Как работает инжекторный двигатель? Инжекторный автомобильный двигатель: принцип работы, плюсы и минусы.

Как работает инжекторный двигатель? Инжекторный автомобильный двигатель: принцип работы, плюсы и минусы.

Здравствуйте, уважаемые автолюбители! Как «железный конь пришел на смену деревенской лошадке», также и инжекторная система впрыска топлива, пришла на смену карбюраторам в автомобилях.

О преимуществах и недостатках систем подачи топлива, пусть спорят специалисты, а задача владельца автомобиля иметь представление о том, что такое инжектор, как устроен инжектор автомобиля.

И не обязательно устройство и принцип работы инжектора вам понадобится для того, чтобы ремонтировать его своими руками. Но, знать о том, как работает и из чего состоит инжектор автомобиля, нужно. Хотя бы для того, чтобы недобросовестные мастера автосервисов не пытались «нагреть» руки на вашем незнании своего авто.

Инжектор, как революция в автомобилестроении

Что такое инжектор автомобиля? Инжектором (лат. injicio, фр. Injecteur, англ. Injector – выбрасываю) – называется форсунка, как распылитель газа или жидкости (топлива) в двигателях, либо часть инжекторной системы подачи (впрыска) топлива в двигателях внутреннего сгорания.

Годом рождения инжекторной системы впрыска считается 1951, когда компания Bosch оснастила ею 2-х тактный двигатель купе Goliath 700 Sport. Затем, в 1954 году, эстафету подхватил Mercedes-Benz 300 SL.

Массовое, серийное внедрение инжекторных систем впрыска топлива началось в конце 70-х годов прошлого века. Работа инжектора, по своим эксплуатационным характеристикам, во многом превосходила работу карбюраторной подачи топлива.

Как результат: первое десятилетие 21 века практически завершило вытеснение карбюраторов. Современные авто снабжаются в основном системами распределенного и прямого электронного впрыска.

Принцип работы инжектора в системе подачи топлива

Fuel Injection System (система впрыска топлива) осуществляет подачу топлива посредством прямого впрыска при помощи форсунки (инжектора) в цилиндр двигателя либо во впускной коллектор. Соответственно, автомобили, оснащенные такой системой, носят название инжекторные.

Классификация инжекторного впрыска зависит от того, какой принцип действия инжектора, а также по месту установки и количеству инжекторов.

Центральный впрыск топлива (моновпрыск) осуществляет впрыск посредством одной форсунки на все цилиндры двигателя. Инжектор, как правило, располагается на впускном коллекторе (на месте карбюратора). Система моновпрыска на сегодняшнее время не пользуется популярностью у автомобилестроителей.

Основная масса современных серийных автомобилей, снабжена системой распределенного впрыска топлива. То есть, отдельная форсунка отвечает за свой цилиндр.

Система распределенного впрыска топлива, классифицируется по типам:

  • одновременный – все форсунки системы подают топливо одновременно во все цилиндры,
  • попарно-параллельный – тип впрыска, когда происходит парное открытие форсунок: одна открывается перед циклом впуска, другая, перед циклом выпуска. Характерно то, что попарно-параллельный принцип открытия форсунок применяется в период запуска двигателя, либо в аварийном режиме неисправности датчика положения распредвала. А во время движения, используется так называемый фазированный впрыск топлива,
  • фазированный - тип впрыска, когда каждый инжектор открывается перед тактом впуска,
  • прямой – тип впрыска, происходящий непосредственно в камеру сгорания.

Принцип работы инжектора основывается на использовании сигналов микроконтроллера, который в свою очередь получает данные от датчиков.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

Данная система подачи топлива, устанавливаемая на современных бензиновых двигателях. Эта система подачи топлива постепенно вытесняет систему питания . Двигатели, имеющие такую систему, называют инжекторными двигателями .

В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли автомобилей. До этого времени состав продуктов сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха.

В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывания слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединений в продуктах сгорания.

Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.

Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска.

Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий. Выход был найден следующий. В систему впрыска ввели обратную связь - в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие . Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  1. Точное дозирование топлива и, следовательно, более экономный его расход;
  2. Снижение . Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  3. Увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  4. Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  5. Легкость пуска независимо от погодных условий.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ - полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечисленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

Более совершенными являются системы многоточечного впрыска , в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:

  1. Возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
  2. Бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» (в народе - инжектор) моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

А как раз главное несоответствие между ГОСТами, ныне действующими в России, и евростандартами- повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как "Евро-3"- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.

Первой применила двигатель с непосредственным впрыском на серийном автомобиле компания Mitsubishi. Поэтому рассмотрим устройство и принципы действия непосредственного впрыска на примере двигателя GDI (Gasoline Direct Injection). Двигатель GDI может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1. Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав - 14,7:1) - если избыток воздуха будет больше, переобедненная смесь просто не воспламенится. На двигателе GDI распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания. Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается - несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.

Режимы работы двигателя GDI

Всего предусмотрено три режима работы двигателя:

  • Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия).
  • Мощностной режим (впрыск на такте впуска).
  • Двухстадийный режим (впрыск на тактах впуска и сжатия) (применяется на евромодификациях).

Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия). Этот режим используется при малых нагрузках: при спокойной городской езде и при движении за городом с постоянной скоростью (до 120 км/ч). Топливо впрыскивается компактным факелом в конце такта сжатия в направлении поршня, отражается от него, смешивается с воздухом и испаряется, направляясь в зону . Хотя в основном объеме камеры сгорания смесь чрезвычайно обеднена, заряд в районе свечи достаточно обогащен, чтобы воспламениться от искры и поджечь остальную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа двигателя на сильно обедненной смеси поставила новую проблему - нейтрализацию отработавших газов. Дело в том, что при этом режиме основную их долю составляют оксиды азота, и поэтому обычный каталитический нейтрализатор становится малоэффективным. Для решения этой задачи была применена рециркуляция отработавших газов (EGR-Exhaust Gas Recirculation), которая резко снижает количество образующихся оксидов азота и установлен дополнительный NO-катализатор.

Система EGR "разбавляя" топливо-воздушную смесь отработавшими газами, снижает температуру горения в камере сгорания, тем самым "приглушая" активное образование вредных оксидов, в том числе NOx. Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно, так как при увеличении нагрузки на двигатель количество перепускаемых ОГ должно быть уменьшено. Поэтому на двигатель с непосредственным впрыском был внедрен NO-катализатор. Существует две разновидности катализаторов для уменьшения выбросов NOx - селективные (Selective Reduction Type) и накопительного типа (NOx Trap Type). Катализаторы накопительного типа более эффективны, но чрезвычайно чувствительны к высокосернистым топливом, чему менее подвержены селективные. В соответствии с этим, накопительные катализаторы устанавливаются на модели для стран с низким содержанием серы в бензине, и селективные - для остальных.

Мощностной режим (впрыск на такте впуска). Так называемый "режим однородного смесеобразования" используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. Топливо впрыскивается на такте впуска коническим факелом, перемешиваясь с воздухом и образуя однородную смесь, как в обычном двигателе с распределенным впрыском. Состав смеси - близок к стехиометрическому (14,7:1)

Двухстадийный режим (впрыск на тактах впуска и сжатия). Этот режим позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до "богатого" 12:1.

Почему этот режим введен только для автомобилей для европейского рынка? Да потому что для Японии присущи невысокие скорости движения и постоянные пробки, а Европа- это протяженные автобаны и высокие скорости (а следовательно, высокие нагрузки на двигатель).

Компания Mitsubishi стала пионером в применении непосредственного впрыска топлива. На сегодняшний день аналогичную технологию используют Mercedes (CGI), BMW (HPI), Volkswagen (FSI, TFSI, TSI) и Toyota (JIS). Главный принцип работы этих систем питания аналогичен- подача бензина не во впускной тракт, а непосредственно в камеру сгорания и формирование послойного либо однородного смесеобразования в различных режимах работы мотора. Но подобные топливные системы имеют и различия, причем иногда довольно существенные. Основные из них - рабочее давление в топливной системе, расположение форсунок и их конструкция.

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

Содержание Введение…………………………………………………………………………...3

    Устройство системы питания инжекторного двигателя…..…...................4

    Основные неисправности системы питания.……...………………………7

    1. Датчики………………………………………………………………….7

      Форсунки………………………………………………………………..9

      Бензонасос……………………………………………………………..11

    ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально "на лету", так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск - одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск - каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный - все форсунки открываются одновременно. Попарно-параллельный - форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление - не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – "топливную" и "воздушную". "Воздушная" соединена вакуумным шлангом с ресивером, а "топливная" – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль "газа" разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль "газа", водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

С целью сокращения вредных выбросов и повышения экономичности двигателей автомобильная топливная система в последние годы серьезно изменилась. Например, в США от карбюраторов отказались ещё в 1990 году. Системы впрыска топлива появились ещё в середине ХХ века, а на серийных автомобилях европейских производителей их начали применять примерно с 1980-х.

На сегодняшний день все новые автомобили оснащаются именно инжекторными двигателями. В этой познавательной статье мы рассмотрим принцип работы инжектора и его устройство. Вы сможете узнать, как топливо попадает в цилиндр двигателя. Устройство двигателя с системой впрыска – очень актуальная тема для современного автолюбителя, поэтому устраивайтесь поудобнее и начинаем!

Карбюратор «сдаёт позиции»

После появления двигателя внутреннего сгорания карбюратор использовался для подачи топлива в двигатель. В такой технике как бензопилы и газонокосилки это устройство применяется до сих пор. Но в процессе эволюции автомобиля карбюратору становилось всё сложнее и сложнее удовлетворять многим требованиям к эксплуатации.

Например, для того чтобы соответствовать ужесточающимся экологическим нормам были введены каталитические нейтрализаторы (). Катализатор эффективен лишь в случае тщательного контроля топливно-воздушной смеси. Кислородные датчики (как их проверяют мы уже писали – ) отвечают за контроль количества кислорода в выхлопных газах. Эта информация используется и электронным блоком управления двигателем (ЭБУ) для регулировки пропорции воздух/топливо в режиме реального времени.

В итоге получается замкнутая система управления , которую невозможно было реализовать с использованием карбюраторов. В течение короткого периода времени выпускались карбюраторы с электронным управлением, но они были ещё более сложными, чем чисто механические устройства.

Сначала карбюраторы были заменены системой впрыска топлива в корпусе дроссельной заслонки (также известна как одноточечная система впрыска или система центрального впрыска топлива). В них форсунки были расположены в корпусе дроссельной заслонки. Это было простое решение для замены карбюратора, поэтому автопроизводителям не пришлось вносить изменения в конструкцию двигателей.

Со временем, в процессе появления новых двигателей, система центрального впрыска топлива была заменена многоточечной системой впрыска топлива (также известна как система последовательного впрыска ). В этих системах используется отдельная топливная форсунка для каждого цилиндра. Как правило, они расположены так, чтобы распылять топливо прямо на впускной клапан. Эти системы обеспечивают более точное дозирование топлива и быструю реакцию. Пришло время подробнее изучить принцип работы инжектора.

Когда вы давите на газ

Педаль газа в вашем автомобиле подключена к дроссельной заслонке. Речь идет о клапане, который регулирует количество воздуха, поступающего в двигатель. Так что педаль газа на самом деле является педалью воздуха.

Когда вы нажимаете на педаль газа, дроссельная заслонка открывается больше, в результате чего двигатель получает больше воздуха. Блок управления двигателем (ЭБУ, компьютер, управляющий всеми электронными компонентами двигателя) «замечает» открытую дроссельную заслонку и увеличивает подачу топлива для приготовления оптимальной топливно-воздушной смеси. Очень важно, чтобы подача топлива увеличивалась сразу после открытия дроссельной заслонки. В противном случае, некоторая часть воздуха окажется в цилиндрах без достаточного количества топлива.

Датчики контролируют содержание кислорода в выхлопных газах, а также количество воздуха, поступающего в двигатель. ЭБУ использует эти данные для максимально точного выбора соотношения воздуха и топлива. Как работает инжектор на современных автомобилях?

Форсунка

Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.

Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.

Количество топлива, которое подается в двигатель, зависит от того, сколько времени форсунка остается в открытом положении. Данный показатель называют длительностью или шириной импульса, он управляется ЭБУ.

Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.

Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.

Устройство инжекторного двигателя – основные датчики

Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:

  • Датчик массового расхода воздуха (ДМРВ). Сообщает блоку управления массу воздуха, поступающего в двигатель.
  • Датчик (-и) кислорода (). Контролирует содержание кислорода в выхлопных газах. С помощью полученной от него информации ЭБУ может выявить богатую или бедную топливную смесь и внести соответствующие коррективы.
  • Датчик положения дроссельной заслонки. Следит за положением дроссельной заслонки (она влияет на подачу воздуха в двигатель), благодаря чему блок управления может оперативно реагировать на изменения, увеличивая либо сокращая расход топлива по мере необходимости.
  • Датчик температуры охлаждающей жидкости. Помогает ЭБУ определить, когда двигатель достиг оптимальной рабочей температуры.
  • Датчик напряжения. Следит за напряжением бортовой сети автомобиля. В зависимости от показаний датчика блок управления может увеличить число оборотов холостого хода двигателя, если напряжение падает (такое бывает при высоких электрических нагрузках).
  • Коллекторный датчик абсолютного давления. Анализирует давление воздуха во впускном коллекторе. Количество воздуха, поступающего в двигатель, является хорошим показателем того, сколько энергии он вырабатывает. Чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе. Этот показатель используется для определения количества производимой энергии.
  • Датчик скорости вращения коленчатого вала. Скорость вращения коленвала – один из факторов, влияющих на расчет требуемой длительности импульса.

Существует два основных типа управления многоточечными системами впрыска : топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).

Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?

Управление работой двигателя

Алгоритмы, управляющие двигателем, являются довольно сложными. Существует множество требований, которым силовой агрегат должен удовлетворять. Например, это касается показателя вредных выбросов или требований топливной .

Блок управления двигателем использует формулу и множество таблиц соответствия для установки длительности импульса в определенных условиях эксплуатации. Формула представляет собой сочетание многих факторов, умноженных друг на друга. Мы рассмотрим упрощенную формулу определения длительности импульса топливной форсунки . В этом примере наша формула будет состоять лишь из трех показателей, в то время как в реальности обычно учитывается свыше сотни параметров.

Длительность импульса = (Длительность базового импульса) x (Фактор A) x (Фактор B)

Для расчета длительности импульса электронный блок сначала выполняет поиск длительности базового импульса в соответствующей справочной таблице. Базовая длительность импульса – это функция от частоты вращения двигателя (RPM) и нагрузки (она вычисляется из абсолютного давления в коллекторе). Например, частота вращения двигателя 2000 оборотов в минуту, а показатель нагрузки равен 4. В таблице необходимо найти число в месте пересечения показателей 2000 и 4. Получается 8 миллисекунд.

Частота вращения двигателя
1 2 3 4 5
1,000 1 2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20

В следующих примерах А и В представляют собой параметры, которые блок управления получает от датчиков. Допустим, что А – это температура охлаждающей жидкости, а B – уровень содержания кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода – 3, справочные таблицы свидетельствуют о том, что фактор А = 0,8, а фактор B = 1,0.

A Фактор A B Фактор B
0 1.2 0 1.0
25 1.1 1 1.0
50 1.0 2 1.0
75 0.9 3 1.0
100 0.8 4 0.75

Таким образом, поскольку нам известно, что длительность базового импульса – это функция от нагрузки и частоты вращения двигателя, а длительность импульса = (длительность базового импульса) x (фактор A) x (фактор B) , общая длительность импульса в нашем примере равна:

8 х 0,8 х 1,0 = 6,4 мс

На этом примере видно, как система управления выполняет настройку. Так как параметр В отображает содержание кислорода в выхлопных газах, согласно данным с таблицы, можно сделать вывод, что выхлопные газы содержат слишком много кислорода, в результате чего ЭБУ сокращает подачу топлива.

Реальные системы управления учитывают свыше 100 параметров, для каждого из которых составлена собственная таблица соответствия. Некоторые параметры даже корректируются с течением времени с целью компенсации изменений производительности компонентов, к примеру, каталитического нейтрализатора (о проверке катализатора читайте ). И в зависимости от количества оборотов двигателя, блок управления может выполнять эти расчеты более 100 раз в секунду.

Если наша статья о том, как работает инжектор, и какие существуют системы впрыска топлива, вам понравилась, поделитесь ссылкой с друзьями в социальных сетях, используя соответствующие кнопочки ниже. Спасибо за внимание, оставайтесь с нами!

Оборудование такого рода используется во всех системах впрыска двигателей - и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

  • Читайте также статью:

Конструкция и принцип функционирования электромагнитной форсунки


Фотография устройства электромагнитной форсунки


Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

Конструкция и принцип функционирования электрогидравлической форсунки


Фотография устройства электрогидравлической форсунки


Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.

После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу - в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


Схема устройства пьезоэлектрической форсунки


Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана - оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail - аккумуляторная топливная система.

Преимущество подобных устройств - это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу - всё это помещено в корпус устройства.

В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

Количество топлива, которое впрыскивается, определяется такими факторами, как:

  • длительность воздействия на пьезоэлемент;
  • давление топлива в топливной рампе.


© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков