона. Так как заряд был ускоренным проблема была замечена поздно – когда аккумулятор пошел дымом и стал разбрызгивать горячий электролит. Быстро отключенный от сети зарядник удалось спасти. Аккумулятор же еще долго сопел в агонии, пытаясь причинить как можно больше вреда при отходе в мир иной, однако ему это не удалось и вред ограничился стоимостью самого аккумулятора – 15USD. С тех пор зарядное подключается к сети через таймер.

Несмотря на свои недостатки, никель-кадмиевые аккумуляторы до сих пор существуют среди нас. Надеюсь, немного теории и практического опыта, изложенного в статье, позволят читателю получить от никель-кадмиевого аккумулятора своего устройства максимум того, на что он способен.

  • На современном этапе существует множество аккумуляторов, которые имеют разный химический состав и, по причине присутствия в них тех или иных элементов, свои характерные особенности и преимущества в эксплуатации. Никель-кадмиевые аккумуляторы появились давно. Но до сих пор являются популярными и нужными в разных сферах человеческой деятельности.

    Из истории создания

    Первые щелочные Ni-Сd аккумуляторы появились еще в конце ХХ века. Их изобрел шведский ученый Вальдмар Юнгнер, в качестве положительного заряда использовав никель, а кадмий - в качестве отрицательного. Несмотря на очевидную пользу этого изобретения, по тем временам массовое производство таких батарей было весьма дорогостоящим и энергоемким. Поэтому было отложено на промежуток почти в 50 лет.

    30-е годы прошлого столетия замечательны тем, что именно тогда была создана техника внедрения химически активных материалов пластин на пористый электрод, покрытый никелем. Массовое же производство Ni-Cd аккумуляторов началось после 50-х годов.

    Основные характеристики и преимущества

    Никель-кадмиевые аккумуляторы, в большинстве случаев, имеют цилиндрическую форму. Поэтому в простонародье их часто называют «банками». Есть и плоские Ni батарейки - например, для часов. Все зарядные элементы такого типа имеют сравнительно небольшую емкость, если сопоставлять их с (Ni-MH), появившимися значительно позже с целью усовершенствования Ni-Cd аккумуляторов.

    Однако более низкие показатели емкости не являются тем недостатком, который мог бы стать причиной для того, чтобы старый добрый кадмиевый аккумулятор был окончательно снят с производства. Один из его несомненных плюсов - это то, что при эксплулатации он нагревается не так быстро, как MH. Это значительно снижает риск его перегрева и преждевременного выхода из строя.

    Более медленный процесс нагревания Ni-Cd обусловлен тем, что химические реакции, протекающие внутри них, являются эндотермическими. Иными словами, выделяемое во время реакций тепло поглощается внутри. Что касается MH, они отличаются от кадмиевых экзотермическими реакциями с выделением большого количества тепла. В связи с этим MH нагреваются гораздо быстрее и могут «перегореть», если вовремя не прекратить их использование.

    Ni-Сd аккумуляторы имеют плотный металлический корпус, отличающийся повышенной прочностью и хорошей герметичностью. Они способны устоять при любых химических реакциях внутри и выдержать большое давление газов даже в самых худших условиях. Вплоть до понижения температуры до -40°С. Никель кадмиевые-аккумуляторы не подвержены риску самовозгорания, в отличие от современных .

    Среди них есть мощные и надежные промышленные аккумуляторы Ni, которые могут полноценно работать в течение 20-25 лет. И, несмотря на то, что на смену этим АКБ уже давно пришли MH и литиевые с большей емкостью, Ni-Cd аккумуляторы продолжают активно применяться и по сей день.

    Если говорить о ценовой категории, стоимость Ni-Cd значительно ниже, чем у других батарей. Это также является одним из их основных плюсов.

    Сфера применения

    Небольшие Ni-Cd аккумуляторы широко используются для питания различной бытовой техники и аппаратуры, преимущественно, в тех случаях, когда тот или иной прибор потребляет большое количество тока. Стандартные «банки» до сих пор обеспечивают работу электродрелей и шуруповертов. Элементы больших размеров незаменимы в общественном транспорте. Например, в троллейбусах или трамваях с целью питания цепей их управления, в судоходном деле и особенно в сфере авиации как бортовые вторичные источники тока.

    Особенности эксплуатации

    Поскольку Ni-Cd аккумуляторы заметно нагреваются, только если они заряжены полностью, большая часть устройств «понимает» это в качестве сигнала, по которому следует прекращать процесс зарядки. Для того чтобы они работали дольше, их рекомендуется быстро заряжать, а использовать - до полного разряда: в отличие от MH, никель-кадмиевые аккумуляторы глубокой разрядки не боятся.

    Этот вид АКБ - единственный из элементов питания, которые рекомендуется хранить полностью разряженными, в то время, как MH следует хранить заряженными полностью, и им периодически нужна проверка напряжения на выходе. Такая разница, при существенном отличии в эксплуатации, безусловно, является еще одним очевидным пунктом в пользу Ni-Cd.

    При долгом хранении без использования в разряженном виде с батарейками не случится ничего страшного. Но, чтобы привести их в рабочее состояние, нужно два-три раза провести им полный цикл «заряд-разряд». Лучше делать это незадолго до применения, можно за сутки, и тогда никель-кадмиевые аккумуляторы будут работать с оптимальной токоотдачей.

    Любой Ni-Cd, применяемый в быту, при его питании током небольшой величины и периодической неполной разрядкой может значительно потерять емкость, что создает впечатление полного выхода АКБ из строя. Если Ni-Cd долгое время находился на подзарядке, например, в устройстве с постоянным питанием, он тоже лишится определенного показателя ёмкости, хотя уровень его напряжения, при этом, будет верным.

    Это значит, что использовать Ni-Cd в режиме постоянной подпитки и «недоразряда» не стоит, а если такое все же произошло с батарейкой, одного цикла глубокой разрядки с последующим полным зарядом будет достаточно для того, чтобы емкость была восстановлена.

    Такой эффект называется «эффектом памяти» и возникает, когда не до конца разряженная батарея подвергалась подзарядке раньше, чем она разрядится полностью. Дело в том, что при производстве никель-кадмиевых аккумуляторов используются так называемые прессованные электроды. Это очень удобно, так как «прессовка» высокотехнологична и обходится дешевле. Но именно ее химический состав склонен к «эффекту памяти» - иными словами, к появлению в электрохимическом составе АКБ «лишнего» двойного электрического слоя в виде крупных кристаллов, что обусловливает снижение напряжения.

    Именно поэтому Ni-Cd элементы так «любят» полный и глубокий разряд, после которого, «очистив память», они могут долгое время работать полноценно.

    Восстановление никель-кадмиевого аккумулятора

    Восстановление водой

    Можно попробовать провести восстановление работоспособности Ni-Cd аккумуляторов с помощью самого обычного электролита в виде дистилированной воды.

    Для этого понадобится несколько нехитрых инструментов и приспособлений:

    • паяльная кислота ;
    • одноразовый шприц ;
      паяльник ;
    • немного дистилированной воды .

    Обычно аккумуляторный блок, находящийся внутри дрели или шуруповерта, выглядит как связка из нескольких металлических «банок», обернутых плотной бумагой. Для того чтобы понять, какая «банка» в связке самая слабая, нужно вначале измерить напряжение на полюсах каждого элемента. Как проверить напряжение? Очень просто, с помощью мультиметра или тестера. Чаще всего, показатель напряжения у самых слабых «банок» близок или равен нулю.

    Для того чтобы начать процесс восстановления, нужно просверлить в батарейке небольшое отверстие, предварительно освободив ее от бумаги или этикетки. Сделать это можно с помощью шуруповерта, используя острый саморез №16. Важно позаботиться о том, чтобы не повредить внутренность аккумулятора, а просверлить только его внешнюю оболочку.

    В данном случае стоит отметить еще одно несомненное преимущество: в таких батареях, вследствие их конструкции, повышенной герметичности и особенности протекающих химических реакций, не происходит самопроизвольного возгорания. Поэтому любительские методы возвращения никель-кадмиевых элементов к жизни являются безопасными, в отличие от проведения подобного рода манипуляций с современными литиевыми батареями, склонными к взрывам и вздутиям.

    В одноразовый шприц набирается 1 мл дистилированной воды, и АКБ постепенно заполняется ею. При этом важно не торопиться, следить за тем, чтобы вода постепенно проникала внутрь батареи. Дистилированная вода нужна для возвращения и создания необходимой плотности электролита внутри АКБ. После того как вода будет залита, отверстие закрывается паяльной кислотой, которая берется на спичку, и запаивается хорошо разогретым паяльником.

    Некоторые умельцы утверждают, что, если вместо дистилированной воды залить внутрь батареи электролит от шахтерских фонариков, АКБ будет работать гораздо лучше и дольше.

    В заключение нужно снова провести замеры напряжения мультиметром и поставить аккумулятор на зарядку. Конечно, паяная батарея прослужит недолго, но это может помочь выиграть какое-то время перед приобретением новой.

    Восстановление методом запзаппинга

    Для никель-кадмиевых аккумуляторов существует проверенный, но весьма рискованный метод восстановления, который называется запзаппинг. Суть его заключается в том, что батарейки подвергаются коротким разрядам очень высоких токов, в десятки раз превышающих норму. Каждый элемент в буквальном смысле слова «прожигается» короткосекундными токовыми импульсами в 10, 20 ампер и выше.

    Запзаппинг требует хорошей подготовки любителя электроники и соблюдения техники безопасности в виде защитных очков и, желательно, спецодежды. Утверждается, что он восстанавливает элементы, не употреблявшиеся 20 лет и более. Следует помнить о том, что запзаппинг применим исключительно к никель-кадмиевым аккумуляторам. Восстановление Ni-MH аккумуляторов таким способом проводить не рекомендуется.

    Цикл разряд-заряд

    Для того чтобы устранить «эффект памяти» , нужно разрядить АКБ до 0,8-1 вольта, после чего полностью зарядить ее снова . Если батарея не восстанавливалась в течение долгого времени, таких циклов можно провести несколько, а для минимизации «эффекта памяти» тренировать батарею таким образом желательно раз в месяц.

    Что же касается популярного «школьного» метода, подразумевающего заморозку NiСd или NiMH аккумуляторов в морозильной камере - невзирая на то, что эффективность этого способа весьма сомнительна, в сети можно найти большое количество информации о «восстановлении» батареек путем помещения их в холодильник. На самом деле, лучше применить способ восстановления элементов дистиллированной водой - по крайней мере, в данном случае шансов реанимировать их будет гораздо больше.

    Итак, никель-кадмиевые аккумуляторы не уступают современным батареям по ряду преимуществ своих технических характеристик. Они по-прежнему надежные, прочные, недорогие и максимально безопасны в применении.

    Канал nespokoyniy рассказал, как восстановить севшую акб, которая установлена на шуруповерте. В нашем случае никель кадмиевый аккумулятор. Купить все нужное для восстановления можно с бесплатной доставкой в этом китайском магазине .
    Разобрал коробочки-боксы. Так они выглядят.

    Решил восстановить, потому что заряд в никель-кадмиевой акб отсутствует. Причина в том, что несколько банок не набирают емкостей и, соответственно, вся батарея не принимает заряд, работы нет. В батарее 1300 емкость. По одной баночке этим аппаратом пытался зарядить, по очереди. Посмотрел, насколько каждая заряжается. В данном случае, если подписывал верхний банка 1781, 1888, это при том, что норма 1300 написано. На некоторых 68, 73, 50, другие нормально 1340, 1359. Какие-то нормальные, отдельные не берут заряд.

    Аккумулятор или любой источник примерно на 12 вольт. На коленках примотал 2 проводка плюс-минус и делаем так называемый старт аккумулятора. На баночку, которая 1.2 вольт, проводками касаемся. Происходит маленький щелчок, на одну секунду, убираем. Делаем так 3-4 раза.
    После этого начинаем заряжать по-новому от IMAX B6. В данный момент идет заряд. Видно 1382 уже набрал за примерно 1.5 часа. 1383, 1.76 вольт, процессор решает, сколько вольтаж давать. Сначала программируем, потом задаем. Одна банка 1.2 вольта, заряжается. Та, которая набрала 1387 больше не берет. Изначально предусмотрено 71. Уже, грубо говоря, 1400. После такого старта, короткого касания мощным напряжением, практически 10 кратным. Также здесь, не будем шевелить, могут крокодильчики отцепиться. Так же была банка, указано было 40, набрано 1426 и тому подобное, банка была 80 с чем-то, то есть все набирают больше 1300. Таким образом, планируется прогнать. Еще для этого аккумулятора осталось пару баночек сделать.
    Продолжение с 4 минуты на видео о методе восстановления никель-кадмиевого вышедшего из режима работоспособности аккумулятора.

    Есть способ .

    Три способа отремонтировать аккумулятор шуруповерта

    Если у вас вышел из строя аккумулятор шуруповерта, то есть несколько способов его починить.

    1. Заменить “дохлую” банку.

    Разберем этот способ на примере шуруповерта на12 V, NiCd (никелькадмиевая батарея). Его аккумуляторная батарея внутри имеет 10 банок по 1.2 вольта соединенных последовательно, что на выходе нам дает 12 вольт(1.2*10=12). Емкость всех банок одинаковая, к примеру 1.5 Аh.


    При последовательном соединении банок мы имеем на выходе те же 1.5 Аh. Вольтметром замеряем напряжение на каждой банке. Обычно аккумулятор выходит из строя из-за одной банки. У “мертвой” банки напряжение будет ниже всех.


    Ее нужно заменить на другую. А где ее взять?Если у вас два “сдохших” аккумулятора, то из двух можно сделать один. Можно спросить у знакомых, у многих есть старые “шурики” в гараже. Можно заказать банку в Китае. Главное чтобы элемент(банка) был полностью идентичен по напряжению и емкости остальным элементам аккумулятора.Покупать банки надо с уже приваренными пластинками, так как паять сами банки не желательно. Припаиваем пластинки между собой как у старых так и у новых элементов.

    2 . Полностью заменить все элементы

    3. Переделать батарею на литий ионную

    Нужно приобрести в Китае высокотоковые литиевые банки нужной емкости, балансировочную плату BMS для их зарядки. Можно купить еще разъем и зарядку для этих банок. Но можно заряжать стандартной зарядкой. Подробно об этой переделке можно прочитать на моем канале.
    https://zen.yandex.ru/media/master_dom/

    Ремонт акб шуруповерта Makita

    Здравствуйте, дорогие читатели. Есть у моего приятеля хороший шуруповерт Makita 6271. “Шурик” классный, хоть и старый, но аккумуляторы уже давно сдохли. Попросил он меня переделать аккумы на литий ионные. Все комплектующие я заказал в Китае, дождался посылок и приступил к переделке.
    Из старых “банок” понадобятся только две верхних, на которых сидит клеммная колодка.

    Освобождаем корпус и удаляем в нем все пластиковые выступы.

    Ставить я решил 3 аккума, типа 18650, балансировочную плату на 20 А и гнездо для зарядки. Аккумуляторы нужны высокотоковые, с током разряда 20 или 30 А.

    Скрутил аккумуляторы изолентой и спаял. Паять нужно быстро, не перегревая банку.

    Затем припаял необходимые провода к аккумуляторам, следуя схеме на плате.


    Провода изначально взял длиннее, чем того требовалось.

    После пайки обклеил контакты двухсторонним скотчем.


    Гнездо, клеммы и датчик температуры (ТД) соединил следующим образом:


    Сам датчик имеет примерно вод такой вид. Его нужно отпаять от минусовой клеммы и припаять к контакту В-, что позволит заряжать батарею родной зарядкой.


    Приготовил гнездо для зарядного.


    Собрал все элементы, спаял следуя схемам и закрыл корпус.


    Гнездо под второе зарядное сделал на всякий случай, цена одного гнезда около 5 рублей.

    Если покупать зарядку, то лучше брать с такими параметрами.Все работает, батарея получилась очень легкой. Удачных и вам переделок.


    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков