Инжекторный двигатель: устройство и принцип работы. Как работает инжектор и система впрыска топлива

Инжекторный двигатель: устройство и принцип работы. Как работает инжектор и система впрыска топлива

05.05.2019

В данной статье будет рассмотрен принцип работы инжектора и всех его основных узлов. Это достаточно перспективная система, которая на данный момент используется на всех автомобилях, независимо от их ценовой группы. Но ведь не стоит забывать о том, что впервые такие конструкции начали использоваться массово в 70-х и 80-х годах. Причем поначалу инжекторы были без использования электронных компонентов. Конечно, они могли присутствовать, но в минимальном количестве. Также стоит провести сравнение инжекторной и карбюраторной системы впрыска топлива.

Карбюратор против инжектора

Пожалуй, среди поклонников карбюратора остаются лишь те, которые любят стартовать со светофора. Причина - карбюратор позволяет на низах развить большой крутящий момент и мощность. Инжекторная система впрыска, даже идеально настроенная, рядом не стоит. Простота карбюратора и стоимость обслуживания тоже дают небольшое преимущество. Но вот что касается мощности и крутящего момента на высоких оборотах, то инжектор здесь выигрывает, причем с большим отрывом. Другими словами, при совершении обгона ваш автомобиль более приемистым будет в том случае, если установлен инжекторный впрыск. Также имеется возможность увеличения мощности путем установки турбины - устройства, способного нагнетать в систему впрыска избыточное давление воздуха. За счет этого повышается мощность двигателя во много раз. Конечно же, страдает ресурс, но чем не пожертвуешь ради эффектной езды?

Этапы развития инжекторного впрыска

На знаменитых «сигарах» «Ауди 100» использовался механический инжектор. Принцип работы его можно сравнить с системой топливоподачи в дизельных моторах. При помощи механического насоса и такого же привода форсунок производилась подача топливовоздушной смеси в камеры сгорания. Конечно, нельзя не упомянуть и о переходном звене - карбюраторах с электронным управлением. Использовались они на малом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца очень любят разнообразные электронные гаджеты и по сей день. Но электронные карбюраторы были недолго популярны, в конце 80-х началась их эра и моментально закончилась. Между прочим, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросика «подсоса». Регулировка подачи воздуха осуществлялась автоматически, при помощи специальной заслонки, которая меняла свое положение по мере прогрева двигателя. Но сегодня большую популярность получили инжекторы, конструкции которых стали уже классическими. Вот их и стоит рассмотреть более детально, разобрать по составляющим.

Топливный насос

Это сердце всей топливной системы, так как с его помощью происходит циркуляция бензина. Состоит он из следующих элементов:

  1. Фильтр (в народе называется он «памперс», так как имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Помпа, приводимая в движение двигателем.
  4. (конструктивно он объединен с топливным насосом).

Располагается насос непосредственно в баке, крепится при помощи гаек. Доступ к нему можно получить, если поднять заднее сиденье. Во всех автомобилях, будь то старенькая «десятка» либо же новая «японка», находится бензонасос именно под сиденьем. Конечно, снятие и установка будут производиться на всех машинах по-разному. От насоса к рампе проложена топливная магистраль. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали прокладывается трубка, которая возвращает избытки бензина обратно в бак. Довольно прост принцип работы бензонасоса. Инжектор функционирует за счет избыточного давления, создаваемого помпой.

Топливная рампа

Она устанавливается непосредственно на двигателе. Ее миссия заключается в том, чтобы удерживать в себе смесь бензина и воздуха под определенным давлением. Именно в ней происходит процесс соединения двух составляющих горючей смеси - бензина и воздуха. Причем пропорция всегда должна быть одинаковой - 14 частей воздуха на одну бензина. Только в таком случае двигатель будет работать максимально устойчиво, стабильно, экономично. К рампе произведено подключение таких механизмов, как дроссельная заслонка, электромагнитные форсунки, клапан сброса. Между прочим, именно в топливной рампе производится установка датчика давления топлива. Но про него и все остальные электронные компоненты будет рассказано дальше. Стоит заметить, что инжектор Вентури, принцип работы которого аналогичен рассмотренной в статье системе, имеет очень широкое применение, причем не только в автомобилях.

Форсунки

При помощи этих устройств производится подача топливовоздушной смеси в камеры сгорания всех цилиндров. Что же это за механизмы? Если вы знаете сносно конструкцию карбюраторов, то вспомните про электромагнитный клапан. Вот именно у него конструкция очень похожа на ту, которую вы можете видеть у форсунок. У них имеется обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно заполняло как можно больше камеру сгорания. Прост в понимании принцип работы форсунки инжектора, с ее помощью производится распыление. Топливовоздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, воспламенение происходит намного быстрее и лучше, нежели в случае с карбюраторной системой.

Дроссельная заслонка

Откройте капот автомобиля и внимательно посмотрите, что находится под ним. Вы увидите воздушный фильтр, который обычно прикручен к «телевизору» - передней части машины. От него идет небольшой патрубок, соединенный с отрезком пластиковой трубы, к которому подключены провода. Это датчик, который измеряет расход двигателем воздуха. А вот после него находится заслонка. С ее помощью происходит регулировка подачи воздуха в топливную рампу. Но тут нужно взглянуть на принцип работы инжектора. Ведь необходимо заметить, что при полностью закрытой заслонке небольшая часть воздуха все равно поступает в топливную систему, чтобы обеспечить оптимальное значение числа оборотов двигателя. И происходит это при помощи одного специфического исполнительного механизма - регулятора холостого хода (неправильно его называть датчиком, так как это шаговый электродвигатель, он никаких измерений не производит). Этот механизм открывает и закрывает при необходимости канал, по которому поступает воздух в топливную рампу.

Электронный блок управления

Без этого элемента инжекторной системы впрыска двигатель работать не сможет. Впрочем, иногда, даже если он и стоит, то это вовсе не означает, что двигатель будет заводиться и отменно работать. А дело все в том, что электронный блок управления построен на микропроцессоре. И он специально программируется для работы в качестве модуля управления всеми исполнительными устройствами на основании данных, полученных от датчиков. Следовательно, электронный блок управления должен иметь программу, написанную по определенному алгоритму. Причем этот алгоритм должен быть четким, чтобы микроконтроллер точно знал, что ему необходимо сделать, если, например, появится сигнал с без которого не может существовать ни один современный инжектор. Принцип работы двигателя как с инжектором, так и с карбюратором остается неизменным.

Датчики в автомобиле

Чтобы правильно и своевременно подать топливо во все цилиндры, а также импульсы на электроды свечей зажигания, необходимо максимально точно считывать все параметры работы двигателя. В частности, важно знать, какая частота вращения у коленчатого вала. Также не помешают данные о том, какое давление в топливной рампе. Если же необходима остановка двигателя в автоматическом режиме при недостаточной смазке, то производится подключение датчика давления масла. При этом нужно прописывать его функции в алгоритме блока управления, конечно же, принцип работы инжектора в таком случае немного изменится. Также следует знать и про детонацию, ведь она многое может сказать о том, насколько правильно функционирует двигатель внутреннего сгорания. В современных автомобилях контролируется даже состав газа в выхлопной системе. Это происходит при помощи двух датчиков кислорода. И самое главное - это, конечно же, расход воздуха. Без знания этого параметра попросту невозможно осуществить правильное смесеобразование.

Заключение

Несмотря на кажущуюся сложность конструкции, принцип работы инжектора ВАЗ-2110, как и любого другого автомобиля, очень простой. Можно даже провести аналогию с обычным компрессором, оснащенным краскопультом. Конечно, это будет упрощенный вариант системы, форсунка только одна, блока управления сложного нет. Но суть примерно такая же. Проще разобраться с процессами, протекающими в двигателе с инжекторной системой впрыска, нежели исследовать разнообразные завихрения и перепады давления в карбюраторной. А если досконально изучить конструкцию, то вам не будет страшна никакая поломка датчиков всей системы управления.

Инжекторы быстро пришли на смену карбюраторам. Сейчас уже сложно встретить легковой автомобиль с бензиновым двигателем, который оборудован карбюратором. Принцип работы инжектора позволяет существенно экономить топливо и производить меньшие выбросы в окружающую среду.

Такая система питания имеет ряд преимуществ перед карбюратором и позволяет существенно увеличить срок эксплуатации, но и требует соответственного уровня ухода. Давайте подробнее рассмотрим историю создания инжектора, типы топливных систем под его управлением и разберемся как же это все работает.

История

В 80-х годах начали вводится нормы экологического выброса для автомобилей, именно их ввод можно считать точкой отчета установки инжекторов на автомобили. Но разработка и сам принцип работы инжектора возник намного раньше, примерно на 50 лет, то есть в 30-х годах. Но в то время толчком для разработки было повышение мощности, а не выбросы в окружающую среду.

Первыми моторами, на которые была установлена инжекторная система питания были двигателя военных самолетов. Если судить по изобретениям тех времен, то инжектор полностью выполнял отведенную ему функцию. Но как только появились реактивные двигатели, то такие системы перестали применяться. Для применения в автомобилях инжекторная система механической конструкции практически не подходила. Карбюратор выигрывал, так как инжекторная система не успевала перестраиваться под режимы работы двигателя, которых у машины намного больше, чем у самолета.

Второе дыхание инжекторная система получила, как только начала развиваться электроника. Ну и конечно же, не малую роль в этом деле сыграла экологичность такой системы. Ввиду того, что карбюратор очень сильно загрязняет атмосферу пришлось разрабатывать ему замену и инженеры решили вернутся к старой доброй инжекторной системе, только намного изменили принцип её работы.

Преимущества инжектора

Второе название инжекторной системы — система впрыска. Даже дословный перевод слова инжектор значит ничто иное, как система впрыска. Принцип работы инжектора основывается на принудительной подаче топлива в систему , в отличии от карбюратора, внутрь которого бензин попадает за счет разрежения воздуха в цилиндрах. Именно принудительность подачи топлива существенно отличает инжектор от карбюратора.

Часто водители задаются вопросом о том, чем же инжектор лучше карбюратора? А существенных плюсов у него несколько:

  1. Экономия топлива;
  2. Повышение мощности двигателя;
  3. Меньшее количество выбросов в окружающую среду;
  4. Инжекторный двигатель очень легко заводится при любых условиях.

Все это достигается простым способомподачей топлива порциями , которые зависят от режима работы мотора. Эта особенность дает возможность подавать в цилиндры оптимальную смесь, соотношение воздуха и топлива в которой полностью сбалансированно. Повышенная мощность достигается за счет того, что при каждом такте работы мотора в цилиндр попадает оптимальная смесь.

Видео о принципе работы инжектора

Виды инжекторов

Несмотря на все недостатки механической системы управления инжектором, именно такие устройства были установлены на первых автомобилях. Но они дополнительно оснащались электронной системой управления, что позволяло существенно улучшить работу двигателя.

В современных автомобилях вся система управления построена на электронных датчиках и переключателях. Контроль над всеми элементами осуществляется с помощью электронного блока управления. Именно развитие электроники дало путь к дальнейшему усовершенствованию системы впрыска топлива.

Инжекторы различаются только по типу подачи топлива и таких систем насчитывают всего три:

  1. Центральная;
  2. Непосредственного впрыска.
  3. Распределенная;

Давайте подробнее рассмотрим принцип работы инжектора в каждой из таких систем.

Центральная система подачи топлива

Центральная система подачи топлива не применяется в современных автомобилях и считается устаревшей и малоэффективной. Если кратко говорить о принципе её работы, то он заключается во впрыске топлива в одном месте, в котором оно смешивалось с воздухом и дальнейшим его распределением по цилиндрам.

Тут прослеживается некоторая схожесть с принципом работы карбюраторной системы подачи топлива, есть лишь одно существенное отличие — подача топлива осуществляется под давлением. Благодаря подаче под давлением можно добиться смешивания топлива с воздухом и его распыления. Но существенным недостатком такой системы является невозможность контролировать равномерную подачу во все цилиндры.

Но были у такой системы и существенные преимущества, прежде всего это простота устройства и мгновенная реакция на изменения в работе мотора. Но равномерного наполнения цилиндров достичь не удалось, соответственно и топливо в них сгорало по разному. Это и не дало такой системе широкого распространения.

Непосредственного впрыска

Самой совершенной на данный момент считается система непосредственного впрыска топлива. Её отличие от описанной выше заключается в непосредственном принудительном впрыске топлива в цилиндры и смешивании его с воздухом внутри него.Тут наблюдается схожесть принципа работы с дизельными двигателями. Среди плюсов такой системы является уменьшение расхода и увеличение мощности. А минусами является привередливость к качеству топлива и сложность конструкции.

Распределенная

Принцип работы инжектора по распределенной системе впрыска топлива считается оптимальной на сегодняшний день и применяется чаще всего. Несмотря на впрыск топлива непосредственно во впускной коллектор, бензин все равно подается отдельно в каждый цилиндр. Для достижения раздельной подачи топлива, элементы конструкции установлены возле головки двигателя и бензин попадает в зону работы клапанов.

Такая конструкция позволяет получить идеальную смесь воздуха и топлива, которая обеспечивает максимальное горение и мощность. Экологичность, экономичность и повышение мощность — все это можно получить благодаря распределенной системе впрыска топлива.

Но несмотря на целый ряд плюсов, у такой системы есть и свои минусы — она очень привередлива к качеству топлива, а её конструкция довольно сложная для ремонта и эксплуатации. Но несмотря на это, она стремительно набирает обороты в использовании и постоянно улучшается.

Принцип работы инжектора и его конструкция

Думаю что будет лучше всего, если мы рассмотрим принцип работы инжектора на распределенной системе впрыска, так как именно она установлена на большинстве автомобилей и считается одной из самых удачных и распространенных.

Для удобства предлагаю разделить систему подачи топлива на две основные составляющие — электронную и механическую. Роль механической системы достаточно простая — обеспечение непрерывной и дозированной подачи топлива в цилиндры. А вот управление и контроль системы производится электроникой.

Механическая часть

Механическая составляющая инжекторной системы включает в себя следующие компоненты:

Этот список составляющих не исчерпывающий. В зависимости от конструктивных особенностей двигателя и системы управления в механическую часть могут включатся и другие элементы. Приведенный выше список является списком обязательных элементов для любого двигателя.

Принцип работы

Теперь давайте рассмотрим зачем все эти составляющие нужны и какую работу выполняет каждая из них. Думаю все и так знают, что топливный бак это емкость для бензина. Электрический бензонасос, который расположен в баке, обеспечивает непрерывную подачу топлива под давлением.

После чего топливо попадает в фильтр, где очищается от примесей и прочего мусора. Топлипроводы высокого давления позволяют бензину беспрепятственно двигаться по системе подачи топлива.

Регулятор давления не позволяет достигать критической отметки давления во всей системе. Через регулятор топливо попадает в топливную рамку, которая подводит его к форсункам. Форсунки расположены во впускном коллекторе.

Несколько лет назад форсунки срабатывали под давлением топлива и их конструкция была полностью механической. Тут принцип работы достаточно прост — бензин оказывает давление на пружину форсунки и открывает её, а уже через неё и впрыскивается в цилиндры.

Сейчас на большинстве автомобилей устанавливают электромагнитные форсунки. Основной составляющей, которой являются обычный якорь и обмотка. Канал подачи топлива открывается благодаря получению сигнала от электронной системы управления.

С обратной стороны в систему принудительно подается воздух, через воздушный фильтр. Дроссельный узел с заслонкой располагается в патрубке по которому идет воздух. Когда водитель нажимает на педаль газа, он воздействует на заслонку. Но водитель осуществляет контроль только над воздухом, который подается в цилиндр, топливо регулирует электронная система управления.

Электронная часть

Блок памяти и контролер являются основными составляющими в электронной системе управления, которая в свою очередь выполняет роль основы электронной части инжекторной системы. Блок управления осуществляет контроль над системой подачи топлива благодаря целому ряду датчиков, которые входят в конструкцию инжектора.

Инжектор стал логичным развитием системы впрыска автомобиля, когда последующее усовершенствование карбюратора для выполнения экологических норм было нецелесообразным. Принудительное дозирование впрыскиваемого топлива превосходит карбюратор по экономичности, экологичности и мощностным характеристикам. Рассмотрим, принцип работы инжектора, а также устройство инжекторной системы питания.

Виды системы

Свое название инжекторная система впрыска топлива получила от устройства, которое отвечает за распыление бензина – инжектора (от англ. Injection – впрыск, injector – форсунка). Система питания такого типа устанавливалась на самолеты еще в 20-х годах прошлого столетия. Что примечательно, уже тогда это был непосредственный впрыск топлива в цилиндры двигателя. Основное внимание уделим развитию вариациям системы Motronic, в которой за подачу топлива и регулировку угла зажигания отвечает (далее ЭБУ или ECU).

Single Point fuel Injection

Одноточечный тип впрыска, более известный как моновпрыск, является переходной технологией, которая позволила многим автопроизводителям задешево перейти от карбюраторной системы питания к инжектору.

Иными словами, вместо карбюратора над впускным коллектором начал устанавливаться агрегат центрального впрыска топлива. Система имела ряд преимуществ, поскольку ЭБУ позволял более точно дозировать бензин.

Принцип работы инжектора построен на следующих элементах:

  1. – топливный бак с расположенным в нем топливным насосом;
  2. – фильтрующий элемент для очистки топлива;
  3. – центральный агрегат впрыска. 3а – датчик положения дроссельной заслонки (ДПДЗ); 3б – регулятор, отвечающий за давление топлива; 3с – форсунка инжектора; 3д – датчик температуры воздуха, поступающего во впускной коллектор; 3е – регулятор положения дроссельной заслонки (в простейших вариантах конструкции привод заслонки был связан с педалью акселератора тросовым приводом);
  4. – датчик температуры охлаждающей жидкости (ДТОЖ);
  5. – лямбда-зонд (кислородный датчик);
  6. – электронный блок управления двигателем.

Принцип работы

На схеме не показан один элемент, без которого работа механизма была бы невозможной, – датчик положения коленчатого вала. Именно ДПКВ позволяет ЭБУ рассчитывать количество воздуха, поступающего в двигатель. Напомним, что количество подаваемого топлива всецело зависит от массы воздуха, поступающего в цилиндры, иначе регулировать состав топливовоздушной смеси (ТПВС) для нормальной работы бензинового двигателя невозможно. На этапе создания двигателя конструкторами рассчитывается, сколько воздуха проходит при определенной нагрузке, то есть степени открытия дросселя, и на определенных оборотах двигателя. Данные заносятся в топливную карту двигателя, которая будет записана в ЭБУ. Впоследствии при работе двигателя блок управления фиксирует обороты с помощью ДПКВ, нагрузка определяется потенциометром дроссельной заслонки, что позволяет взять из топливной карты значение, соответствующее необходимому количеству топлива. Но система идеально может работать только в лабораторных условиях, поскольку на практике атмосферное давление зависит не только от положения над уровнем моря, но и от температуры, воздушный фильтр со временем забивается, пропуская через себя меньше воздуха, засоряется и сам дроссельный узел. Для коррекции используется датчик температуры воздуха, но роль его невелика. По-настоящему на состав смеси влияет лямбда-зонд, измеряющий количество кислорода в выхлопных газах. Если кислорода слишком много, ЭБУ понимает, что смесь необходимо обогатить, и наоборот.

Характеристика

Главное преимущество одноточечного впрыска – дешевизна реализации. Недостатки:

  • неравномерное наполнение цилиндров, что обусловлено месторасположением форсунки;
  • «мокрый» коллектор. При открытии форсунки бензин преодолевает долгий путь до камеры сгорания. Когда коллектор холодный, топливо не испаряется, а оседает на стенках, вследствие чего смесь необходимо сильно богатить;
  • лямбда-зонд хоть и позволяет корректировать ТПВС, но способ измерения массы воздуха в целом неэффективен.

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

Одноточечный впрыск, ввиду неизлечимых болезней, обусловленных особенностями конструкции, мог выполнить только требования ЕВРО-2.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи. Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно.

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. – топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:


Характеристика

Преимущества распределительного впрыска на клапаны:

  • равномерное наполнение цилиндров;
  • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

Непосредственный впрыск, являющийся разновидностью системы распределительного впрыска, – последнее слово в системах питания бензиновых двигателей. Главной особенностью прямого впрыска является подача топлива непосредственно в камеру сгорания.

GDI, FSI, D4 – аббревиатуры, использующиеся Mitsubishi, Volkswagen и Toyota, соответственно, для обозначения двигателей с непосредственным впрыском. Система питания таких ДВС больше походит на дизельные моторы, нежели на привычные всем ДВС цикла Отто. Устройство:

Чем обусловлена эффективность

Дороговизна и сложность производства, являющиеся главными недостатками прямого впрыска, с лихвой окупаются чрезвычайной экономичностью и мощностными характеристиками. Достигается это за счет того, что мотор может работать на 3-х основных вариантах топливной смеси (в качестве примера выбрана система GDI):

  • сверхбердная смесь. Топливо впрыскивается в конце такта сжатия и сгорает в непосредственной близости к свече зажигания, в то время как вокруг зоны сгорания в камере сгорания находится преимущественно чистый воздух либо смесь воздуха с выхлопными газами, за подачу которых отвечает EGR;
  • стехиометрическая. Топливо подается на такте впуска, хорошо перешивается с воздухом, образуя смесь близкую к идеальному пропорциональному соотношению (14,7/1) во всей камере сгорания;
  • мощностной режим, при котором ТПВС приготавливается в два этапа. Небольшое количество топлива подается на такте впуска, но основная порция впрыскивается в конце такта сжатия.

За счет подачи топлива в жидкой фазе непосредственно в камеру сгорания двигатели с прямым впрыском менее склонны к , что позволяет повысить степень сжатия и увеличить КПД двигателя.


Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.


Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.

Датчик массового расхода воздуха (ДМРВ)


Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)


Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)


Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)


Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации


Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)


По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.

Датчик температуры охлаждающей жидкости (ДТОЖ)


Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.

Датчик кислорода


Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка


После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Дроссельная заслонка


Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.

Регулятор холостого хода (РХХ)


Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания


В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Дальше, когда взрыв произошел, ЭБУ смотрит на показания датчик детонации и корректирует момент зажигания уже для следующего по ходу цилиндра. Но это еще не все. После этого, когда газы дошли до датчика кислорода, блок управления корректирует состав смеси, а именно, время открывания форсунки, что позволяет максимально эффективно использовать топливо и его сгорание. Если ЭБУ распознает недостаток кислорода, но при этом дроссельная заслонка остается открытой, то приоткрывается регулятор холостого хода.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Что лучше, инжекторный или карбюраторный двигатель?

Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.

Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.

Данная система подачи топлива, устанавливаемая на современных бензиновых двигателях. Эта система подачи топлива постепенно вытесняет систему питания . Двигатели, имеющие такую систему, называют инжекторными двигателями .

В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли автомобилей. До этого времени состав продуктов сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха.

В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывания слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединений в продуктах сгорания.

Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.

Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска.

Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий. Выход был найден следующий. В систему впрыска ввели обратную связь - в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие . Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  1. Точное дозирование топлива и, следовательно, более экономный его расход;
  2. Снижение . Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  3. Увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  4. Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  5. Легкость пуска независимо от погодных условий.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ - полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный "жизненно важный" в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечисленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

Более совершенными являются системы многоточечного впрыска , в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:

  1. Возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
  2. Бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» (в народе - инжектор) моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

А как раз главное несоответствие между ГОСТами, ныне действующими в России, и евростандартами- повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как "Евро-3"- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.

Первой применила двигатель с непосредственным впрыском на серийном автомобиле компания Mitsubishi. Поэтому рассмотрим устройство и принципы действия непосредственного впрыска на примере двигателя GDI (Gasoline Direct Injection). Двигатель GDI может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1. Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав - 14,7:1) - если избыток воздуха будет больше, переобедненная смесь просто не воспламенится. На двигателе GDI распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания. Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается - несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.

Режимы работы двигателя GDI

Всего предусмотрено три режима работы двигателя:

  • Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия).
  • Мощностной режим (впрыск на такте впуска).
  • Двухстадийный режим (впрыск на тактах впуска и сжатия) (применяется на евромодификациях).

Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия). Этот режим используется при малых нагрузках: при спокойной городской езде и при движении за городом с постоянной скоростью (до 120 км/ч). Топливо впрыскивается компактным факелом в конце такта сжатия в направлении поршня, отражается от него, смешивается с воздухом и испаряется, направляясь в зону . Хотя в основном объеме камеры сгорания смесь чрезвычайно обеднена, заряд в районе свечи достаточно обогащен, чтобы воспламениться от искры и поджечь остальную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа двигателя на сильно обедненной смеси поставила новую проблему - нейтрализацию отработавших газов. Дело в том, что при этом режиме основную их долю составляют оксиды азота, и поэтому обычный каталитический нейтрализатор становится малоэффективным. Для решения этой задачи была применена рециркуляция отработавших газов (EGR-Exhaust Gas Recirculation), которая резко снижает количество образующихся оксидов азота и установлен дополнительный NO-катализатор.

Система EGR "разбавляя" топливо-воздушную смесь отработавшими газами, снижает температуру горения в камере сгорания, тем самым "приглушая" активное образование вредных оксидов, в том числе NOx. Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно, так как при увеличении нагрузки на двигатель количество перепускаемых ОГ должно быть уменьшено. Поэтому на двигатель с непосредственным впрыском был внедрен NO-катализатор. Существует две разновидности катализаторов для уменьшения выбросов NOx - селективные (Selective Reduction Type) и накопительного типа (NOx Trap Type). Катализаторы накопительного типа более эффективны, но чрезвычайно чувствительны к высокосернистым топливом, чему менее подвержены селективные. В соответствии с этим, накопительные катализаторы устанавливаются на модели для стран с низким содержанием серы в бензине, и селективные - для остальных.

Мощностной режим (впрыск на такте впуска). Так называемый "режим однородного смесеобразования" используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. Топливо впрыскивается на такте впуска коническим факелом, перемешиваясь с воздухом и образуя однородную смесь, как в обычном двигателе с распределенным впрыском. Состав смеси - близок к стехиометрическому (14,7:1)

Двухстадийный режим (впрыск на тактах впуска и сжатия). Этот режим позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до "богатого" 12:1.

Почему этот режим введен только для автомобилей для европейского рынка? Да потому что для Японии присущи невысокие скорости движения и постоянные пробки, а Европа- это протяженные автобаны и высокие скорости (а следовательно, высокие нагрузки на двигатель).

Компания Mitsubishi стала пионером в применении непосредственного впрыска топлива. На сегодняшний день аналогичную технологию используют Mercedes (CGI), BMW (HPI), Volkswagen (FSI, TFSI, TSI) и Toyota (JIS). Главный принцип работы этих систем питания аналогичен- подача бензина не во впускной тракт, а непосредственно в камеру сгорания и формирование послойного либо однородного смесеобразования в различных режимах работы мотора. Но подобные топливные системы имеют и различия, причем иногда довольно существенные. Основные из них - рабочее давление в топливной системе, расположение форсунок и их конструкция.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков