Реферат: Счетная машина Лейбница Готфрида Вильгельма. Арифмометр Лейбница: история создания, особенности, описание, фото

Реферат: Счетная машина Лейбница Готфрида Вильгельма. Арифмометр Лейбница: история создания, особенности, описание, фото

The Document Foundation объявил о выпуске LibreOffice 6.2. Изменения и дополнения в новом выпуске: Libreoffice Writer Переделана возможность скрытия изменений: изменить ▸ трек изменений ▸ показать […]

Вышла новая версия дистрибутива OpenWrt 18.06.2, ориентированного на применение в различных сетевых устройствах, таких как маршрутизаторы и точки доступа. Проект OpenWrt – это операционная […]

В следующей версии Mozilla Firefox для Linux будет использоваться клиентское оформление (CSD) по умолчанию. SCD (Client Side Decoration) – технология, при которой заголовок и рамки окна […]

Доступен релиз медиасервера Gerbera 1.3, продолжающего развитие проекта MediaTomb после прекращения его разработки. Gerbera поддерживает протоколы UPnP, в том числе спецификацию UPnP MediaServer 1.0, […]

Спустя почти полгода после прошлого значительного выпуска команда разработчиков представляет новую версию DeltaChat - мессенджера для Android, основанного поверх Email. Из особенностей DeltaChat […]

Компания Oracle сформировала корректирующие релизы системы виртуализации VirtualBox 6.0.4 и 5.2.26, в которых отмечено 10 исправлений. Основные изменения в выпуске 6.0.4: Обеспечена совместимость с […]

После восьми месяцев разработки состоялся релиз пользовательского окружения LXQt 0.14 (Qt Lightweight Desktop Environment), развиваемого объединённой командой разработчиков проектов LXDE и Razor-qt. […]

  • Facebook объединит свой мессенджер, WhatsApp и Instagram

    Можно будет общаться между платформами Messenger, WhatsApp и Instagram Компания Facebook начала работу над объединением трёх принадлежащих ей сервисов - Messenger, WhatsApp и Instagram. Об этом […]

  • После полутора лет разработки состоялся релиз платформы для создания домашнего медиацентра MythTV 0.30, позволяющей превратить настольный ПК в телевизор, видеомагнитофон, музыкальный центр, альбом с […]

  • Представлен стабильный релиз Wine 4.0

    После года разработки и 28 экспериментальных версий представлен стабильный релиз открытой реализации Win32 API – Wine 4.0, который вобрал в себя более 6000 изменений. Из ключевых достижений […]


  • 1 февраля 2019 года некоторые сайты могут перестать работать

    1 февраля ряд DNS-сервисов и производителей DNS-серверов решили провести день корректной обработки запросов EDNS (DNS flag day). В этот же день организация ISC планирует выпустить новый значительный […]

  • Механический период

    Эскиз механического тринадцатиразрядного суммирующего устройства с десятью колесами был разработан еще Леонардо да Винчи (1452-- 1519). По этим чертежам в наши дни фирма IBM в целях рекламы построила работоспособную машину.

    Первая механическая счетная машина была изготовлена в 1623 г. профессором математики Вильгельмом Шиккардом (1592--1636). В ней были механизированы операции сложения и вычитания, а умножение и деление выполнялось с элементами механизации. Но машина Шиккарда вскоре сгорела во время пожара. Поэтому биография механических вычислительных устройств ведется от суммирующей машины, изготовленной в 1642 г. Блезом Паскалем.

    В 1673 г. другой великий математик Готфрид Лейбниц разработал счетное устройство, на котором уже можно было умножать и делить.

    В 1880г. В.Т. Однер создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 году налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти 19-ого века были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 50-х годов.

    Мысль о создании автоматической вычислительной машины, которая бы работала без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791--1864) в начале XIX в. В 1820--1822 гг. он построил машину, которая могла вычислять таблицы значений многочленов второго порядка.

    .Машина Блеза Паскаля.

    Считается, что первую механическую машину, которая могла выполнять сложение и вычитание, изобрел в 1646г. молодой 18-летний французский математик и физик Блез Паскаль. Она называется "паскалина".

    Формой своей машина напоминала длинный сундучок. Она была достаточно громоздка, имела несколько специальных рукояток, при помощи которых осуществлялось управление, имела ряд маленьких колес с зубьями. Первое колесо считало единицы, второе - десятки, третье - сотни и т.д. Сложение в машине Паскаля производится вращением колес вперед. Двигая их обратно, выполняется вычитание.

    Машина Готфрида Лейбница

    Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Хоть машина Лейбница и была похожа на "Паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Само повторение тоже осуществлялось автоматически.

    Перфокарты Жаккара

    Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте. Информация на карте управляла станком.

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

    Государственное образовательное учреждение

    высшего профессионального образования

    «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

    Отделение связей с общественностью

    Кафедра связей с общественностью

    СЧЕТНАЯ МАШИНА ЛЕЙБНИЦА ГОТФРИДА ВИЛЬГЕЛЬМА

    (реферат по «Информатике»)

    Барнаул 2011


    Введение

    1. Биография Лейбница Готфрида Вильгельма

    2. Научная деятельность Лейбница Готфрида Вильгельма

    3. Счетная машина

    Заключение

    Список используемой литературы


    Введение

    Много бед принесла Германии первая половина XVII столетия. Тридцатилетняя война опустошила множество деревень и городов, привела в упадок торговлю и ремесла; население страны уменьшилось с 16 до 6 миллионов человек. Когда наступил долгожданный мир, "Германия оказалась поверженной - беспомощной, растоптанной, растерзанной, истекающей кровью..."

    Но - парадокс! - именно эта несчастная страна, которая в научном отношении тогда представляла собой глухую провинцию (она имела лишь одного ученого мирового класса - Иоанна Кеплера), подарила человечеству Готфрида Вильгельма Лейбница, чей универсальный гений оказал громадное влияние на развитие не только немецкой, но и всей европейской науки.

    Лейбниц Готфрид Вильгельм является немецким философом, математиком-физиком, юристом, дипломатом, экономистом, лингвистом, археологом и историографом. Его заслуги велики. Он является одной из центральных фигур в развитии логики. Его логическое наследие - поразительный феномен в истории мысли. А его ориентация на математизацию, алгебраизацию и аксиоматизацию логики опередила время минимум на полтора столетия. Поэтому логические идеи пронизывают практически все интеллектуальное наследие Лейбница, так или иначе, затрагиваются во всех его работах от ранней диссертации до «Монадологии» и «Новых опытов о человеческом разуме».

    Готфрид Вильгельм изобрел счетную машину, которая стала открытием XVIIвека. Я хочу более подробно рассмотреть механизм и последовательность работы данного изобретения.

    лейбниц счетный калькулятор


    1. Биография Готфрида Вильгельма Лейбница (1646-1716)

    Готфрид Вильгельм фон Лейбниц (нем. GottfriedWilhelmvonLeibniz) родился 21 июня1646 в г. Лейпциге (Германия), в семье профессора философии морали (этики) лейпцигского университета Фридриха Лейбнюца (нем. FriedrichLeibnütz) и Катерины Шмук (нем. CatherinaSchmuck).

    Когда мальчику было 8 лет, его отец умер, оставив после себя большую личную библиотеку. Свободный доступ к книгам и врождённый талант позволили молодому Лейбницу уже к 12 годам самостоятельно изучить латынь и взяться за изучение греческого языка.

    В 15-летнем возрасте (1661) Готфрид Вильгельм сам поступил в тот же Лейпцигский университет, где когда-то работал его отец. В свою бытность студентом он познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года переходит в Йенский университет, где изучает математику. Затем возвращается в Лейпциг изучать право, но получить докторскую степень там не удалось. Расстроенный отказом, Лейбниц отправился в Нюрнбергский университет в Альтдорфе, где успешно защищает диссертацию на соискание степени доктора права. Диссертация была посвящена разбору вопроса о запутанных юридических случаях. Защита состоялась 5 ноября 1666 года; эрудиция, ясность изложения и ораторский талант Лейбница вызывают всеобщее восхищение.

    В этом же году он написал первое из своих многочисленных сочинений: «О комбинаторном искусстве». Опередив время на два века, 20-летний Лейбниц задумал проект математизации логики. Будущую теорию (которую он так и не завершил) он называет «всеобщая характеристика». Она включала все логические операции, свойства которых он ясно представлял.

    Закончив обучение, он устраивается советником курфюрста Майнцского по юридическим и торговым делам (1670). Работа требовала постоянных разъездов по всей Европе; в ходе этих путешествий он подружился с Гюйгенсом, который согласился обучать его математике. Служба, однако, продолжалась недолго, в начале 1672 года Лейбниц с важной дипломатической миссией покинул Майнц, а спустя год курфюрст умер.

    Затем с 1676 года и до конца жизни Лейбниц в течение сорока лет находился на службе при Браун-Люнебургском герцогском дворе.

    В это время Лейбниц изобретает собственную конструкцию арифмометра, гораздо лучше паскалевской - он умел выполнять умножение, деление и извлечение корней. Предложенные им ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров.

    Но в его жизни было и немало безрадостного. Окруженный недоверием, презрением и недоброй славой полуатеиста, великий философ и ученый доживал последние годы, оказываясь иногда без жалования и терпя крайнюю нужду. Для англичан он был ненавистен как противник Ньютона в спорах о научном приоритете, для немцев он был чужд и опасен как человек, перетолковывающий все общепринятое по-своему. Горьким был и личный итог жизни и деятельности Лейбница: непонятый и презираемый, притесняемый и гонимый невежественной придворной кликой, он пережил крушение лучших своих надежд. Пренебрежение и вражда власть имущих и церковников к великому мыслителю преследовали его и после смерти.

    Но сейчас всеми признано, что Лейбницу были свойственны исключительно широкий кругозор и диапазон деятельности, одновременное усмотрение разнообразных связей разбираемых им проблем и целеустремленное исследование внутреннего их существа. Лейбниц обладал поразительной сжатостью и точностью стиля, творческой энергией и умением подметить самые различные следствия, вытекающие из выдвинутых им положений.


    2. Научная деятельность Готфрида Вильгельма Лейбница

    Лейбниц - один из важнейших представителей новоевропейской метафизики, в центре внимания которой - вопрос о том, что такое субстанция. Лейбниц развивает систему, получившую название субстанциальный плюрализм или монадология.

    Важнейшими научными достижениями Лейбница являются то, что Лейбниц, независимо от Ньютона, создал математический анализ - дифференциальное и интегральное исчисление и в 1684 публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов». В этой работе Лейбница излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости (следовательно, и достаточные условия экстремума для простейшего случая), а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv.

    Также создал комбинаторику как науку; только он во всей истории математики одинаково свободно работал как с непрерывным, так и с дискретным. Готфрид Вильгельм обосновал необходимость регулярно измерять у больных температуру тела. Задолго до Зигмунда Фрейда привёл доказательства существования подсознания человека.

    В 1686 Лейбниц даёт подразделение вещественных чисел на алгебраические и трансцендентные; ещё раньше он аналогично классифицировал кривые линии. Впервые в печати вводит символ интеграла и указывает, что эта операция обратна дифференцированию. А в 1692 вводит общее понятие огибающей однопараметрического семейства кривых, выводит её уравнение.

    Затем Лейбниц рассматривает вопрос о разрешимости линейных систем; его результат фактически вводит понятие определителя. Но это открытие не вызвало тогда интереса, и линейная алгебра возникла только спустя полвека.

    В 1695 Лейбниц вводит показательную функцию в самом общем виде: uv. Чуть позже, в 1702 совместно с Иоганном Бернулли открыл приём разложения рациональных дробей на сумму простейших. Это решает многие вопросы интегрирования рациональных функций.

    Лейбниц также описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника.

    В физике Лейбниц ввёл понятие «живой силы», позднее получившей название кинетической энергии.

    3. Счетная машина

    Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем и называлась «Калькулятор Лейбница».

    Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

    Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

    В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал двенадцатиразрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

    Описание калькулятора Лейбница ведется на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.

    Изначально, Лейбниц пытался лишь улучшить уже существующее устройство Паскаля, но вскоре он понял, что операция умножения и деления требуют принципиально нового решения, которое бы позволяло вводить множимое только один раз.

    О своей машине Лейбниц писал: «Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию».

    Это стало возможно, благодаря разработанному Лейбницем цилиндру, на боковой поверхности которого, параллельно образующей, располагались зубья различной длины. Этот цилиндр получил название «Ступенчатый валик».

    К ступенчатому валику крепится зубчатая рейка. Эта рейка входит в сцепление с десятизубым колесом №1, к которому прикреплялся циферблат с цифрами от 0 до 10. Поворотом этого циферблата задается значение соответствующего разряда множимого. Например, если второй разряд множимого равнялся 5, то циферблат, отвечающий за установку этого разряда, поворачивался в положение 5. В результате десятизубое колесо № 1, с помощью зубчатой рейки, так перемещало ступенчатый валик, что при повороте на 360 градусов он входит в зацеплении с десятизубым колесом № 2 только пятью наиболее длинными ребрами. Соответственно, десятизубое колесо №2 поворачивалось на пять частей полного оборота, на столько же поворачивался и связанный с ним цифровой диск, отображающий результирующее значение выполненной операции.

    При следующем обороте валика на цифровой диск снова перенесется пятерка. Если цифровой диск совершал полный оборот, то результат переполнения переносился на следующий разряд.

    Поворот ступенчатых валиков осуществлялся с помощью специальной ручки – главного приводного колеса.

    Таким образом, при выполнении операции умножения не требовалось многократно вводить множимое, а достаточно вести его один раз и повернуть ручку главного приводного колеса столько раз, на сколько необходимо произвести умножение. Однако, если множитель будет велик, то операция умножения займет длительное время. Для решения этой проблемы Лейбниц использовал сдвиг множимого, т.е. отдельно происходило умножение на единицы, десятки, сотни и так далее множителя. Для возможности сдвига множимого устройство было разделено на две части - подвижную и неподвижную. В неподвижной части размещался основной счетчик и ступенчатые валики устройства ввода множимого. Установочная часть устройства ввода множимого, вспомогательный счетчик и, главное, приводное колесо располагаются на подвижной части. Для сдвига восьмиразрядного множимого использовалось вспомогательное приводное колесо.

    Так же для облегчения умножения и деления Лейбниц разработал вспомогательный счетчик, состоящий из трех частей.

    Наружная часть вспомогательного счетчика - неподвижная. На ней нанесены числа от 0 до 9 для отсчета количества сложений множимого при произведении операции умножения. Между цифрами 0 и 9 расположен упор, предназначенный остановить вращение вспомогательного счетчика, когда штифт достигнет упора.

    Средняя часть вспомогательного счетчика – подвижная, которая служит для отсчета количества сложений при умножении и вычитаний при делении. На ней имеется десять отверстий, напротив цифр внешней и внутренней частей счетчика, в которые вставляется штифт для ограничения вращения счетчика.

    Внутренняя часть - неподвижная, которая служит для отчета количества вычитаний при выполнении операции деления. На ней нанесены цифры от 0 до 9 в обратном, относительно наружной части, порядке.

    При полном повороте главного приводного колеса средняя часть вспомогательного счетчика поворачивается на одно деление. Если предварительно вставить штифт, например, в отверстие напротив цифры 4 внешней части вспомогательного счетчика, то после четырех оборотов главного приводного колеса этот штифт наткнется на неподвижный упор и остановит вращение главного приводного колеса.

    Рассмотрим принцип работы калькулятора Лейбница на примере умножения 10456 на 472:

    1. С помощью циферблатов вводится множимое (10456).

    2. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры 2, нанесенной на наружную часть вспомогательного счетчика.

    3. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (два поворота).

    4. Сдвигается подвижная часть калькулятора Лейбница на одно деление влево, используя вспомогательное приводное колесо.

    5. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству десяток множителя (7).

    6. Поворачивается главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (семь поворотов).

    7. Подвижная часть калькулятора Лейбница сдвигается еще на одно деление влево.

    8. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству сотен множителя (4).

    9. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (четыре поворота).

    10. Число, появившиеся в окошках отображения результата, – искомое произведение 10456 на 472 (10456 х 472 = 4 935 232).

    При делении, сначала, вкалькулятор Лейбница вводится делимое с помощью циферблатов, и один раз поворачивается главное приводное колесо по часовой стрелке. Затем, с помощью циферблатов вводится делитель, и главное приводное колесо начинает вращаться против часовой стрелки. При этом результат деления – это количество оборотов главного приводного колеса, а в окошках отображения результатов индицировался остаток от деления.

    Если делимое много больше делителя, то для ускорения деления используют сдвиг делителя на необходимое количество разрядов влево с помощью вспомогательного приводного колеса. При этом, во время подсчета количества оборотов главного приводного колеса, необходимо учитывать сдвиг (один оборот главного приводного колеса при сдвиге подвижной части калькулятора Лейбница на одну позицию влево приравнивается к десяти оборотам главного приводного колеса).

    Рассмотрим принцип работы калькулятора Лейбница на примере деления 863 на 64:

    1. С помощью циферблатов вводим делимое (863).

    2. Поворачиваем ручку главного приводного колеса по часовой стрелки один раз.

    3. С помощью циферблатов вводим делитель (863).

    4. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию влево с помощью вспомогательного приводного колеса.

    5. Поворачиваем главное приводное колесо один раз против часовой стрелки и получаем первую часть результата деления - количество оборотов главного приводного колеса, умноженное на разрядность (положение подвижной части калькулятора). Для нашего случая - это 1х10. Таким образом, первая часть результата деления будет равна 10. В окошках результата отобразится остаток от первой операции деления (223).

    6. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию вправо с помощью вспомогательного приводного колеса.

    7. Поворачиваем главное приводное колесо против часовой стрелки до тех пор, пока остаток, отображающийся в окошках результата, не станет меньше делителя. Для нашего случая - это 3 оборота. Таким образом, вторая часть результата будет равна 3. Складываем обе части результата и получаем частное (результат деления) - 13. Остаток от деления отображается в окошках результата и составляет 31.

    Несмотря на то, что о машине Лейбница было известно в большинстве стран Европы, она не получила большого распространения из-за высокой себестоимости, сложности изготовления и ошибок, изредка возникающих при переносе разрядов переполнения. Но основные идеи - ступенчатый валик и сдвиг множителя, позволяющие работать с многоразрядными числами, оставили заметный след в истории развития вычислительной техники.

    Идеи, изложенные Лейбницем, имели большое количество последователей. Так, в конце XVIII века над усовершенствованием калькулятора работали Вагнер и механик Левин, а после смерти Лейбница – математик Тоблер. В 1710 году машину, аналогичную калькулятору Лейбница, построил Буркхардт. Усовершенствованием изобретения занимались и Кнутцен, и Мюллер, и другие выдающиеся ученые того времени.


    Заключение

    Рассмотрев тему «Счетная машина Лейбница», хочется сказать, что ее изобретение сыграло немаловажную роль в науке. Счетная машина - это механизм, приспособленный для быстрого выполнения арифметических действий, включая сложение, вычитание, умножение и деление. Создав ступенчатый валик и сдвиг множителя, Лейбниц дал толчок к развитию вычислительной техники.


    Список литературы

    1. Юшкевич А.П. Математика в ее истории. М.,1996.

    2. Большая энциклопедия Кирилла и Мефодия, 2007.

    3. http://all-hitech.msk.ru/inf/history/p_1_7.html - История ЭВМ. Механический этап.

    4. http://ru.wikipedia.org/wiki/%CB%FF%E9%E1%ED%E8%F6#.D0.9D.D0.B0.D1.83.D1.87.D0.BD.D0.B0.D1.8F_.D0.B4.D0.B5.D1.8F.D1.82.D0.B5.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D1.8C – Википедия. Лейбниц Готфрид Вильгельм.

    5. http://schools.keldysh.ru/sch444/MUSEUM/PRES/PL-10-98.htm - Компьютеры. №10 – 1998.

    Арифмометр Готфрида Лейбница

    В 1694 году Готфрид Вильгельм Лейбниц, в Ганновере представляет свой арифмометр. О своем изобретении Лейбниц писал: "Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать и умножение, и деление над огромными числами мгновенно. Не прибегая к последовательному сложению и вычитанию". Сложение чисел выполнялось при помощи связанных друг с другом колёс, так же как на вычислительной машине другого выдающегося учёного-изобретателя Блеза Паскаля, - "Паскалине". Добавленная в конструкцию движущаяся часть (прообраз подвижной каретки будущих настольных калькуляторов) и специальная рукоятка, позволявшая крутить ступенчатое колесо (в последующих вариантах машины - цилиндры), позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Необходимое число повторных сложений выполнялось автоматически.

    Анализ машина Чарльза Бэббиджа

    Работала такая машина на перфокартах. Бэббидж в 1834 году задумался о создании программируемой вычислительной машины, которую он назвал аналитической (прообраз современного компьютера). В отличие от разностной машины, аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Он предполагал, что построение новой машины потребует меньше время и средств, чем доработка разностной машины, так как она должна была состоять из более простых механических элементов. С 1834 года Бэббидж начал проектировать аналитическую машину. Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад (store), фабрика или мельница (mill), управляющий элемент (control) и устройства ввода/вывода информации. Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью. Мельница (арифметико-логическое устройство, часть современного процессора) должна была производить операции над переменными, а так же хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию. Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещение переменных в склад и извлечение их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Для создания компьютера в современном понимании оставалось лишь придумать схему с хранимой программой, что было сделано 100 лет спустя.

    В помощь отцу, имела важный недостаток, который заключался в неудобстве выполнения на ней всех операций, кроме простого сложения. Первое устройство, позволявшее легко осуществлять такие арифметические операции как вычитание, умножение и деление, было изобретено позже в том же XVII в. только уже в Германии. Изобретение такой машины принадлежит гениальному учёному, творческое воображение которого казалось неиссякаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, который уже был известен своими учеными и политическими деятелями. Отец Лейбница, профессор этики, умер рано, ребенку не было ещё и 7, но уже тогда Лейбницем овладела жажда знаний. День за днём он проводил в отцовской библиотеке, читая книги и занимаясь историей, изучением иностранных языков и другими предметами.

    Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции мог соперничать со многими профессорами. Но в то же время здесь он открыл для себя и много нового: впервые познакомился с работами Кеплера , Галилея и других ученых, передовых учёных, стремительно расширявших границы научного познания. Темпы невиданного прежде научного прогресса поразили воображение молодого Лейбница, и он решил добавить в свою учебную программу математику.

    Поразительно, но факт: в возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете, которую, однако, он отклонил, предпочтя жизни ученого дипломатическую карьеру. Впрочем, пока он разъезжал в карете из одного европейского города в другой, его беспокойный учёный ум терзали всевозможные вопросы из разных областей науки - от этики до гидравлики и астрономии. В 1672 г. Лейбниц пребывал в Париже, и там он познакомился со знаменитым голландским математиком и астрономом Христианом Гюйгенсом . Наблюдая, как много вычислений приходится делать астроному, Лейбниц решил сконструировать механическое устройство, которое облегчило бы расчеты. «Ибо недостойно это таких замечательных людей, - писал Лейбниц, - подобно рабам, тратить время на вычислительную работу, которую можно было бы доверить любому другому при использовании машины».

    Так, в 1673 г. на свет появился механический калькулятор Лейбница. Сложение производилось на нем, в принципе, так же, как и на «Паскалине», однако Лейбниц добавил в конструкцию движущуюся часть (ставшую прообразом подвижной каретки будущих настольных калькуляторов) и ручку, при помощи которой можно было крутить ступенчатое колесо, а в последующих вариантах устройства - цилиндры, расположенные внутри аппарата. Данный механизм с подвижным элементом позволил ускорить повторяющиеся операции сложения, столь необходимые для перемножения или деления чисел. Важно отметить, что само повторение тоже было автоматическим.

    Лейбниц продемонстрировал своё изобретение во Французской академии наук и Лондонском королевском обществе. Один из экземпляров калькулятора Лейбница попал к Петру Великому, который, в свою очередь, подарил ее китайскому императору, желая удивить последнего европейскими техническими достижениями. И всё же Лейбниц прославился отнюдь не изобретением счётного устройства, а созданием дифференциального и интегрального исчисления, которое также независимо разрабатывал в Англии



    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков