Что можно делать 3д принтером авто. Автомобильная крышка на диск

Что можно делать 3д принтером авто. Автомобильная крышка на диск

30.07.2019

Создать робота очень трудно и очень дорого. Это требует больших затрат, внушительного опыта в ряде дисциплин, а также готовности идти на определенные компромиссы по практическим соображениям. Но многие препятствия исчезли теперь, когда стало возможным напечатать робота на 3D-принтере, используя жидкие и твердые материалы одновременно.

Революционное открытие сделано в Массачусетском технологическом институте (MIT). Там придумали новый процесс 3D-печати, который прозвали «печатаемой гидравликой». Он позволяет изготавливать одновременно твердые и мягкие элементы робота, пишет Wired.

Метод основан на использовании струйного принтера, который создает материал слой за слоем. Каждый такой слой меньше половины ширины человеческого волоса. После того как слой нанесен, он испытывает на себе воздействие ультрафиолетового света высокой интенсивности. В ходе этого этапа материал, который должен стать в итоге твердым, затвердевает, а жидкие части остаются жидкими. Таким образом, твердые и мягкие элементы робота изготавливаются одновременно, а когда процесс печати завершен, робот может перемещаться самостоятельно.

В качестве опытного образца ученые напечатали небольшого робота весом около 680 граммов, длиной порядка 15 сантиметров. Процесс печати занял 22 часа, при этом он проходил практически без вмешательства людей: все, что от них требовалось, это прикрепить электродвигатель и батарейку.

«Возможность одновременной печати твердых веществ и жидкостей позволит создать совершенно новый класс подвижных механизмов. Этот процесс сокращает и упрощает ручную сборку, и это сделает возможным более широкое использование роботов, сделает их более доступными. Сейчас на то, чтобы сделать робота любой сложности, уходят годы. Вы должны быть экспертом в области механики, электроники, вычислительной техники, программного обеспечения. У вас должно быть много опыта. Но с помощью этого инструмента вы сможете подняться на уровень выше, сможете печатать все тело робота без необходимости собирать его вручную», говорит руководитель исследовательской группы Даниэла Рус.

Ускорение процесса изготовления роботов позволит легче ставить эксперименты, создавать новые прототипы, отметая лишние функции и оставляя полезные. Дешевле и проще изготовить небольшой прототип с помощью 3D-принтера, изучить его функционал, а только потом делать модель в реальном размере.

Кроме того, новая технология открывает новые перспективы в сфере использования роботов. Например, это делает возможным создание одноразовых роботов, которые могли бы войти в опасные для человека районы, например, в места, подвергшиеся сильному ядерному излучению. Есть ситуации, когда не справится не только человек, но и обычная электроника, и в таких случаях могли бы помочь одноразовые роботы, которые можно относительно быстро и недорого напечатать. Когда процесс 3D-печати подвижных конструкций будет отлажен полностью, конструирование робота будет ненамного сложнее, чем создание куклы. Но конечный результат будет гораздо более полезным.

3D-модель длиной 10 см, напечатанная на принтере Objet260 Connex, позволяет убедиться в сбалансированности пропорций концепт-кара


«Урезанные» аэродинамические модели, распечатанные на 3D-принтере Objet260 Connex, готовы к аэродинамическим испытаниям


Шасси концепт-кара: колеса вращаются и поворачиваются как у полноценной игрушечной модели


Одновременное использование различных материалов при 3D-печати дало возможность в один заход получить реалистичные колеса



Художественная визуализация финальной модели автомобиля

Компания, которая специализируется в области 3D-проектирования, представила проект «Bleu», целью которого стало создание собственного, фирменного концепт-кара с нуля, чтобы продемонстрировать новейшие технологии моделирования, реализованные в САПР-пакете.

Проект «Bleu» осуществлялся подразделением Dassault Systèmes — CATIA design — на протяжении всего 2013 года. Была сформирована целая команда, состоящая из креативного дизайнера, двух специалистов по концептуальному моделированию, двух экспертов в области визуализации, двух специалистов по моделированию поверхностей класса А и одного разработчика механических моделей. Важную роль в проекте сыграло использование 3D-принтера для мультикомпозитной печати — Objet260 Connex. Все модели, полученные в ходе проекта «Bleu», прошли пять этапов разработки.

На первом этапе команде проектировщиков предстояло попробовать себя в создании миниатюрных моделей. Длина напечатанных на 3D-принтере прототипов составляла всего 5 см. Эти модели позволили команде выявить основные недостатки конструкции перед тем как продолжить дальнейшую разработку. На втором этапе участники команды использовали 3D-модели длиной 10 см для изучения и проработки пропорций концепт-кара. Напечатанные модели позволили убедиться, что с точки зрения объемного восприятия и пропорций все элементы дизайна тщательно сбалансированы и отлично сочетаются друг с другом.

Третий этап проекта — изготовление аэродинамической модели (speedform model), необходимой для исследования ее аэродинамических свойств. У этой модели отсутствуют детали — колеса, зеркала, интерьер, а сама она должна пройти испытания в аэродинамической трубе. После тестов в аэродинамической трубе обновленная и усовершенствованная модель концепт-кара «Bleu» выросла до 26 см, то есть теперь она занимала весь лоток принтера Objet260 Connex. На этом этапе у модели появились новые детали — зеркала и бамперы.

На заключительном этапе проекта «Bleu» была распечатана полностью функциональная модель концепт-кара. Инженеры внесли изменения в конструкцию шасси, чтобы колеса могли двигаться, как у настоящего автомобиля. Проектирование нового шасси осуществлялось в приложении CATIA Natural Shape, которое позволило быстро разработать конструкцию.

Для печати элементов конструкции концепт-кара на 3D-принтере инженеры «Bleu» использовали несколько видов материалов PolyJect, в том числе черный эластичный TangoBlackPlus для изготовления покрышек, твердый матово-белый VeroWhitePlus для печати шасси и прозрачный VeroClear для изготовления окон.

По материалам Dassault Syst? mes

Н е так давно компания Daimler-Benz запустила промышленную 3D печать металлических компонентов из легких сплавов. Например, корпуса термостатов делают именно таким образом. Причем деталь получается практически готовой, не требуя дополнительной обработки, только снятие технологической опоры. А пластиковые детали «печатают» уже давно.

Самое время разобраться, что такое 3D печать, какая она бывает, и из чего сделаны детали, созданные с ее помощью. И главное, чем нам грозит применение новых технологий в ближайшем будущем.

Нельзя сказать, что 3D печать - технология новая и неизвестная. Появилась она более 30 лет назад, а сейчас печать металлических деталей в больших масштабах используется в медицинской промышленности для создания биопротезов, в ювелирном деле и даже в авиации.

Не обошлось без этой технологии в деле изготовления опытных образцов автомобильной промышленности. Солидная часть опытных образцов машин на выставках и тестовых экземплярах произведена с использованием этой технологии в той или иной степени. Причем применяется она как для создания уже «готовых» изделий - разрешение 3D принтера позволяет готовую продукцию - так и для последующей высокоточной механической обработки. Так создают детали цилиндропоршневой группы перспективных моторов или коробок передач.

Себестоимость «напечатанных» деталей

Традиционно считается, что цена печати металлических, да и пластиковых деталей на 3D принтере намного выше, чем цена «обычного» производства. Но ситуация меняется, и себестоимость производства и поставки традиционными путями и непосредственная печать подошли к границе, после которой ситуация изменится необратимо.


Надо заметить, что цена любой вещи в нашем окружении вовсе не равна ее себестоимости. И даже не себестоимости вместе с прибылью производителя. В цене заложена стоимость поставки, логистики, а часто еще и длительного хранения. Все эти факторы вместе повышают цену в несколько раз, а в случае с недешевыми крупными деталями, требующими особых условий хранения и транспортировки - даже на порядок или два. И это мы даже не пытаемся учитывать расходы на маркетинг, поддержку и разработку.


В общем, традиционное производство действительно максимально эффективно, особенно при больших объемах выпуска. Но сама система поставки нужных компонентов уже куда сложнее, и потому появляются ниши, в которых крайне эффективной оказывается технология, позволяющая производить детали малыми объемами непосредственно на месте производства. В том числе, в единственном экземпляре или с многочисленными модификациями. Например, с помощью 3D принтера…

Изготовить редкий вариант одной из деталей автомобиля при наличии чертежа куда проще, чем искать компоненты в хорошем состоянии на авто двадцатилетней давности. Особенно если деталь одна из самых часто ломающихся, а машина редкая. С использованием 3D сканирования можно создать образ детали «по сохранившимся обломкам» или на основе зеркального ее варианта.





Ещё очень удобно вносить изменения: усилить слабое место корпуса, убрать лишние элементы или еще что-то подобное… И главное, не нужно создавать запас деталей, которые может быть, никогда не пригодятся. Будет достаточно материала, принтера и 3D модели в цифровом виде.

Основные поставщики программных CAD- продуктов давно оптимизировали их для работы с технологиями трехмерной печати, так что впервые реализуется идеальная формула производства: из чертежа сразу в готовое изделие. А ведь литье и мехобработка требуют множества дополнительных усилий, создания различных приспособлений и инфраструктуры… С трёхмерной печатью же получается почти «по щучьему велению» - и вот готовое изделие.


Массовое производство также имеет множество «экологических ниш» для 3D технологии. Объемные детали сложной формы, например, по цене могут оказаться даже дешевле, чем произведенные классическим способом с помощью литья или из цельной заготовки. Особенно если речь идет о размерах более метра при высокой точности изготовления.

Тонкостенные детали из легких сплавов также может оказаться дешевле «напечатать», чем отлить. Это не говоря уже о производстве пластиковых элементов и деталях малых серий. С развитием новых технологий появится возможность заметно улучшить пассивную безопасность машин за счет введения узлов с идеальным расчетом энергии поглощения, использовать куда более компактное расположение агрегатов и вообще дать волю фантазии.


Отношение к 3D печати как к «несерьезной» технологии пора оставить в прошлом. Произведенные с ее помощью металлические детали по прочностным характеристикам не уступают обычным литым, хотя используют несколько более дорогие сплавы. Но цена материала выше обычно на 15-20%, а потери при печати меньше в несколько раз. Да и с размерами все отлично, в Амстердаме «печатают» настоящий пешеходный мост длиной порядка 30 метров.

Материалы для 3D печати

Основная масса деталей, разумеется - пока пластик, но сплавы металлов и различные виды бетона также используются при 3D печати. Для автомобильной промышленности интереснее всего именно пластик и металлы. И выбор материалов достаточно большой. Наиболее перспективны для применения сталь и алюминий, но в машинах много электрических узлов, проводников сложной формы и других элементов, для которых пригодилась бы медь.


Из металлов в 3D печати самым популярным остается титан. У него отличные прочностные характеристики, и он востребован в сфере протезирования, в космической и авиапромышленности, которые пока лидируют по применению интересующей нас технологии.

Нержавеющая сталь с высоким содержанием кобальта и никеля также отлично подходит, и целый ряд промышленных принтеров работает с этим материалом, благо он сравнительно недорог. Конечно, он в разы дороже самых дешевых сортов стали, но, тем не менее, заметно дешевле цветных металлов. А прочность изделий из стали вам наверняка известна.

Алюминий как материал для 3D печати набирает популярность. Изделия из него легкие, обладают хорошей стойкостью к коррозии на открытом воздухе, плюс он удобен в обработке и опять же недорог. Сравнительно невысокая начальная цена установок, работающих с этим материалом, также важна. Он используется в «домашних» технологиях металлической 3D печати, доступных малым предприятиям. К сожалению, в порошковом состоянии он взрывоопасен, как, впрочем, и титан.

Кобальт-хром и инконель - это примеры специализированных сплавов для 3D принтеров стоматологического, медицинского и аэрокосмического назначения. Подобных материалов становится все больше. Специальные материалы для новой технологии будут появляться и дальше, по мере развития технологии потребуется занять все больше ниш.

Медь, золото, серебро - также весьма распространенные материалы для 3D печати. Разумеется, пока это в основном печать ювелирных изделий. Но медь и серебро также нашли применение как материал для изготовления монтажных плат для электроники. Правда, для этого часто используется не «настоящий 3D », а эдакий «2,5D» принтер, создающий детали с высотой рельефа в пределах нескольких миллиметров на керамической подложке.

Технологии 3 D печати

Что касается технологий, то для массового производства актуальнее всего наиболее дорогие EBM и DED технологии. За непонятными аббревиатурами скрываются Electron Beam Manufacturing (формирование изделия из порошкового металла под воздействием пучка электронов) и Directed Energy Deposition (осаждение металла из порошка или проволоки под воздействием лазерного луча или плазменной дуги). Обе технологии позволяют создавать изделия с качеством металла выше, чем у литья, с идеально однородной структурой и с высокой точностью.

EBM формирует расплав в строго определенной зоне, а DED буквально «выбивает» расплавленный металл на нужную поверхность. Обе технологии могут использоваться не только для создания новой детали, но и для восстановления уже существующей. Обе технологии позволяют менять состав материала в объеме, делать поверхность тверже основы, упрочнять особо уязвимые места и тому подобные «фокусы».

Основная проблема - скорость работы. Так, серийная машина Insstek MX3 с технологией DED имеет рабочую зону размером 1000 x 800 x 650 мм с толщиной слоя в 0,089-0,203 мм, а скорость работы порядка 2 слоя в минуту. Альтернативный Arcam Q 20Plus имеет рабочую зону 350 х 380 мм, точность изготовления детали до 140 нм и скорость работы порядка 4 литров объема детали в час.

Более массовая и менее точная технология SLM /DMLS тоже имеет хорошие перспективы. Именно технология SLM - selective laser melting , то есть, выборочное лазерное плавление, применена компанией Mercedes-Benz для производства автомобильных компонентов. Родственная технология SLS - selective laser sintering, что означает «выборочное лазерное спекание», применяется для пластмассовых деталей.

Причем компания собирается таким образом поставлять детали не только для новых, но и для своих классических автомобилей. И это будет настоящий «оригинал», только абсолютно новый и прошедший все тесты. Все эти технологии основаны на послойном спекании объема порошка лазерным лучом. Качество материала в этом случае ниже, чем у EBM /DED технологий, и деталь будет строго однородной. Но, тем не менее, на выходе качество не ниже, чем у обычного литья и штамповки.

Техпроцесс DMLS достаточно прост. В рабочую камеру подается необходимое количество металлического порошка, его слой разравнивается дозатором и удаляется лишний материал. После чего лазер «запекает» материал по необходимому контуру, а лишний материал опять же удаляется. Снова и снова, цикл за циклом, с точностью порядка 20 микрон и с толщиной слоя до 100.

Технология безотходная и достаточно быстрая. Уже доступны серийные принтеры, имеющие скорость выше 9 килограммов в минуту, а возможности распараллеливания процесса позволяют значительно ее повысить. Вот только стоимость оборудования растет в геометрической прогрессии вслед за габаритами деталей. Именно по такой технологии изготовлены из сплава инконель детали двигателя Super Draco (в частности, камеры сгорания) компании SpaceX Илона Маска, который автомобилистам больше знаком как создатель Tesla .

Для небольших объемов неплохо подходит куда более дешевая технология Binder Jetting. Эта технология интересна тем, что применяется для создания не только металлических деталей. Деталь по сути создается из частиц любого материала, склеенных между собой. Но если используется металл, то после создания ее можно «пропечь», и металлические частицы образуют единое целое. Качество материала, конечно, куда ниже. Но технология заметно дешевле остальных и позволяет создавать детали из композиций материалов.

Схожая технология используется в самом доступном 3D принтере для печати металлических деталей - Mini Metal Maker, ценой порядка 1 600 долларов. Правда точность уже не 20 и не 100 микрон, а не менее 500. Зато размеры почти не ограничены, ведь не требуется ни вакуум, ни особая среда в рабочей области.

Что в итоге?

Прогресс в области трехмерной печати идет настолько быстро, что в течение буквально десятка лет возможна революция в области производства автокомпонентов и логистики при ее обслуживании. Вряд ли появится возможность «распечатать» себе машину, но то, что традиционный рынок запчастей постепенно исчезнет – это наверняка.

Мы будем вспоминать уже не качество поставщиков, а качество принтеров и цифровых моделей. Узнаем, что такое DRM применительно к чертежам деталей. Ну и сможем, наконец, изготовить нужную деталь «точно такую же, но из золота и с рубинами». А какие возможности откроются у тех автолюбителей, которые не прочь что-то изменить в машине куда более кардинально! В общем, нас ждут интересные времена. Берегите себя.

Верите ли вы в то, что за 3D печатью будущее автоиндустрии?

Технологии изготовления изделий с помощью 3D принтеров развиваются и совершенствуются. Освоив возможности изготовления мелких элементов, разработчики переходят к изготовлению более крупных и существенных изделий. Одна из таких попыток – изготовление на 3D принтере автомобиля в сжатые сроки.


Продемонстрировала свои возможности по 3D печати компания Local Motors из Аризоны, которая изготовила первый в мире автомобиль полностью при помощи технологий трехмерной печати. Из нескольких сотен проектов, полученных в ходе проведенного компанией конкурса, был отобран один, получивший название Strati.

И этот автомобиль был изготовлен и собран всего за 44 часа времени прямо на стенде компании в рамках международной технологической выставки International Manufacturing Technology Show (IMTS ), проходившей в Чикаго.


Как было сказано ранее, время изготовления автомобиля Strati составило всего 44 часа. Такая высокая скорость изготовления стала возможна благодаря тому, что конструкция автомобиля состоит из 40 основных деталей и узлов против тысяч деталей, из которых собирают обычные автомобили.

Все элементы кузова автомобиля Strati, сиденья, элементы салона и даже ветровое стекло были напечатаны трехмерным принтером BAAM (Big Area Additive Manufacturing) компании Cincinnati Incorporated при помощи технологии прямого цифрового производства (Direct Digital Manufacturing, DDM ).


В качестве материала для изготовления вышеупомянутых деталей были использованы различные виды пластика, а детали, которым требуется высокая механическая прочность, были напечатаны из пластика, армированного углеродистым волокном.

«Разработанный нами процесс является совершенно новым процессом, который может коренным образом изменить все сложившиеся на сегодняшний день устои и стереотипы автомобильной промышленности» – рассказывает Джон Б. Роджерс Мл. (John B. Rogers, Jr.), президент компании Local Motors, – « Кроме этого, мы собираемся продемонстрировать, что процесс создания автомобиля может быть выполнен несколькими различными способами, а результат этого будет почти одним и тем же».


Стоит отметить, что технологии 3D печати сейчас находятся в состоянии развития, и поэтому еще не все необходимые для создания автомобиля элементы могут быть изготовлены при помощи трехмерной печати. Так, при создании описываемого автомобиля Strati, разработчики Local Motors использовали элементы электрической трансмиссии и подвески от европейского варианта автомобиля Renault Twizy. А аккумуляторы, электрическая проводка и некоторые другие элементы для автомобиля Strati предварительно были заказаны у сторонних организаций.


Представленная на выставке новинка получила положительные отзывы посетителей, имевших возможность наблюдать процесс создания этого автомобиля, и поэтому компания Local Motors запланировала начать мелкосерийный выпуск автомобилей Strati, сделав их доступными для каждого желающего. К сожалению, конечная цена, которую должен будет заплатить покупатель автомобиля Strati, пока еще неизвестна, но она будет находиться, согласно информации от издательства DailyMail, в диапазоне от 11 до 18 тысяч фунтов стерлингов, что составляет от 18 до 30 тысяч долларов.

Ав3Д-технологии всё больше внедряются во все сферы жизнедеятельности человека. Научившись печатать небольшие предметы и детали, инженеры-исследователи решили обратиться к более сложным и крупным объектам, например, автомобилям. И в этой сфере им удалось добиться целого ряда успехов.

Безусловно, пока рано говорить о том, что завра все люди пересядут на авто, напечатанное на , и смогут сами печатать для себя машины, но, глядя на эти достижения, очерчивается будущее автоиндустрии.

Преимущества напечатанных машин

На данный момент автомобиль, который создан посредством , вызывает большой интерес. И первая причина в том, что такая машина имеет небольшой вес. Второй момент – это минимум человеческих затрат на сборку и создание авто. Это значит, что на сборку не требуется большое количество людей и времени. Сравните стандартный автомобиль состоит из более чем 25 тысяч деталей. А, например, напечатанный Strati состоит всего из 64 деталей. Это авто, сделанное всего за 44 часа.

Самые известные, созданные посредством автомобили:

  • Strati
  • Urbee 2
  • LM3D Swim
  • Auto Union Typ C – копия модели 1936 года, уменьшенная в 2 раза
  • Копия Shelby Cobra, модели 1965 года, созданная специалистами ORNL на 3Д-принтере
  • Компактный и очень дешёвый электрокар от Sanya Sihai
  • Концепт 2015 года Light Cocoon от EDAG
  • Blade Supercar стильный «красавчик» от Divergent 3D

Большинство из этих авто являются абсолютно экологичными электрокарами или гибридами. Также есть модели, которые используют солнечную электроэнергию и сжиженный газ, в случае если не хватает энергии.

Взгляд в будущее

В сети можно найти много фото и видео с автомашинами, созданными при помощи 3Д-технологий. Некоторые полностью напечатанные, другие содержат от 30 до 75% деталей, созданных посредством 3Д-печати.

Пока ещё рано говорить о большом комфорте машин целиком из пластика, ведь большинство предпочитает мягкие сидения жёсткому пластику. Также пока не решена проблема с ремонтопригодностью таких авто. Скептики утверждают, что просто печатать новую деталь для машины, а старую выбрасывать не экономично. Машина, напечатанная на 3D принтере, обходится пока ещё довольно дорого. Поэтому технологиям пока ещё предстоит активное развитие. Но инженеры найдут решение всех этих проблем, и аддитивное производство станет более совершенным, расширятся его возможности.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков