Бред сивой кобылы. Аналитическая машина чарльза бэббиджа и первый программист леди лавлейс

Бред сивой кобылы. Аналитическая машина чарльза бэббиджа и первый программист леди лавлейс

Несмотря на неудачу с разностной машиной, Бэббидж в 1834 году задумался о создании программируемой вычислительной машины, которую он назвал аналитической (прообраз современного компьютера). В отличие от разностной машины, аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Он предполагал, что построение новой машины потребует меньше времени и средств, чем доработка разностной машины, так как она должна была состоять из более простых механических элементов. С 1834 года Бэббидж начал проектировать аналитическую машину.

Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад (store), фабрика или мельница (mill), управляющий элемент (control) и устройства ввода-вывода информации.

Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью.

Мельница (арифметико-логическое устройство, часть современного процессора) должна была производить операции над переменными, а также хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию.

Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещением переменных в склад и извлечением их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.

Для создания компьютера в современном понимании оставалось лишь придумать схему с хранимой программой, что было сделано 100 лет спустя Эккертом, Мочли и Фон Нейманом.

Бэббидж разрабатывал конструкцию аналитической машины в одиночку. Он часто посещал промышленные выставки, где были представлены различные новинки науки и техники. Именно там состоялось его знакомство с Адой Августой Лавлейс (дочерью Джорджа Байрона), которая стала его очень близким другом, помощником и единственным единомышленником. В 1840 году Бэббидж ездил по приглашению итальянских математиков в Турин, где читал лекции о своей машине. Луиджи Менабреа, преподаватель туринской артиллерийской академии, создал и опубликовал конспект лекций на французском языке. Позже Ада Лавлейс перевела эти лекции на английский язык, дополнив их комментариями по объёму превосходящими исходный текст. В комментариях Ада сделала описание ЦВМ и инструкции по программированию к ней. Это были первые в мире программы. Именно поэтому Аду Лавлейс справедливо называют первым программистом. Однако, аналитическая машина так и не была закончена. Вот, что писал Бэббидж в 1851 году: «Все разработки, связанные с Аналитической машиной, выполнены за мой счёт. Я провёл целый ряд экспериментов и дошёл до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы». Несмотря на то, что Бэббидж подробно описал конструкцию аналитической машины и принципы её работы, она так и не была построена при его жизни. Причин этому было много. Но основными стали полное отсутствие финансирования проекта по созданию аналитической машины и низкий уровень технологий того времени. Бэббидж не стал в этот раз просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему всё равно откажут.

Только после смерти Чарльза Бэббиджа его сын, Генри Бэббидж, продолжил начатое отцом дело. В 1888 году Генри сумел построить по чертежам отца центральный узел аналитической машины. А в 1906 году Генри совместно с фирмой Монро построил действующую модель аналитической машины, включающую арифметическое устройство и устройство для печатания результатов. Машина Бэббиджа оказалась работоспособной, но Чарльз не дожил до этих дней.

В 1864 году Чарльз Бэббидж написал: «Пройдёт, вероятно, полстолетия, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». В своём предположении он ошибся на 30 лет. Только через 80 лет после этого высказывания была построена машина МАРК-I, которую назвали «осуществлённой мечтой Бэббиджа». Архитектура МАРК-I была очень схожа с архитектурой аналитической машины. Говард Айкен на самом деле серьёзно изучал публикации Бэббиджа и Ады Лавлейс перед созданием своей машины, причём его машина идеологически незначительно ушла вперёд по сравнению с недостроенной аналитической машиной. Производительность МАРК-I оказалась всего в десять раз выше, чем расчётная скорость работы аналитической машины.

Чарльз Бэббидж (1791-1871) - пионер создания вычислительной техники, который разработал 2 класса вычислительных машин - разностные и аналитические. Первый из них свое название получил благодаря математическому принципу, на котором основан - методу конечных разностей. Его красота заключается в исключительном использовании арифметического сложения без необходимости прибегать к умножению и делению, которые сложно реализовать механически.

Больше чем калькулятор

Разностная машина Бэббиджа представляет собой счетное устройство. Она оперирует числами единственным способом, на который способна, постоянно складывая их в соответствии с методом конечных разностей. Ее нельзя использовать для общих арифметических расчетов. Аналитическая же машина Бэббиджа гораздо больше, чем просто калькулятор. Она знаменует переход от механизированной арифметики к полномасштабным вычислениям общего назначения. На разных этапах эволюции идей Бэббиджа насчитывалось по меньшей мере 3 проекта. Поэтому на его аналитические машины лучше ссылаться во множественном числе.

Удобство и инженерная эффективность

Бэббиджа являются десятеричными устройствами в том смысле, что они используют 10 цифр от 0 до 9, и цифровыми потому, что оперируют только с целыми числами. Значения представлены шестернями, а каждому разряду отведено свое колесо. Если оно останавливается в промежуточном положении между целыми значениями, то результат считается неопределенным, а работа машины блокируется, чтобы показать нарушение целостности расчетов. Это является своеобразной формой обнаружения ошибок.

Бэббидж также рассматривал использование систем счисления, отличных от десятеричной, в т. ч. двоичной и с основанием 3, 4, 5, 12, 16 и 100. Он остановился на десятеричной по причине ее привычности и инженерной эффективности, поскольку благодаря ей значительно уменьшается количество движущихся частей.

Разностная машина №1

В 1821 г. Бэббидж начал разработки с механизма, предназначенного для расчета и табуляции полиномиальных функций. Автор описывает его как устройство для автоматического вычисления последовательности значений с автоматической печатью результатов в виде таблицы. Интегральной частью конструкции является принтер, механически связанный с расчетной секцией. Разностная машина №1 представляет собой первую полноценную конструкцию для автоматического выполнения расчетов.

Время от времени Бэббидж менял функциональные возможности устройства. Дизайн 1830 г. изображает машину, рассчитанную на 16 цифр и 6 порядков разности. Модель состояла из 25 тыс. частей, разделенных поровну между вычислительной секцией и принтером. Если бы устройство было построено, то весило бы, по оценкам, 4 т и имело бы высоту 2,4 м. Работа по созданию разностной машины Бэббиджа была остановлена в 1832 г., после спора с инженером Джозефом Клементом. Государственное финансирование окончательно прекратилось в 1842 г.

Аналитическая машина

Когда работа над разностным аппаратом застопорилась, в 1834 году Бэббидж задумал более амбициозное устройство, которое позже получило название аналитического универсального программируемого вычислительного механизма. Структурные свойства машины Бэббиджа во многом соответствуют основным блокам современного цифрового компьютера. Программирование производится с помощью перфокарт. Эта идея была заимствована у жаккардового ткацкого станка, где они служат для создания сложных текстильных узоров.

Логическая структура аналитической машины Бэббиджа в основном соответствует доминирующему дизайну компьютеров электронной эры, который подразумевает наличие памяти («магазина»), отделенной от центрального процессора («мельницы»), последовательное выполнение операций и средства для ввода и вывода данных и инструкций. Поэтому звание пионера вычислительной техники автор разработки получил вполне заслуженно.

Память и центральный процессор

У машины Бэббиджа есть «магазин», где хранятся числа и а также отдельная «мельница», где выполнялась арифметическая обработка. Она имела набор из 4 арифметических функций и могла выполнять прямое умножение и деление. Кроме того, устройство было способно производить операции, которые теперь получили названия условного разветвления, цикла (итерации), микропрограммирования, параллельной обработки, фиксации, формирования импульсов и т. п. Сам автор такую терминологию не использовал.

ЦПУ аналитической машины которое он называл «мельницей», обеспечивает:

  • хранение чисел, операции над которыми производятся немедленно, в регистрах;
  • имеет аппаратные средства для произведения с ними основных арифметических операций;
  • передачу ориентированных на пользователя внешних инструкций в детальное внутреннее управление;
  • систему синхронизации (такт) для выполнения инструкций в тщательно подобранной последовательности.

Механизм управления аналитической машины выполняет операции автоматически и состоит из двух частей: нижнего уровня, контролируемого массивными барабанами, называемыми бочками, и высокого уровня, использующего перфокарты, разработанными Жаккардом для ткацких станков, широко применявшихся в начале 1800-х годов.

Устройства вывода

Результат вычислений выводится различными способами, включая печать, перфокарты, построение графиков и автоматическое производство стереотипов - лотков из мягкого материала, на которых производится оттиск результата, способных служить формой для отливки пластин для печати.

Новая конструкция

Новаторскую работу над аналитической машиной Бэббидж в основном завершил к 1840 г. и начал разрабатывать новое устройство. В период с 1847 по 1849 год он закончил разработку разностной машины №2, представлявшей собой улучшенную версию оригинала. Эта модификация была рассчитана на операции с 31-разрядными числами и могла привести в табличную форму любой полином 7-го порядка. Дизайн был изящно простым и требовал лишь третью часть от количества деталей первоначальной модели, обеспечивая равную с ней вычислительную мощность.

В разностной и аналитической машинах Чарльза Бэббиджа использовалась одна и та же конструкция устройства вывода, которое не только делало распечатку на бумаге, но и автоматически создавало стереотипы и самостоятельно производило форматирование согласно заданному оператором макету страницы. При этом предусматривалась возможность настройки высоты строки, числа столбцов, ширины полей, обеспечивались автоматическое сворачивание строк или столбцов и расстановка пустых строк для удобства чтения.

Наследие

Помимо нескольких частично созданных механических сборок и тестовых моделей небольших рабочих секций, ни одна из конструкций не была реализована полностью в течение жизни Бэббиджа. Основная собранная в 1832 г. модель была 1/7 частью разностной машины №1, которая состояла примерно из 2 тыс. деталей. Она безупречно работает по сей день и является первым успешным автоматическим вычислительным устройством, которое реализует математические расчеты в механизме. Бэббидж умер, когда собиралась небольшая экспериментальная часть аналитической машины. Многие детали конструкции сохранились, как и полный архив чертежей и записок.

Проекты огромных механических вычислительных машин Бэббиджа считаются одним из потрясающих интеллектуальных достижений XIX века. Только в последние десятилетия его работа была детально изучена, и степень важности того, что он совершил, становится все более очевидной.

Одно время его считали гением, потом чуть не посадили в долговую яму.
Да и вправду потраченные суммы были фантастичны для начала 19 века.
А обещанная машина так и не заработала. А он мечтал уже о следующей.
Попутно он изобрел тахометр. Он поднимался с экспедицией на Везувий,
погружался на дно озера в водолазном колоколе, участвовал в археологических
раскопках, изучал залегание руд, спускаясь в шахты.

Почти год он занимался безопасностью железнодорожного движения и сделал
очень много специального оборудования. В том числе создал спидометр.
Кроме того он разработал немало оборудования для обработки металла.

Чарльз Бэббидж родился 26 декабря 1791 года в Лондоне. Его отец, Бенджамин Бэббидж, был банкиром. Мать звали Элизабет Бэббидж. Ее девичья фамилия Тип (Teape). В детстве у Чарльза было очень слабое здоровья. В 8 лет, его отправили в частную школу в Альфингтоне на воспитание священнику. На тот момент его отец уже был достаточно обеспечен, чтобы позволить обучение Чарльза в частной школе. Бенджамин Бэббидж попросил священника не давать Чарльзу сильных учебных нагрузок из-за слабого здоровья.
После школы в Альфингтоне Чарльз был отправлен в академию в Энфилде, где по существу и началось его настоящее обучение. Именно там Бэббидж начал проявлять интерес к математике, чему поспособствовала большая библиотека в академии.

После обучения в академии, Бэббидж обучался у двух репетиторов. Первый был священником, жившим возле Кембриджа. По словам Чарльза, священник не дал бы ему тех знаний, который он мог получить, обучаясь у более опытного репетитора. После священника у Бэббиджа был репетитор из Оксфорда. Он смог дать Бэббиджу основные классические знания, достаточные для поступления в колледж.

В 1810 году Бэббидж поступил в Тринити-колледж в Кембридже. Однако, основам математики он обучался самостоятельно по книжкам. Он тщательно изучал труды Ньютона, Лейбница, Лагранжа, Лакруа, Эйлера и других математиков академий Санкт-Петербурга, Берлина и Парижа. Бэббидж очень быстро обогнал своих преподавателей по знаниям и был сильно разочарован уровнем преподавания математики в Кембридже. Более того он заметил, что Британия вцелом заметно отстала от континентальных стран по уровню математической подготовки.

В связи с этим, он решил создать общество, целью которого являлось внесение современной европейской математики в Кембриджский университет. В 1812 году Чарльз Бэббидж, его друзья, Джон Гершель (John Herschel) и Джордж Пикок (George Peacock) и еще несколько молодых математиков основали «Аналитическое общество». Они стали проводить собрания. Обсуждать различные вопросы, связанные с математикой. Начали публиковать свои труды. Например, в 1816 году они опубликовали переведенный ими на английский язык «Трактат по дифференциальному и интегральному исчислению» французского математика Лакруа, а в 1820 году опубликовали два тома примеров, дополняющих этот трактат. Аналитическое общество своей активностью инициировало реформу математического образования вначале в Кембридже, а затем и в других университетах Британии.

В 1812 году Бэббидж перешел в колледж Св. Петра (Peterhouse). А в 1814 году он получил степень бакалавра. В том же году Чарльз Бэббидж женился на Джорджии Витмур (Georgiana Whitmore), и в 1815 году они переехали из Кембриджа в Лондон. За тринадцать лет брака у них было восемь детей, но пятеро из них умерли в детстве. В 1816 году он стал членом Королевского Общества Лондона. К тому времени он написал несколько больших научных статей в разных математических дисциплинах. В 1820 году он стал членом Королевского Общества Эдинбурга и Королевского Астрономического Общества. В 1827 году он похоронил отца, жену и двоих детей. В 1827 году он стал профессором математических наук в Кембридже, и занимал этот пост в течении 12 лет. После того, как он покинул этот пост, он большую часть своего времени посвятил делу его жизни – разработке вычислительных машин.

Часть разностной машины Чарльза Бэббиджа, собранная после смерти учёного его сыном из деталей, найденных в лаборатории отца.

Малая разностная машина

Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчёте которых были выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Ещё тогда он начал осмысливать возможность проведения сложных математических расчётов при помощи механических аппаратов.



Однако, Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в 1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18 разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-ой степени.


За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако, малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений.


Работающая копия разностной машины в лондонском Музее науки

В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).


Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины , но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No. 2 ).


Основываясь на работах и советах Бэббиджа, шведский издатель, изобретатель и переводчик Георг Шутц (швед. Georg Scheutz ) начиная с 1854 года сумел построить несколько разностных машин и даже сумел продать одну из них канцелярии английского правительства в 1859 году. В 1855 году разностная машина Шутца получила золотую медаль Всемирной выставки в Париже. Спустя некоторое время другой изобретатель, Мартин Виберг (швед. Martin Wiberg ), улучшил конструкцию машины Шутца и использовал её для расчёта и публикации печатных логарифмических таблиц.




Разностный калькулятор Шутца

Аналитическая машина Бэббиджа:

Несмотря на то что разностная машина не была построена её изобретателем, для будущего развития вычислительной техники главным явилось другое: в ходе работы у Бэббиджа возникла идея создания универсальной вычислительной машины, которую он назвал аналитической и которая стала прообразом современного цифрового компьютера. В единую логическую схему Бэббидж увязал арифметическое устройство (названное им «мельницей»), регистры памяти, объединённые в единое целое («склад»), и устройство ввода/вывода, реализованное с помощью перфокарт трёх типов. Перфокарты операций переключали машину между режимами сложения, вычитания, деления и умножения. Перфокарты переменных управляли передачей данных из памяти в арифметическое устройство и обратно. Числовые перфокарты могли быть использованы как для ввода данных в машину, так и для сохранения результатов вычислений, если памяти было недостаточно.




В целом Беббиджа подвела недостаточная точность металлообработки того времени и конечно недостаток финансирования

В дальнейшем на протяжении почти столетия ничего похожего на Аналитическую машину не появилось, однако идея использования перфокарт для обработки данных была опробирована довольно скоро. Спустя 20 лет после смерти Бэббиджа американский изобретатель Герман Холлерит создал электромеханическую счетную машину – табулятор, в которой перфокарты использовались для обработки результатов переписи населения, проводившейся в США в 1890 г.

Принтер! для машины Бэббиджа:

Последние годы жизни Бэббидж посвятил философии и политической экономии.
Чарльз Бэббидж умер в возрасте 79 лет 18 октября 1871 года.

Машина различий Бэббиджа:

PS.

Многое из того, что известно об этой машине, дошло до нас благодаря научным трудам одаренного математика-любителя Огасты Ады Байрон (графини Лавлейс), дочери поэта лорда Байрона. В 1843 г. она перевела статью об Аналитической машине, написанную одним итальянским математиком, снабдив ее собственными подробными комментариями, которые касались потенциальных возможностей машины.

В период 1989 по 1991 год к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2 . В 2000 году в том же музее заработал принтер, также придуманный Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструкционных неточностей, обе конструкции заработали безупречно. Эти эксперименты подвели черту под долгими дебатами о принципиальной работоспособности конструкций Чарльза Бэббиджа (некоторые исследователи полагают, что Бэббидж умышленно вносил неточности в свои чертежи, пытаясь таким образом защитить свои творения от несанкционированного копирования).

Источники:

1. Биография Чарльза Бэббиджа
2. Чарльз Бэббидж — изобретатель и… политэконом
3. Нас переехали колеса Бэббиджа
4. http://www.sciencemuseum.org.uk/onlinestuff/stories/babbage.aspx

механическое устройство, изобретённое математиком Чарльзом Бэббиджем, предназначенное для автоматизации вычислений путём аппроксимации (т.е. приближением - научным методом, который заключается в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми) функций многочленами и вычисления конечных разностей. Как раз наличие функции приближённого представления в тригонометрических функциях и многочленах логарифмов позволяет рассматривать разностную машину Бэббиджа как универсальный прибор.

Впервые идея разностной машины была озвучена немецким учёным Иоганном Мюллером в книге, изданной в 1788 году, но Бэббидж заимствовал идею создания своего проекта не у Мюллера, а из работ французского математика и учёного-гидравлика Гаспара де Прони , почти 10 лет занимавшего должность руководителя бюро переписи населения.

Прони было поручено выверить и уточнить данные логарифмических тригонометрических таблиц для подготовки к принятию метрической системы (ввели в стране после революции). Гаспар предложил распределить работу по трём уровням. Группа крупных математиков представляла верхний уровень. Они занимались выводом математических выражений, пригодных для численных расчётов, так сказать решением задач в общем виде. Второй, средний уровень, вычислял значения функций для аргументов, которые находились друг от друга на пять или десять интервалов. Рассчитанные значения входили в таблицу в качестве опорных. После этих действий формулы отправляли вниз, третьей, самой многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». Понятное дело, что они были наименее квалифицированными математиками из всех уровней. От вычислителей требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными «сверху».

Работы Гаспара де Прони (так и не законченные ввиду революционного времени, инфляции и т.д.), с которыми Бэббидж познакомился, будучи во Франции, как раз и навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей.

В 1822 году Бэббидж публикует научную статью с описанием машины, способной рассчитывать и печатать большие математические таблицы. Спустя несколько месяцев ему удалось построить пробную модель своей Разностной машины, состоящую из шестерёнок и валиков, вращаемых вручную с помощью рычага. Бэббидж смог добиться поддержки Королевского общества, а это немного ни мало самая престижная научная организация Великобритании. Он обратился к правительству страны с просьбой профинансировать создание полномасштабной работающей машины. В письме президенту Королевского общества, Бэббидж указывал на то, что с «невыносимой утомительной работой», заключающейся в однообразных повторяющихся математических расчётах, будет покончено. Королевское общество поддержало Бэббиджа и он получил грант от правительства на полторы тысячи фунтов стерлингов.

Следующие 10 лет своей жизни Бэббидж полноценно потратил на своё изобретение. Он планировал завершить работу за 3 года, однако после каждой модификации Разностная машина становилась только сложнее. Мешали болезни, финансовые проблемы, остальная работа. Сумма правительственной поддержки выросла почти в 10 раз: до 17000 фунтов стерлингов. Официальные лица всё больше сомневались в целесообразности и в итоге их скептицизм взял верх, выделение средств на Разностную машину прекратилось.

В 1833 году Бэббидж уже был готов навсегда закрыть проект Разностной машины. Однако, размышлять на ту же тему он не закончил, и в итоге пришел к идее создания еще более мощной – Аналитической машины .

Хотя, работая над новым проектом, Бэббидж больше не возвращался к его предшественнику, шведский изобретатель, издатель и переводчик Пер Георг Шойц, ознакомившись с материалами этого устройства, построил его слегка измененный вариант, воспользовавшись рекомендациями Бэббиджа. Конечно, это было для Бэббиджа одновременно и радостное, и печальное событие, когда он, наконец, увидел, как его бывшее, а теперь уже общее детище, успешно прошло испытания… Это случилось в 1854 г. в Лондоне. Спустя всего год Разностная машина Шойца получила золотую медаль на Всемирной выставке в Париже. Прошло всего несколько лет и вот уже британское правительство, отказавшее в свое время в финансировании Бэббиджу, заказало одну из таких машин для правительственной канцелярии.

В период 1989-1991 гг. к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2.

В 2000 году в том же музее заработал принтер , который также придумал Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструктивных неточностей, обе конструкции заработали идеально. Данные эксперименты подвели черту под длительными спорами о принципиальной работоспособности конструкций изобретателя (хотя некоторые исследователи всё же полагают, что Бэббидж намеренно вносил неточности в свои чертежи, чтобы тем самым защитить свои творения от несанкционированного копирования).

Где-то в 1800-х годах Чарльз Бэббидж изобрел первый компьютер, тогда слово «компьютер» имело иное значение, и он назвал свое изобретение Разностной машиной или Аналитической машиной. Гениальный изобретатель опережал свое время, но, к сожалению, не завершил свое изобретение, и лишь спустя сто лет был изобретен первый настоящий компьютер, но это уже другая история. А сегодняшняя статья об Аналитической Машине Бэббиджа.

Согласно чертежам Бэббиджа машина должна была состоять из следующих частей:

1. Склад - жесткий диск, память; 2. Мельница - процессор; 3. Паровой двигатель - блок питания; 4. Принтер - принтер; 5. Карты операций - программы; 6. Карты переменных - система адресации; 7. Числовые карты - для ввода чисел; 8. Управляющие барабаны - микропрограммы.

Самовычисляющая машина

В этой статье мы попробуем выяснить устройство Аналитической Машины, но для начала следует отметить, что она принадлежала к распространенному с 1740-х годов семейству «автоматических» (само-) механизмов.

И хотя Бэббидж избегал использования этого понятия, в новостях и изданиях ее описывали именно так:

За завтраком я имела удовольствие сидеть рядом с мистером Бэббиджем, известным в наших кругах изобретателем самовычисляющей машины. Взгляд его кажется столь проницательным, будто он видит науку - или любой другой предмет, ставший объектом его внимания, - насквозь.
Эди Седжвик, 1841 г.
Центробежный регулятор - первый из «самодействующих» механизмов индустриальной эпохи. Кстати, именно он является одной из самых узнаваемых частей парового двигателя.


При разгоне двигателя шары отклоняются от оси под воздействием центробежной силы, из-за этого муфта сдвигается и ограничивает приток пара, а машина замедляет ход. Замедление машины опускает шары и этим открывает клапан - открывается приток пара, цикл замкнулся.

Сама же конструкция Разностной машины была схожа с арифмометрами, и, как арифмометры, Машина состояла из длинной череды зубчатых колес, которые складывают числа, а потом выдают сумму.

Где-то в 1834 году Бэббидж усовершенствовал конструкцию, и благодаря возврату суммы обратно в машину стали доступны более сложные вычисления.

Работа Аналитической машины основывалась именно на «пожирании своего хвоста», и работала система благодаря сложной цепи шестерней, которые управлялись перфокартами и барабанами, вычисляя суммы и отправляя результаты на склад, который состоял из ряда зубчатых колес.

Примерно все взаимодействовало так:

  1. Карты операций (А) указывают картам переменных (В), что нужно запросить числа для расчетов;
  2. Числа вводятся с числовых карт (С) или со склада (D) и поочередно поступают на ось ввода (Е);
  3. Ось ввода передает числа на центральные колеса (F);
  4. Карта операции дает команду сложения чисел или умножения или иную, а барабаны (G) поворачиваются до положения, в котором их штифты будут соответствовать операции.
  5. Барабаны активируют рычаги, соединяя шестерни мельницы (H) с центральными колесами. А уже в мельнице определенные устройства отвечают за сложение, умножение и иные действия;
  6. Шестерни выполняют умножение исходных чисел;
  7. Мельница при необходимости может зацикливать действия, передавая команды на разные участки перфокарты;
  8. Результат попадает на ось вывода (I).
  9. Ось вывода передает данные на принтер (D) или отправляет на склад согласно картам переменных;
  10. Карты операций подают команду на подачу звонка (J) и на остановку Машины. Всё!

Память: склад

Любому компьютеру, паровому или электронному, необходима возможность хранения данных. В изобретении Бэббиджа он назывался складом, и, как практически вся машина, он состоял из зубчатых колес, расположенных в высоких столбцах. На каждом из столбцов хранилось только одно число не длиннее пятидесяти цифр, а верхнее колесо определяло положительно число или отрицательно.

Согласно моим оценкам, пройдет немало времени, прежде чем эти ограничения перестанут удовлетворять нуждам науки.
Чарльз Бэббидж
На чертежах Бэббиджа склад состоял из двух параллельных рядов высоких числовых столбцов, и в каждом из них хранилось одно число. Одна из сторон склада сообщалась с мельницей.

Кроме зубчатых колес числа могли храниться на числовых картах в виде комбинаций отверстий:

На своих схемах Чарльз изображал ряд столбцов уходящим за край листа и не указывал конечное количество чисел, которые могла бы запоминать заключительная версия Машины.

Рейки и карты переменных для передачи данных

Для передачи чисел со склада в Машину Бэббидж использовал опять зубчатые колеса рейки с длинными зубцами. Каждое из числовых колес склада с помощью шестеренок были связаны с рейками и при их помощи значения передавались на специальный столбец колец, находящийся между мельницей и складом, и таким же образом числа передавались обратно на склад.


Колеса склада А подключено к рейке В с помощью шестеренки. Обнуляясь, колесо слада поворачивает ось ввода до позиции переданного числа.


Для передачи числа с дальнего конца склада требовалась зубчатая рейка длинной в несколько метров.

На картах переменных нанесены адреса на складе, с которых производится выборка чисел. Эти же карты могут быть запрограммированы на получение значений с числовых карт.
Каждый адрес нанесен на карты переменных в виде отверстий, и их сочетание переключает определенные рычаги:


При отсутствии отверстия на перфокарте рычаг не задействован, но как только отверстие появлялось, рычаг соединял шестеренку со скобой. И шестеренка, поднимаясь вместе со скобой, соединяла колесо ввода с зубчатой рейкой.

Мельница вычислений

После попадания чисел в мельницу начинается главная часть работы Машины - арифметические действия, выполняемые снова и снова.

Бэббиджем были разработаны отдельные узлы сложения, вычитания, умножения и деления, а также один из любимых его механизмов - перенос с предварением.

В своих публикациях Бэббидж очеловечивал Машину и про «сквозной перенос» писал:

В случае сквозного переноса Машина способна предвидеть и действовать в соответствии с предвидением.
Чарльз Бэббидж
Конечно, до переноса числа необходимо было сложить, и происходило это примерно так:

Колесо А обнуляется и на нем задается первое число. Второе число задается на колесе В, которое в сцепке с колесом А. Обнуление первого колеса прибавляет число, которое там содержалось, к значению на колесе В.

Возьмем для примера:

Вспомним школьную арифметику, а именно сложение в столбик и перенос единиц. Если расположить цифры обоих чисел по столбцам, как это сделано в Машине, и складывать их по разрядам, то в первом случае не будет переноса, во втором будет перенесена единица, а в третьем сумма будет равна 9, но перенесенная ранее единица инициирует перенос.

Когда Разностная машина работает, можно наблюдать волнообразные движения рычажков переноса в задней части Машины. Волны происходят из-за последовательных переносов единиц снизу вверх с проверкой инициации новых переносов.


Эта штука переносит единицу снизу вверх по одной!

Программы

В то время программ не существовало, ну точнее они уже были придуманы, но тогда они назывались картами операций и выглядели примерно так:


Карта операций

Программами занималась Ада Лавлейс, и, как истинные аристократы, они отдавали приказы барабанам и картам переменных не контактируя с рабочими механизмами. Даже простое сложение задействовало множество деталей, и при помощи большого барабана один рычаг мог задавать любое значение для восьмидесяти других рычагов.

Согласно отверстиям на картах барабан поворачивается к рычагам разными секциями, которые содержат определенный шифр и задействуют разные наборы рычагов.

И хотя барабаны напоминают валики шарманок, действуют они иначе. Вместо непрерывного вращения барабан поворачивается до определенной позиции и затем двигается вперед, толкая и активируя набор необходимых рычагов.

Карты операций управляют и барабанами, и картами переменных, и выглядят примерно так:

Перфокарты

Первой системой, построенной на перфокартах, был жаккардов станок, и именно им вдохновлялся Бэббидж.


Карта Жаккара, 1850 г.

Принцип их работы прост и гениален одновременно: удерживающий перфокарты рычаг опускается, прижимая карту к набору подпружиненных горизонтальных штырьков. Если под штырьком отсутствует отверстие, то карта сдвигает штырек и наклоняет стержень с крючком так, что он цепляется за штифт. Затем штифты движутся вверх вместе с зацепившимися за них крючками.

Логика и циклы

Перфокарты и шестеренки - это великолепно, но не они делают Разностную машину компьютером. Из устройства для обсчета десятичной арифметики Машина превращается в компьютер благодаря небольшой детали - условному рычагу.

Этот рычаг автоматически опускается, если результат вычислений требует дальнейших действий со стороны программы. И если на определенной позиции барабана стоит штифт, а затем рычаг опускается - запускается новый цикл вычислений.

Таким образом, условный рычаг замыкает цикл, и Машина «поедает собственный хвост»: перфокарты управляют барабанами, барабаны Машиной, Машина барабанами, а барабаны перфокартами.

На этом я закончу сегодняшнюю статью. Если у вас есть какие-то дополнения, то я буду рад обсуждениям в комментариях.

Всем хорошего дня и точных вычислений!

Литература:
«Невероятные приключения Лавлейс и Бэббиджа. Почти правдивая история первого компьютера»



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков