У какого двигателя стирлинга лучшая конструкция с максимальным кпд. Мощный двигатель стирлинга своими руками

У какого двигателя стирлинга лучшая конструкция с максимальным кпд. Мощный двигатель стирлинга своими руками

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.
В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

  • Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга - решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный) .

Недостатки

  • Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Тепло не подводится к рабочему телу непосредственно , а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
  • Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬ
Термоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

Рисунок 1. Поющее пламя Хиггинса

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

Рисунок 3. Трубка Сондхаусса.

Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.
Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания. » Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect ) - эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре - закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы и микрокондиционеры.

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла".
Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.
Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации - в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы - его горячая часть. Однако на самом деле не всё так просто - добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение - например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) - область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил - стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее - возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

Двигатель Стирлинга – двигатель с внешним подводом тепла. Внешний подвод тепла – это очень удобно, когда есть необходимость использовать в качестве источника тепла не органические виды топлива. Например, можно использовать солнечную энергию, геотермальную энергию, бросовое тепло с различных предприятий.

Приятная особенность цикла Стирлинга – это то, что его КПД равен КПД цикла Карно . Естественно у реальных двигателей Стирлинга эффективность ниже и зачастую намного. Двигатель Стирлинга начал своё существование с устройства, имеющего множество подвижных деталей, таких как поршни, шатуны, коленчатый вал, подшипники . К тому же еще и ротор генератора крутился (Рисунок 1).


Рисунок 1 – Двигатель Стирлинга альфа типа

Посмотрите на двигатель Стирлинга Альфа типа. При вращении вала поршни начинают перегонять газ то из холодного в горячий цилиндр, то наоборот, из горячего в холодный. Но они не просто перегоняют, а ещё и сжимают и расширяют. Совершается термодинамический цикл. Можно мысленно представить на картинке, что когда вал повернётся так, что ось, на которую крепятся шатуны, окажется вверху, то это будет момент наибольшего сжатия газа, а когда внизу, то расширения. Правда это не совсем так из-за тепловых расширений и сжатий газа, но примерно всё же всё это так.

Сердцем двигателя является так называемое ядро, которое состоит из двух теплообменников – горячего и холодного и между ними находится регенератор. Теплообменники обычно делаются пластинчатыми, а регенератор – это чаще всего стопка, набранная из металлической сетки. Зачем нужны теплообменники понятно – нагревать и охлаждать газ, а зачем нужен регенератор? А регенератор – это настоящий тепловой аккумулятор. Когда горячий газ движется в холодную сторону, он нагревает регенератор и регенератор запасает тепловую энергию. Когда газ движется из холодной на горячую сторону, то холодный газ подогревается в регенераторе и таким образом это тепло, которое без регенератора бы безвозвратно ушло на нагрев окружающей среды, спасается. Так что, регенератор – крайне необходимая вещь. Хороший регенератор повышает КПД двигателя примерно в 3,6 раза.

Любителям, которые мечтают построить подобный двигатель самостоятельно, хочу рассказать подробнее про теплообменники. Большинство самодельных двигателей Стирлинга, из тех что я видел, вообще не имеют теплообменников (я про двигатели альфа типа). Теплообменниками являются сами поршни и цилиндры. Один цилиндр нагревается, другой охлаждается. При этом площадь теплообменной поверхности, контактирующей с газом совсем мала. Так что, есть возможность значительно увеличить мощность двигателя, поставив на входе в цилиндры теплообменники. И даже на рисунке 1 пламя направлено прямиком на цилиндр, что в заводских двигателях не совсем так.

Вернёмся к истории развития двигателей Стирлинга. Итак, пускай двигатель во многом хорош, но наличие маслосъёмных колец и подшипников снижало ресурс двигателя и инженеры напряжённо думали, как его улучшить, и придумали.

В 1969 году Вильям Бейл исследовал резонансные эффекты в работе двигателя и позже смог сделать двигатель, для которого не нужны ни шатуны ни коленчатый вал. Синхронизация поршней возникала из-за резонансных эффектов. Этот тип двигателей стал называться свободнопоршневым двигателем (Рисунок 2).


Рисунок 2 – Свободнопоршневой двигатель Стирлинга

На рисунке 2 показан свободнопоршневой двигатель бета типа. Здесь газ переходит из горячей области в холодную, и наоборот, благодаря вытеснителю (который движется свободно), а рабочий поршень совершает полезную работу. Вытеснитель и поршень совершают колебания на спиральных пружинах, которые можно видеть в правой части рисунка. Сложность в том, что их колебания должны быть с одинаковой частотой и с разностью фаз в 90 градусов и всё это благодаря резонансным эффектам. Сделать это довольно трудно.

Таким образом, количество деталей уменьшили, но при этом ужесточились требования к точности расчётов и изготовления. Но надёжность двигателя, несомненно, возросла, особенно в конструкциях, где в качестве вытеснителя и поршня применяются гибкие мембраны. В таком случае в двигателе вообще отсутствуют трущиеся детали. Электроэнергию, при желании, с такого двигателя можно снимать с помощью линейного генератора.

Но и этого инженерам оказалось не достаточно, и они начали искать способы избавиться не просто от трущихся деталей, а вообще от подвижных деталей. И они нашли такой способ.

В семидесятых годах 20-го века Петер Цеперли понял, что синусоидальные колебания давления и скорости газа в двигателе Стирлинга, а также тот факт, что эти колебания находятся в фазе, невероятно сильно напоминают колебания давления и скорости газа в бегущей звуковой волне (рис.3).


Рисунок 3 - График давления и скорости бегущей акустической волны, как функция времени. Показано, что колебания давления и скорости находятся в фазе.

Эта идея пришла Цеперли не случайно, так как до него было множество исследований в области термоакустики, например, ещё сам лорд Рэлей в 1884 качественно описал это явление.

Таким образом, он предложил вообще отказаться от поршней и вытеснителей, и использовать только лишь акустическую волну для контроля над давлением и движением газа. При этом получается двигатель без движущихся частей и теоретически способный достичь КПД цикла Стирлинга, а значит и Карно. В реальности лучшие показатели – 40-50 % от эффективности цикла Карно (Рисунок 4).


Рисунок 4 – Схема термоакустического двигателя с бегущей волной

Можно видеть, что термоакустический двигатель с бегущей волной – это точно такое же ядро, состоящее из теплообменников и регенератора, только вместо поршней и шатунов здесь просто закольцованная труба, которая называется резонатором. Да как же работает этот двигатель, если в нём нет никаких движущихся частей? Как это возможно?

Для начала ответим на вопрос, откуда там берётся звук? И ответ – он возникает сам собой при возникновении достаточной для этого разницы температур между двумя теплообменниками. Градиент температуры в регенераторе позволяет усилить звуковые колебания, но только определённой длины волны, равной длине резонатора. С самого начала процесс выглядит так: при нагреве горячего теплообменника возникают микро шорохи, возможно даже потрескивания от тепловых деформаций, это неизбежно. Эти шорохи – это шум, имеющий широкий спектр частот. Из всего этого богатого спектра звуковых частот, двигатель начинает усиливать то звуковое колебание, длина волны которого, равна длине трубы – резонатора. И неважно насколько мало начальное колебание, оно будет усилено до максимально возможной величины. Максимальная громкость звука внутри двигателя наступает тогда, когда мощность усиления звука с помощью теплообменников равна мощности потерь, то есть мощности затухания звуковых колебаний. И эта максимальная величина порой достигает огромных величин в 160 дБ. Так что внутри подобного двигателя действительно громко. К счастью, звук наружу выйти не может, так как резонатор герметичен и по этому, стоя рядом с работающим двигателем, его еле слышно.

Усиление определённой частоты звука происходит благодаря всё тому же термодинамическому циклу – циклу Стирлинга, который осуществляется в регенераторе.


Рисунок 5 – Стадии цикла грубо и упрощённо.

Как я уже писал, в термоакустическом двигателе вообще нет движущихся частей, он генерирует только акустическую волну внутри себя, но, к сожалению, без движущихся частей снять с двигателя электроэнергию невозможно.

Обычно добывают энергию из термоакустических двигателей с помощью линейных генераторов. Упругая мембрана колеблется под напором звуковой волны высокой интенсивности. Внутри медной катушки с сердечником, вибрируют закрепленные на мембране магниты. Вырабатывается электроэнергия.

В 2014 году Kees de Blok, Pawel Owczarek и Maurice Francois из предприятия Aster Thermoacoustics показали, что для преобразования энергии звуковой волны в электроэнергию, годится двунаправленная импульсная турбина, подключенная к генератору .


Рисунок 6 – Схема импульсной турбины

Импульсная турбина крутится в одну и ту же сторону вне зависимости от направления потока. На рисунке 6 схематично изображены лопатки статора по бокам и лопатки ротора посередине.
А так турбина выглядит у них в реальности:


Рисунок 7 – Внешний вид двунаправленной импульсной турбины

Ожидается, что применение турбины вместо линейного генератора сильно удешевит конструкцию и позволит увеличить мощность устройства вплоть до мощностей типичных ТЭЦ, что невозможно с линейными генераторами.

Что ж, будем продолжать пристально следить за развитием термоакустических двигателей.

Список использованных источников

М.Г. Круглов. Двигатели Стирлинга. Москва «Машиностроение», 1977.
Г. Ридер, Ч. Хупер. Двигатели Стирлинга. Москва «Мир», 1986.
Kees de Blok, Pawel Owczarek. Acoustic to electric power conversion, 2014.

Двигатель Стирлинга - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела.

Данный тип двигателей изобретен в девятнадцатом веке. Они прошли стадию подъема, затем были забыты, однако пережили паровые двигатели, двигатели внутреннего сгорания и снова возродились в двадцатом веке. Сегодня над их созданием трудятся многие инженеры и любители.

Стоит отметить, что универсальной методики расчета Стирлинг-машин не существует до сих пор. Львиная доля технических решений и методик расчета при создании опытных образцов двигателей Стирлинга автоматически становится «ноу-хау» компаний-разработчиков и тщательно скрывается. Двигатели Стирлинга не встретишь в свободной продаже, как газонокосилки или автономные генераторы. При этом «Стирлинги» используются в качестве энергоустановок на космических спутниках, применяются как маршевые двигатели на современных подводных лодках.

Стирлинг-машины с одинаковым успехом можно «вмонтировать» и в триммер для стрижки газонов, и в марсоход. В конструкции двигателя нет клапанов, распределительных валов, отсутствует система зажигания в ее привычной форме, нет стартера! Некоторые конструкции обладают эффектом самозапуска. Для работы годится любой источник тепла: энергия солнца, навоз, сено, дрова, уголь, нефть, газ, ядерный реактор - подойдет все! И при данной «всеядности» коэффициент полезного действия «Стирлингов» не уступает показателям двигателей внутреннего сгорания. Но и это не все. Стирлинг-машины обратимы. Т.е. подводя тепловую энергию, получаем механическую, раскручивая маховик двигателя вырабатываем холод.

Двигатель Стирлинга зависит только от внешнего поступления тепла. Что это тепло поставляет принципиального значения не имеет. Поэтому двигатель Стирлинга являеться идеальным кандидатом для перевода солнечного излучения в механическую энергию:

1. В двигателе Стирлинга постоянное количество рабочего газа (гелий или водород) постоянно нагреваеться и охлаждаеться.

2. Через расширение при нагревании и сжатии при охлаждении, рабочий газ приводит в движение два поршня, каждый из которых прикреплен к валу - таким образом передаеться энергия.

3. Эфективность двигателя Стирлинга растет при росте температуры, поэтому он являеться идеальной комбинацией для производства энергии через солнечный коллектор.

4. Здесь нет внутреннего сгорания, поэтому установка Стирлинга работает почти бесшумно.

5. Потенциальный жизненный цикл двигателя Стирлинга являеться очень длительным, так как здесь нет внутренного износа из-за горения топлива.

Можно запасать с его помощью энергию, используя в качестве источника тепла теплоаккумуляторы на расплавах солей. Такие аккумуляторы превосходят по запасу энергии химические аккумуляторы и дешевле их. Используя для регулировки мощности изменение фазного угла между поршнями, можно аккумулировать механическую энергию, тормозя двигателем. В этом случае двигатель превращается в тепловой насос.

Плюсы стирлингов

КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.

В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.

В ДВС сгорание томливо-воздушной смеси в цилиндре двигателя является, по сути, взрывом со скоростью распространения взрывной волны 5-7 км/сек. Этот процесс дает чудовищные пиковые нагрузки на шатуны, коленчатый вал и подшипники. Стирлинги лишены этого недостатка.

Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.

Простота конструкции позволяет длительно эксплуатировать Стирлинг в автономном режиме.

Двигатель Стирлинга может использовать любой источник тепловой энергии, начиная с дров и заканчивая ядерным топливом.

Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС ), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).

Минусы стирлингов

Поскольку сгорание топлива происходит вне двигателя, а отвод тепла осуществляется через стенки радиатора (Стирлинги имеют замкнутый объем) габариты двигателя увеличиваются.

Еще один минус - материалоемкость. Для производства компактных и мощных Стирлинг-машин требуются жаропрочные стали, выдерживающие высокое рабочее давление и в то же время, обладающие низкой теплопроводностью. Обычная смазка для Стирлингов не годится - коксуется при высокой температуре, по этому необходимы материалы с низким коэффициентом трения.

Для получения высокой удельной мощности в качестве рабочего тела в Стирлингах используют водород или гелий. Водород взрывоопасен, при высоких температурах растворяется в металлах, образуя металлогидриды - т.е. разрушает цилиндры двигателя. К тому же водород, как и гелий обладает высокой проникающей способностью и просачивается через уплотнения подвижных частей двигателя, снижая рабочее давление.

Комментарии:

    я хочу себе построить для дачи двигатель стирлинга вазможна

    “- В ДВС сгорание томливо-воздушной смеси в цилиндре двигателя является, по сути, взрывом со скоростью распространения взрывной волны 5-7 км/сек.”
    ———-
    5-7 км/сек – это скорость движения продуктов взрыва ТЭН а в кумулятивном снаряде, её хватает чтобы пробить 20 см пакет гомогенной брони. Не мелите чушь. Продукты сгорания топливной смеси в цилиндре ДВС двигаются со скоростью, не превышающей 360 м(!)/сек, т.е. дозвуковое горение. Сверхзвуковое горение считается детонацией и гробит двигатель.

    Под детонацией следует понимать необычно высокую скорость распространения взрывной химической реакции . В цилиндре двигателя при детонации скорость распространения пламени в последней части горючей смеси достигает примерно 2000 м сек

    Двигатель Стирлинга может построить любой для дачи в ручную,но не в этой жизни.

    Я советую сделать такой двигатель
    http://www.valentru.ru/index/gibridja_teplovaja_mashina/0-5

    Первый рисунок рисовал человек, незнакомый с принципом действия сабжа. По ходу, попутал местами вытеснитель с рабочим поршнем. 1) Цилиндр вытеснителя имеет меньший обьем/диаметр, чем рабочий цилиндр. Иначе оно работать не будет.
    2) Принцип действия. Прямой ход. Вытеснитель входит в свой цилиндр, продавливая газ через охладитель, регенератор, нагреватель. Именно в такой последовательности. В нагревателе он расширяется, заполняя рабочий цилиндр, и выдавливает оный. Обратный ход – вытеснитель выходит из своего цилиндра, снижая давление. Газ из рабочего цилиндра проходит нагреватель, регенератор, охладитель, сжимается и может поместиться в цилиндр вытеснителя. Рабочий поршень выжимает газ из своего цилиндра при низшем давлении, чем при прямом ходе. За счет разности давлений прямого и обратного хода получается механическая энергия на валу.

Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.

С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.

Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.

Роберт Стирлинг (1790-1878 года жизни):

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:


За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Принцип работы двигателя

Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.


Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.

  • Позиция «A»:

Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.

  • Позиция «B»:

Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.

  • Позиция «C»:

Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.

  • Позиция «D»:

Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.

Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:


Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

  • Двигатель «β – Стирлинг»:


Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

  • Двигатель «γ – Стирлинг»:


Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

  • Роторный двигатель Стирлинга.


Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.


Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Двигатель Стирлинга своими руками

Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.

Низкотемпературный двигатель Стирлинга:


  • Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
  • Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
  • Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
  • Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
  • В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
  • Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
  • Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
  • Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;


  • Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
  • Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
  • Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.

После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.


Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.

Преимущества

Для двигателя Стирлинга характерны такие плюсы:

  • Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
  • Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
  • Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
  • Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
  • Процесс работы двигателя не сопровождается выбросом отработанных веществ;
  • Работа двигателя сопровождается минимальной вибрацией;
  • Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».

Недостатки

К недостаткам двигателя Стирлинга относятся:

  • Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
  • Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
  • Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
  • Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
  • Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.

Использование

Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:

  • Двигатель Стирлинг-электрогенератор.

Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.

  • Двигатель, как насос (электрика).

Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.

  • Двигатель, как насос (обогреватель).

В странах с тёплым климатом двигатель используют как обогреватель для помещений.

Двигатель Стирлинга на подводной лодке:


  • Двигатель, как насос (охладитель).

Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.

  • Двигатель, как насос, создающий сверхнизкие степени нагрева.

Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.

  • Двигатель для подводной техники.

Подводные корабли Швеции и Японии работают благодаря двигателю.

Двигатель Стирлинга в качестве солнечной установки:


  • Двигатель, как аккумулятор энергии.

Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.

  • Солнечный двигатель.

Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.

1. Введение……………………………………………………………………………… 3

2. История ……………………………………………………………………………… 4

3. Описание …………………………………………………………………………… 4

4. Конфигурация ……………………………………………………………………. 6

5. Недостатки ………………………………………………………………………….. 7

6. Преимущества …………………………………………………………………… 7

7. Применение ………………………………………………………………………. 8

8. Заключение ………………………………………………………………………. 11

9. Список литературы ………………………………………………………….. 12

Введение

В начале XXI века человечество смотрит в будущее с оптимизмом. На это есть самые веские доводы. Ученая мысль не стоит на месте. Сегодня нам предлагаются все новые и новые разработки. Идет внедрение в нашу жизнь все более экономичных, экологически безопасных и перспективных технологий

Это касается, прежде всего, альтернативного двигателестроения и использования так называемых "новых" альтернативных видов топлива: ветра, солнца, воды и других источников энергии

Благодаря двигателям всевозможных типов человек получает энергию, свет, тепло и информацию. Двигатели являются сердцем, которое бьется в такт с развитием современной цивилизации. Они обеспечивают рост производства, сокращают расстояния. Распространенные в настоящее время двигатели внутреннего сгорания имеют целый ряд недостатков: их работа сопровождается шумом, вибрациями, они выделяют вредные отработавшие газы, загрязняю тем самым нашу природу, и потребляют много топлива. Но на сегодняшний день альтернатива им уже существует. Класс двигателей, вред от которых минимален, - двигатели Стирлинга. Они работают по замкнутому циклу, без непрерывных микро взрывов в рабочих цилиндрах, практически без выделения вредных газов, да и топлива им требуется гораздо меньше

Изобретенные задолго до двигателя внутреннего сгорания и дизеля, двигатель Стирлинга был незаслуженно забыт

Возрождение интереса к двигателям Стирлинга обычно ассоциируется с деятельностью фирмы Philips. Работы по конструированию двигателей Стирлинга небольшой мощности начались в фирме в середине 30-х годов ХХ века. Целью работ было создание небольшого электрического генератора с низким уровнем шума и тепловым приводом для питания радиоаппаратуры в районах мира с отсутствием регулярных источников электроснабжения. В 1958 году компания General Motors заключила лицензионное соглашение с фирмой Philips, и их сотрудничество продолжалось до 1970 года. Разработки были связаны с использованием двигателей Стирлинга для космических и подводных энергетических установок, автомобилей и судов, а также для систем стационарного энергоснабжения. Шведская фирма United Stirling, сконцентрировавшая свои усилия в основном на двигателях для транспортных средств большой грузоподъемности, распространили свои интересы на область двигателей для легковых машин. Настоящий же интерес к двигателю Стирлинга возродился только во времена так называемого “энергетического кризиса”. Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономического потребления обычного жидкого топлива, что представлялось весьма важным в связи с ростом цен на топливо

История

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал «эконом». В современной научной литературе этот очиститель называется « регенератор » (теплообменник). Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма « Филипс » инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

Описание

Дви́гатель Сти́рлинга - тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления. Существует также стирлинг с двухфазным рабочим телом. Он тоже характеризуется высокой удельной мощностью, высоким рабочим давлением.

Из термодинамики известно, что давление, температура и объём газа взаимосвязаны и следуют закону идеальных газов

, где:
  • P - давление газа;
  • V - объём газа;
  • n - количество молей газа;
  • R - универсальная газовая константа;
  • Т - температура газа в кельвинах.

Это означает, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга.

Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. Рабочий цикл двигателя Стирлинга beta-типа:

1 2 3 4

где: a - вытеснительный поршень; b - рабочий поршень; с - маховик; d - огонь (область нагревания); e - охлаждающие ребра (область охлаждения).

  1. Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам).
  2. Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
  3. Воздух остывает и сжимается, поршень опускается вниз.
  4. Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.

В машине Стирлинга движение рабочего поршня сдвинуто на 90° относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При сдвиге 0 машина не производит никакой работы (кроме потерь на трение) и не вырабатывает её.

Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, частью теплообменника, или совмещённым с поршнем-вытеснителем.

Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков