Электронный блок управления (контроллер). Электронный блок управления (ЭБУ) — мозг вашего автомобиля Что такое блок управления двигателем

Электронный блок управления (контроллер). Электронный блок управления (ЭБУ) — мозг вашего автомобиля Что такое блок управления двигателем

Современный автомобиль - это не просто четыре колеса и двигатель. Это смартфон на колесах. Работу всех систем современного авто контролирует огромное количество различных датчиков. Эту информацию затем анализирует специальный компьютер и прочая электронная начинка. Чем дороже автомобиль, тем больше в нем самых разных электронных опций. Всем этим «оркестром» управляет одна небольшая коробка - это ЭБУ. Что это такое? Это электронный блок управления. О нем мы сегодня и поговорим.

ЭБУ в современном автомобиле

Первым делом стоит начать с терминов. ЭБУ - это «мозги» автомобиля или электронный блок управления. Многие его знают как контроллер. Это действительно мозг машины. Без этого блока все остальные элементы и механизмы превращаются просто в безжизненный хлам, огромное количество пластика, проводов и микропроцессоров.

Электронный блок получает данные от датчиков. Затем информацию обрабатывает по специальным алгоритмам. Далее он посылает специальные команды на исполнительные устройства. ЭБУ есть даже в моделях от АвтоВАЗа. Есть там и датчики - например, кислородный, температуры ОЖ, скорости. Что уж говорить про современные иномарки.

Вот это и есть электронный блок управления ЭБУ. Простыми словами, это умный прибор, что держит на контроле все процессы, которые каждую секунду проходят в автомобилях. В секунду обрабатывается до тысячи разных сигналов.

Что контролирует контроллер?

Можно перечислить несколько основных датчиков, с которых собирается информация. Это температура двигателя, окружающей среды, лямбда-зонд, уровень топлива и холостого хода. Также во многих автомобилях имеются датчики ABS, износа тормозных колодок и прочие сенсоры, отвечающие за безопасность.

Отдельные элементы контролируют скорость движения, положение электронное педали газа. Есть датчик положения коленчатого вала. Также ЭБУ контролирует работу охлаждающей системы, климат-контроля. Блок следит за правильностью работы тормозной системы.

Естественно, это далеко не весь перечень датчиков. Это некий стандартный набор, который встречается на любом более-менее современном авто. Примерно такой набор функций имеет ЭБУ ВАЗ-2170. Мы поговорили о датчиках, но нужно сказать и о исполнительных устройствах.

Это регулятор положения дроссельной заслонки, инжектор, система зажигания. Также ЭБУ управляет фазами распределения, температурой горения смеси и умеет ее поддерживать. Блок анализирует состав выхлопных газов. Он регулирует работу освещения, управляет стеклоподъемниками, всеми подогревами, действием роботизированных и автоматических КПП.

Это лишь минимум того, что умеет среднестатистический ЭБУ. Что это такое, мы уже знаем, поэтому пойдем дальше - будет интересно. На машинах классом повыше имеется куда больше всяких датчиков и устройств.

На самом деле ЭБУ - это небольшой по размерам блок, который удерживает под неусыпным контролем работу всего автомобиля. Каждая система контролируется этим компьютером. Далекие от автомобильного мира люди и начинающие водители думают, что ЭБУ по внешнему виду приставляет собой ноутбук (ведь компьютер же?). Но это совсем не так. Блок управления изготавливается в немного другом форм-факторе.

Как выглядит ЭБУ и что собой представляет?

Блок управления изготавливают в самых разных корпусах. Зачастую это пластиковые или алюминиевые основания. К примеру, ЭБУ ВАЗ-2172 изготовлен в пластиковом корпусе. На большинстве иномарок корпус металлический. Материал по большей части зависит от места расположения блока. Так, если на моделях от АвтоВАЗ блок установлен в салоне, то он из пластика. Если бы его устанавливали под капотом, сделали бы из металла.

Но корпус - это далеко не весь ЭБУ. Внутри корпуса находится электронная плата. Это и есть ЭБУ. Что это такое, мы уже примерно знаем. Из платы наружу выведены два разъема - это так называемая CAN-шина. К данным разъемам подсоединены провода от всех датчиков и исполнительных устройств. Нужно заметить, что некоторые блоки также оснащаются разъемом для обновления встроенного ПО, а также диагностическим OBD-II выводом. Как и любой компьютер, этот тоже иногда «глючит». Также сбои случаются в датчиках. В помощью диагностического разъема можно считать коды ошибок ЭБУ ВАЗ и тогда будет легче ремонтировать автомобиль. Больше не нужно искать поломки вручную.

Микросхемы ЭБУ подвержены достаточно сильному нагреву. Поэтому корпуса их имеют ребра. Последние выполняют функцию радиаторов, отводя лишнее тепло. Если взять и посмотреть на демонтированный блок, то по внешнему виду блок - это небольшая коробка размером 15 на 10 см, толщина ее составляет не более сантиметра.

ЭБУ изнутри

Если блок вскрыть, то можно увидеть достаточно большую плату. Неопытные автовладельцы, да и вообще неопытные пользователи компьютера смогут спутать ее с материнской платой компьютера. Не будем разбираться в устройстве ее досконально, а пройдемся вскользь об основных узлах.

Остановимся на памяти ЭБУ. Что это такое? Существует несколько типов памяти. ППЗУ - это программируемая постоянная, куда разработчики заложили нужные алгоритмы для работы двигателя и других систем. ОЗУ - оперативная память, которая необходимо для работы с промежуточной информацией. Она обрабатывается в реальном времени. ЭРПЗУ - это электронная, перепрограммируемая память. Используется для запоминания временных данных.

Программное обеспечение

Функциональное ПО является наиболее важным. Ведь именно за счет него читается и анализируется информация с датчиков, а также отправляются команды на исполнительные устройства.

Модули ведут контроль полученных данных на предмет ошибок, если такие удалось обнаружить. ПО старается исправить ошибки, если это возможно. Если исправить ошибку нельзя, то на дисплее бортового компьютера выводится Check Engine и т. п. Не нужно помнить все ошибки ЭБУ. Расшифровка их разная для всех видов автомобилей. Например, на "Ладе Приоре" код Р0353 говорит об обрыве цепи катушки зажигания 3-го цилиндра.

Где расположено ЭБУ?

В салоне блок можно обнаружить под панелью. В моделях от АвтоВАЗ он находится около радиатора отопителя. На иномарках бизнес-уровня ЭБУ можно найти под задним сидением. Некоторые производители стараются установить контроллер в багажнике. Расположить ЭБУ под капотом - это не самое лучшее решение.

Ведь там на блок воздействует дождь, снег и другие факторы. Зачастую в подкапотном пространстве устройство это можно отыскать возле аккумулятора или под предохранительным блоком. Найти несложно - даже обыкновенный автовладелец без особых навыков сможет найти его. Нужно просто немного разобрать приборную панель или же найти блок под капотом. Внешне это коробка, от которой отходят два жгута проводов. Но вот осуществлять ремонт ЭБУ самостоятельно без специальных знаний не стоит. Лучше доверить эту работу профессионалам.

Демонтаж

Снять блок управления очень просто. Достаточно открутить удерживающие болты и отсоединить шлейфы. Естественно, перед этими работами следует снять минусовую клемму с АКБ. На некоторых моделях автомобилей необходим разбор приборной панели. Зачастую блок находится со стороны печки или же под бардачком.

Выяснить, работает ли блок, очень просто. В половине случаев автомобиль просто не получится запустить. Также возможно, что заблокируются все системы, откроются все замки и тому подобное. В остальных случаях могут проявляться сбои в работе двигателя. Так, на некоторых машинах могут плавать обороты, возникают провалы. Двигатель может вообще не запускаться. Горят ошибки, которые не получается убрать при помощи ПО. Нужно отметить, что ЭБУ - это достаточно надежный узел. Поэтому если специально его не «топить», блок будет работать долго и исправно.

Как случаются поломки, если блок надежен? Все просто - достаточно короткого замыкания или попадания на плату влаги. Также ЭБУ не любит физических воздействий и коррозии.

Ремонт, замена

Выполнять ремонт ЭБУ или заменить, сказать сложно. Иногда контроллер сгорает полностью, да так, что ремонту уже не поддается. Необходимо устанавливать новый блок. А это не так уж и дешево - средняя цена составляет от 15 до 40 тысяч рублей.

Но если ошибку можно устранить при помощи замены одной или двух микросхем, то ремонт целесообразен. Если коррозией съело дорожку на плате, это тоже можно восстановить.

Заключение

Теперь начинающие водители знают, что такое ЭБУ в автомобиле, где находится блок и для чего он нужен. Это полезная информация, которая поможет всем автовладельцам. Сейчас в продаже есть специальные диагностические устройства, с помощью которых можно самостоятельно определять поломку авто.

Неотъемлемой частью современных автомобилей считается электронный блок управления двигателем . Он предназначен для приема информации набора датчиков и последующей ее обработки. Обработанная информация получает определенный алгоритм, с помощью которого происходит управляющее воздействие на различные системы мотора.

Электронный блок управления двигателем (ЭБУ) – как он работает?

Использование этого устройства эффективно оптимизирует такие параметры, как мощность, расход топлива, крутящий момент, содержание вредных веществ в отработанных газах и прочие. Конструкция электронного блока включает в себя два основных вида обеспечения. С помощью аппаратного обеспечения включаются в работу различные электронные составляющие во главе с микропроцессором.

Информация, поступающая от датчика, превращается в цифровые сигналы. Для этого используется специальный преобразователь. В состав программного обеспечения входят функциональный и контрольный вычислительные модули. Они обрабатывают полученные сигналы и направляют их на управление исполнительными устройствами. Кроме того, формируются выходные сигналы, которые могут корректироваться вплоть до полной остановки .

При необходимости, электроблок управления может быть перепрограммирован. Это происходит при существенных изменениях конструкции двигателя, например, при проведении его тюнинга. Для обмена данными используется специальная шина, с помощью которой все блоки управления объединяются в единую систему.



Ремонт блоков управления двигателем – как справиться самостоятельно?

Электронная система управления дизельным двигателем устанавливается практически на всех современных моторах этого типа с различными системами впрыска топлива. Такое электронное управление предназначается, в основном, для регулирования и оптимизации их работы. Таким образом, обеспечивается эффективное функционирование всей топливной системы, турбонаддува, впускной и выпускной системы, а также систем охлаждения и рециркуляции отработанных газов.

Все электронное управление состоит из главного блока, входных датчиков, а также исполнительных устройств систем двигателя. Нередко многие автолюбители могут столкнуться с необходимостью решения такого вопроса, как ремонт электронного блока управления двигателем. Актуальной считается возможность проведения такого ремонта самостоятельно.

С самого начала важно точно выяснить название блока, в том случае, когда отсутствуют необходимые выходные параметры. В основном, используется устройство ECU , в переводе «блок электронного управления». С его помощью осуществляется работа в соответствии с входными сигналами датчиков, которые создают выходные сигналы, управляющие исполнительными устройствами.



Причины поломок и ремонт блока управления двигателем

Ремонт электронных блоков управления двигателем может понадобиться при отсутствии бесперебойного электрического питания. В этом случае легко предположить внутреннюю неисправность, требующую обязательного ремонта. Причинами могут быть:

  • отсутствие обмена данными со сканером и сообщение некорректных параметров;
  • не загорается контрольная лампа «Чек» при включенном зажигании;
  • при одном из неисправных элементов выдается фиксация ошибки.

Кроме того, двигатель может работать некорректно, с отклонениями, но информация об этом не выдается.

Своевременный ремонт блоков управления двигателем поможет избежать многих серьезных проблем. В современных автомобилях на это устройство замкнуто столько систем, что в случае какой-либо неисправности блока может полностью остановиться работа всего механизма или его отдельных узлов и агрегатов. Итак, находим виновника данного обсуждения, место расположения которого можно уточнить в руководстве эксплуатации для автомобиля, и видим, что это сплошь электроника. Как же найти проблему и решить ее в таком многообразии схем, транзисторов и прочих мелких элементов?

Причин, по которым ЭБУ выдает ошибки или не реагирует на показания каких-либо датчиков, может быть как минимум две: пришел в негодность проводник либо сбилась прошивка. Прошивку восстановить самостоятельно невозможно, если вы не специализируетесь в этой области, поэтому помогут только в дилерском центре. А вот проверить электрические параметры вы вполне сможете, если у вас под рукой есть мультиметр. Чтобы знать, какие провода проверять на пробой, нужно освоить чтение схемы вашего ЭБУ.

Современные цифровые технологии позволяют применять широкий ряд управляющих функций в автомобиле. Много параметров, влияющих на его работу, могут приниматься во внимание одновременно, так что управление различными системами может осуществляться с максимальной эффективностью. Электронный блок управления (ЭБУ) получает электрические сигналы от датчиков или от генераторов в ожидаемом интервале значений, оценивает их и затем проводит вычисление пусковых сигналов для исполнительных устройств (приводов). Программа управления хранится в специальной памяти, а за реализацию этой программы отвечает микропроцессор.

Рис.57 Электронный блок управления. 1 - разъем, 2 - задающие каскады малой мощности, 3 - импульсный источник питания (SMPS), 4 - CAN интерфейс (интерфейс шины передачи данных), 5 - блок памяти микропроцессора, 6 - задающие каскады большой мощности, 7 - входные и выходные контуры.

Эксплуатационные условия

К ЭБУ предъявляются очень высокие требования по отношению к следующим факторам:

  • температуре окружающей среды (во время нормальной работы должны находиться в пределах -40 - +85°С для коммерческих автомобилей и -40 - +70°С для легковых автомобилей);
  • к воздействию со стороны таких материалов, как масло и топливо и т.п;
  • к воздействию к влажности окружающей среды;
  • обладать механической прочностью, например, при наличии вибраций при работе двигателя.

Одновременно очень высокие требования касаются электромагнитной совместимости и защиты от высокочастотных помех.

Устройство и конструкция

ЭБУ (рис. 57) размещается в металлическом корпусе и соединяется с датчиками, исполнительными устройствами и источником питания через многоштырьковый разъем (1). Компоненты электронной системы для непосредственного управления исполнительными устройствами располагаются в корпусе ЭБУ таким образом, чтобы обеспечить хорошее рассеяние тепла в окружающую среду.

Если ЭБУ устанавливается непосредственно на двигателе, то отвод тепла осуществляется через встроенный в корпус ЭБУ охладитель, в котором постоянно течет топливо (только для коммерческих автомобилей). Большинство компонентов ЭБУ выполняется по технологии SMD (Surface-Mounted Device - платы с поверхностным монтажом). Обычная проводка используется только в некоторых элементах питания и в разъемах, так что здесь могут быть применены компактные конструкции небольшой массы.

Рис.58 Обработка сигналов в электронном блоке управления ЭБУ. Н - высокий уровень L - низкий уровень. FEPROM - программируемая память (постоянное запоминающие устройство), EEPROM - постоянная память, RAM - оперативная память, А/D-АЦП, CAN - шина передачи данных.

Обработка данных

Входные сигналы

Наряду с периферийными исполнительными устройствами, датчики представляют интерфейс между автомобилем и ЭБУ, который является блоком обработки данных.

ЭБУ получает электрические сигналы от датчиков по проводке автомобиля и через разъемы. Эти сигналы могут быть следующих типов:

Рис.59 Сигналы широтно-импульсной модуляции. а - постоянный период, b - длительность сигнала.

Формирование сигналов

Для ограничения напряжения входных сигналов до максимально допустимого значения в ЭБУ используются защитные цепи. Путем применения устройств фильтрации наложенные сигналы помех в большинстве случаев отделяются от полезных сигналов, которые, в случае необходимости, затем усиливаются до допустимого уровня входного сигнала ЭБУ.

Формирование сигналов в датчиках может быть полным или частичным, в зависимости от уровня их интегрированности.

Обработка сигналов

ЭБУ является управляющим центром системы, являющимся ответственным за последовательность функциональных операций. Управляющие функции с учетом и без учета обратной связи выполняются в микропроцессоре. Входные сигналы, формируемые датчиками, генераторами с ожидаемыми значениями параметров и интерфейсами других систем, служат как входные координаты. Они подвергаются дальнейшей проверке на достоверность в компьютере. Выходные сигналы рассчитываются с использованием программ, характеристик и программируемых матриц. Микропроцессор синхронизируется кварцевым генератором.

Рис.60 Схема расчета подачи топлива в электронном блоке управления.
Ключ “зажигания” в положении А (пуск),

Ключ “зажигания” в положении В (режимы движения).

  • Программируемая (перезаписываемая память). Для своей работы микропроцессору требуется программа, которая хранится в программируемой памяти (постоянное запоминающие устройство - ROM, или EPROM/ FEPROM).

Эта память также содержит также специальные данные (индивидуальные данные, характеристические и программируемые матрицы). Это фиксированные данные, которые не могут быть изменены во время управления автомобилем.

Множество вариантов, которые требуют различной записи данных, делают необходимым ограничение числа типов ЭБУ для изготовителей автомобилей. Вся область программируемой памяти (Flash EPROPM, или FEPROM) может быть запрограммирована (программа и специальные данные модели), когда автомобиль сходит с конвейера (EoL- End of Line programming - программирование на линии конвейера). Можно также сохранять в памяти число вариантов данных (то есть для разных стран), которые затем выбираются EoL-программированием.

  • Оперативная память. Оперативная память (RAM) требуется для хранения таких изменяющихся данных, как численные значения сигналов. Для правильной работы оперативная память требует постоянного электрического питания. При выключении зажигания или выключателя пуска ЭБУ выключается и, следовательно, теряет всю память (так называемая “испаряющаяся” память). Адаптирующие значения величин, то есть тех, которые “обучаются” системой во время работы и которые касаются работы двигателя рабочих режимов, в этом случае должны быть снова “обучены” после нового включения ЭБУ.

Данные, которые не должны быть потеряны (например, коды иммобилайзера и данные кодов неисправности) должны постоянно храниться в постоянной памяти (EEPROM). В этом случае данные в постоянной памяти не теряются даже в случае отсоединения аккумуляторной батареи.

  • Специализированная интегральная схема (ASIC). Увеличивающаяся сложность функций ЭБУ означает, что вычислительные возможности микропроцессоров оказываются недостаточными. Решением является использование модулей со специализированными интегральными схемами (ASIC - Application- Specific integrated Circuit) - потенциалом развития ЭБУ и, поскольку они оснащаются повышенной оперативной памятью (extra RAM) и усовершенствованными входными и выходными блоками, то могут генерировать и передавать сигналы широтноимпульсной модуляции.
  • Блок текущего контроля. ЭБУ оснащается следящим контуром, который встроен в специализированную интегральную схему (ASIC). Микропроцессор и блок текущего контроля следят друг за другом и, как только обнаруживается неисправность, любой из них может выключить подачу топлива независимо от другого.

Выходные сигналы

Используя свои выходные сигналы, микропроцессор запускает задающие каскады. Выходные сигналы обычно являются достаточно мощными, чтобы непосредственно управлять исполнительными устройствами или реле. Задающие каскады защищены от короткого замыкания на массу или аккумуляторную батарею, а также от разрушения от электрической перегрузки. Такие нарушения в работе, вместе с обрывами цепи или неисправностями датчиков, определяются контроллером задающих каскадов, и эта информация передается в микропроцессор.

Переключающие сигналы

Эти сигналы используются для включения и выключения исполнительных устройств, например, электровентилятора системы охлаждения двигателя.

Сигналы широтно-импульсной модуляции (PWM signals)

Выходные цифровые сигналы могут быть в форме сигналов широтно-импульсной модуляции. Это прямоугольные сигналы с постоянным периодом, но переменные по времени (рис. 59), которые могут быть использованы для пуска электромагнитных приводов, например, клапана системы рециркуляции ОГ.

Передача данных внутри ЭБУ

Для обеспечения нормальной работы микропроцессора периферийные компоненты должны иметь возможность обмениваться с ним данными. Это имеет место при использовании адресной шины или шины передачи данных, через которую микропроцессор выдает, например, адрес оперативной памяти (RAM), которая должна быть в данный момент доступна. Шина передачи данных используется затем для передачи соответствующих данных. Предшествующим автомобильным системам удовлетворяла 8-битовая топология с шиной передачи данных, включавшей в себя восемь линий, которые все вместе могли передавать 256 данных одновременно. 16-битовая адресная шина, которая обычно использовалась в таких системах, могла передавать данные в 65536 адресов.
Современные, более сложные системы, требуют для шины передачи данных 16 бит или даже 32 бит. Для того, чтобы сохранить компоненты систем в действии, для адресных шин (шин передачи данных) может быть использована мультиплексная (многократная) передача. То есть данные и адреса отправляются по тем же самым линиям передачи, но смещаются один от другого во времени.

Встроенная диагностика

  • Текущий контроль датчиков. Для того чтобы удостовериться в наличии нормального напряжения питания и в том, что выходной сигнал датчика находится в допустимых пределах (например, для температурного датчика это диапазон между -40 и +150”С), работа датчиков отслеживается встроенными диагностическими устройствами.

Сигналы наиболее важных датчиков, насколько это возможно, дублируются. Это означает, что в случае нарушения работы может быть использован другой подобный сигнал, или может быть выполнено два-три выбора.

  • Определение неисправностей. Это возможно осуществлять в пределах специальной области слежения за работой датчиков. В случае систем с программами обратной связи (например, контроль давления), возможно также диагностировать отклонение отданного диапазона регулирования.
    Путь прохождения сигнала может считаться неправильным, если неисправность присутствует больше заданного периода времени. Если однажды этот период был превышен, то неисправность сохраняется в памяти ЭБУ вместе с параметрами условий, при которых она случилась (например, температура охлаждающей жидкости, частота вращения коленчатого вала двигателя и др.).

Для многих неисправностей возможна повторная проверка датчика, если путь прохождения данного сигнала будет определен при отслеживании как не имеющий неисправности в рассматриваемом периоде времени.

  • Реакция в случае наличия неисправности. Если выходной сигнал датчика выходит за допустимые пределы, то происходит переключение на значение сигнала по умолчанию. Эта процедура используется применительно к следующим входным сигналам: напряжению аккумуляторной батареи; температуре охлаждающей жидкости, воздуха на впуске, моторного масла; давлению наддува; атмосферному давлению и расходу воздуха на впуске.

В случае нарушения важных для движения функций осуществляется переключение на заменяющие функции, которые позволяют водителю доехать, например, до автосервиса. Если один из потенциометров в модуле положения педали акселератора оказывается неисправным, то для расчетов могут использоваться сигналы второго потенциометра, при условии их правдоподобности, или работа двигателя может быть переключена на режим постоянной малой частоты вращения.

Принцип работы системы электронного управления

ЭБУ оценивает сигналы, полученные от внешних датчиков, и ставит ограничения по допустимому уровню напряжения.

Используя эти входные данные и хранящиеся в памяти программируемые матрицы, микропроцессор рассчитывает продолжительность и угол опережения (момент начала) впрыска и преобразует эти данные в сигналы для характеристик как функции времени, которые затем адаптируются к движению поршней. Учитывая высокие динамические нагрузки двигателя и большую частоту вращения, требуются высокие вычислительные возможности микропроцессора, чтобы соответствовать требованиям по точности вычислений. Выходные сигналы используются для запуска задающих каскадов, которые передают соответствующую мощность для всех исполнительных устройств (например, электромагнитных клапанов), включая приводы для таких функций двигателя, как рециркуляция ОГ и перепуск газов мимо турбины турбокомпрессора, а также для дополнительных функций, как реле свечей накаливания и кондиционер. Задающие каскады защищаются от разрушения и повреждений из-за короткого замыкания и электрической перегрузки. Сигналы о таких нарушениях в работе, как обрыв электрической цепи, передаются обратно в микропроцессор.

Диагностические функции задающих каскадов электромагнитных клапанов также определяют сигнальный код неисправности. Кроме того, определенное число выходных сигналов посылается другим системам автомобиля через интерфейс. ЭБУ также отслеживает работу всей системы топливоподачи в пределах рамок концепции безопасности.

Управление рабочими режимами

Для обеспечения оптимального процесса сгорания в двигателе, ЭБУ должен осуществлять соответствующий расчет величины подачи топлива для каждого рабочего режима. Блок-схема расчета величины подачи топлива показана на рис. 60.

Пусковая подача топлива

Пусковая подача топлива рассчитывается как функция температуры охлаждающей жидкости и частоты вращения коленчатого вала двигателя. ЭБУ выдает выходной сигнал на пусковую подачу от момента включения “зажигания” (положение “А” на рис. 60) и свечей накаливания, и до момента, когда достигается минимальная частота вращения коленчатого вала двигателя. Водитель не может оказывать влияния на величину пусковой подачи.

Управление движением автомобиля

Во время движения автомобиля количество впрыскиваемого топлива (величина подачи) рассчитывается как функция положения педали акселератора (датчик положения педали акселератора) и частоты вращения коленчатого вала двигателя (выключатель “зажигания” в положении “В” на рис. 60) с использованием многопараметровой характеристики управления автомобилем. Такое управление обеспечивает оптимальное соответствие действий водителя и выбора мощности двигателя.

Регулирование минимальной частоты вращения холостого хода

На минимальном режиме холостого хода расход топлива обусловлен главным образом механическим КПД двигателя и частотой вращения.
В современном плотном движении транспорта с частыми остановками основная доля расхода топлива приходится на минимальные режимы холостого хода. Это, следовательно, означает, что с одной стороны минимальная частота вращения холостого хода должна поддерживаться как можно более низкой, а с другой стороны, независимо от нагрузки (включенный кондиционер, положение селектора автоматической коробки передач, маневрирование при работе усилителя рулевого управления и др.), она никогда не должна уменьшаться ниже определенного минимума, когда двигатель начинает работать с рывками или даже останавливаться.

Для того чтобы установить необходимую частоту вращения, контроллер минимальном частоты вращения холостого хода изменяет подачу топлива до тех пор, пока измеренное ее значение не станет равным требуемому. Величина требуемой частоты вращения и характеристики управления определяются положением селектора (в автоматической коробке передач) и температурой охлаждающей жидкости двигателя (по сигналу датчика температуры охлаждающей жидкости).

Кроме учета влияния момента сопротивления от приложения внешней нагрузки внешней, следует также принимать во внимание моменты внутреннего трения, которые должны компенсироваться системой управления минимальной частоты вращения холостого хода. Эти изменения минимально, но постоянно осуществляются в течение всего срока эксплуатации автомобиля.

Регулирование плавности работы двигателя

Из-за наличия допусков при изготовлении и в зависимости от износа двигателя имеются различия в величине крутящих моментов, создаваемых отдельными цилиндрами. Это особенно проявляется на минимальном режиме холостого хода, когда приводит к неравномерной, с рывками, работе двигателя. Система управления плавностью работы двигателя отслеживает изменения в его работе в каждый момент времени, когда происходит вспышка в цилиндрах, и сравнивает работу цилиндров друг с другом. Затем происходит регулирование количества впрыскиваемого топлива в каждый цилиндр в зависимости от измеренной разницы в частоте вращения между отдельными цилиндрами, в результате чего вклад каждого цилиндра в создание крутящего момента двигателя оказывается одинаковым.

Управление скоростью автомобиля (система Cruise Control)

Контроллер системы поддержания скорости автомобиля (Cruise Control) позволяет обеспечить управление автомобилем с заданной постоянной скоростью движения.

Он поддерживает скорость автомобиля в соответствии со значением выбранным водителем с помощью переключателя, находящегося на приборной панели.

В процессе регулирования количество впрыскиваемого топлива увеличивается или уменьшается до тех пор, пока действительная скорость не станет равной установленной. Процесс регулирования автоматически прекращается, как только водитель нажмет на педаль сцепления или тормоза. Если водитель нажимает на педаль акселератора, то ускорение автомобиля возможно только до установленной системой “Cruise Control” скорости. Как только педаль акселератора отпускается, контроллер снова начинает регулировать скорость в соответствии с предыдущей установкой. Если система "Cruise Control” была отключена, то водителю достаточно нажать кнопку включения, чтобы снова выбрать установленную ранее скорость.

Возможна также ступенчатая установка желаемой скорости с использованием переключателя “круиз-контроля”.

Управление режимом ограничения подачи топлива

Имеется ряд причин, по которым нежелательно, чтобы всегда впрыскивалось максимальное количество топлива.

Такими причинами могут быть:

  • высокая эмиссия вредных веществ с ОГ;
  • высокая эмиссия сажевых частиц из-за избыточной подачи топлива;
  • механическая перегрузка при максимальном моменте или при большом превышении частоты вращения;
  • термическая перегрузка как результат повышенной температуры охлаждающей жидкости, масла или отработавших газов турбокомпрессора.

Ограничение количества впрыскиваемого топлива формируется по ряду входных параметров, например, по массовому расходу воздуха, частоте вращения и температуре охлаждающей жидкости.

Рис. 61 Активное демпфирование колебаний. 1 - резкое нажатие на педаль акселератора, 2 - характеристика частоты вращения без активного демпфирования колебаний, 3 - характеристика частоты вращения с активным демпфированием колебаний.

Демпфирование колебаний частоты вращения

При резком нажатии или отпускании педали акселератора происходит быстрое изменение количества впрыскиваемого топлива и, как результат, быстрое изменение крутящего момента двигателя. Такие резкие изменения нагрузки двигателя приводят к образованию “упругих” вибраций и, как следствие, к колебаниям частоты вращения коленчатого вала двигателя (рис. 61).

Демпфирование колебаний снижает такие периодические колебания частоты вращения путем соответствующего изменения количества впрыскиваемого топлива с такой же частотой, что и частота колебаний частоты вращения, то есть меньшее количество топлива впрыскивается в момент увеличения частоты вращения, и большее при ее уменьшении.

Высотная компенсация

Атмосферное давление влияет на регулирование давления наддува и является ограничителем крутящего момента двигателя. При использовании датчика атмосферного давления его величина может быть измерена ЭБУ, так что при работе на большой высоте цикловая подача топлива может быть уменьшена и, соответственно, снижена дымность ОГ двигателя.

Отключение цилиндров

Вместо того чтобы впрыскивать очень маленькие дозы топлива для уменьшения крутящего момента на высоких частотах вращения холостого хода и на малых нагрузках, может быть применен метод отключения части цилиндров. Например, может быть отключена половина форсунок (топливные системы с насос-форсунками, индивидуальными ТНВД и Common Rail), при этом оставшиеся в работе форсунки будут подавать большее количество топлива с большей точностью дозирования подачи.

В процессах включения и выключения цилиндров алгоритмы специальной программы обеспечивают плавность перехода режимов, в результате чего колебания крутящего момента не возникают.

Остановка двигателя

Работа дизеля основана на принципе самовоспламенения. Это означает, что остановка двигателя возможна только при прекращении подачи топлива.

Остановка двигателей с электронной системой управления осуществляется по сигналу ЭБУ “цикловая подача - ноль” (Не подается пусковой сигнал на электромагнитные клапаны управления подачей). Имеется также некоторое число резервных способов остановки двигателя. Топливным системам с насос-форсунками и индивидуальными ТНВД свойственна высокая безопасность. Другими словами, непреднамеренный впрыск может произойти только один раз. Следовательно, остановка дизеля имеет место при выключении электромагнитных клапанов управления подачей топлива.

Обмен информацией

Связь между ЭБУ двигателя и другими ЭБУ автомобиля осуществляется через контроллер сети - систему шин передачи данных CAN. Эта система служит для передачи желаемых и установочных значений параметров, эксплуатационных данных и информации о состоянии систем, что требуется для определения ошибок и эффективного управления (см. раздел “Передача данных другим системам”).

Внешнее влияние на величину цикловой подачи топлива

Внешнее влияние на величину цикловой подачи оказывают ЭБУ других систем (например, ABS, TCS), которые информируют ЭБУ двигателя о том, нужно ли изменять величину крутящего момента двигателя (и, следовательно, величину подачи), и если так, то насколько.

Электронный иммэбилайзер

Одной из мер защиты от угона автомобиля является ЭБУ иммобилайзера, который может быть установлен для предотвращения несанкционированного пуска двигателя.

При этом водитель может использовать сигнал дистанционного управления, чтобы сообщить ЭБУ, что он намеревается использовать автомобиль. ЭБУ иммобилайзера сообщает затем ЭБУ двигателя, что запрет на подачу топлива может быть снят, и двигатель может запускаться.

Кондиционер

При высокой температуре окружающей среды кондиционер охлаждает воздух в салоне автомобиля до желаемого уровня посредством использования компрессора холодильной установки.

В зависимости от типа двигателя и особенностей режимов движения мощность, затрачиваемая на привод компрессора, может достигать 30% от мощности двигателя.

Система электронного управления двигателя быстро выключает компрессор, как только водитель резко нажимает на педаль акселератора (другими словами, резко увеличивает крутящий момент двигателя).Это позволяет получить полную мощность двигателя для обеспечения разгона автомобиля и практически не влияет на температуру в салоне автомобиля.

Блок управления свечей накаливания

ЭБУ двигателя обеспечивает блок управления свечей накаливания информацией о необходимости включения нагрева свечей и длительности периода нагрева. Блок управления свечей накаливания следит за процессом нагрева и передает в ЭБУ двигателя информацию о любых неисправностях с целью диагностики.


Рис. 62 Последовательность пусковых сигналов в электромагнитных клапанах высокого давления топлива. 1 - фаза пускового тока (тока страгивания), 2 - определение угла опережения впрыска (момента начала впрыска), 3 - фаза удерживания тока, 4 - резкий сброс питания.

Электромагнитные клапаны высокого давления в топливных системах с насос-форсунками и индивидуальными ТНВД: Пусковые сигналы

Пусковые сигналы на электромагнитные клапаны высокого давления накладывают жесткие требования на задающие каскады
Необходимость соблюдения малых допусков и повторяемости цикловых подач с высокой точностью требует, чтобы текущие импульсы характеристики тока имели крутые передний и задний фронты.

При формировании пусковых сигналов используется текущий контроль, в котором процесс формирования разделяется на фазу увеличения (подъема) тока страгивания и фазу его удерживания. Между этими двумя фазами на короткий период времени подается постоянное напряжение для того, чтобы определить момент закрытия электромагнитного клапана. Текущий контроль должен быть таким точным, чтобы ТНВД или форсунка всегда обеспечивали повторяемость процесса впрыска топлива на каждом рабочем режиме. Текущий контроль также является ответственным за снижение потерь энергии в ЭБУ и электромагнитных клапанах. Для того чтобы обеспечить заданное и быстрое открытие электромагнитного клапана в конце процесса впрыска, энергия, хранящаяся в клапане, мгновенно сбрасывается путем подачи высокого напряжения на его выводы.

За расчет индивидуальных пусковых фаз отвечает микропроцессор. Этот процесс осуществляется с помощью так называемой логической матрицы, характеризующейся высокими вычислительными возможностями, которые выполняют это требование путем генерирования двух цифровых пусковых сигналов в режиме реального времени - “MODE” сигнал и “ON” сигнал. В свою очередь, эти пусковые сигналы заставляют задающие каскады генерировать необходимую последовательность текущего пускового процесса (рис. 62).

Управление периодом начала впрыска топлива (углом опережения впрыска)

Начало впрыска топлива определяется как момент времени (угол п.к.в.), в который электромагнитный клапан высокого давления закрывается, и начинается увеличение давления в камере высокого давления ТНВД. Как только давление превысит величину давления начала подъема иглы форсунки, последняя открывается, и начинается процесс впрыска топлива. Расчет действительной подачи топлива при впрыске осуществляется в периоде между началом подачи и снятием пускового сигнала с электромагнитного клапана. Этот период называется продолжительностью впрыска топлива.

Угол опережения впрыска топлива, то есть момент начала впрыска, оказывает существенное влияние на мощность двигателя, расход топлива, эмиссию вредных веществ с ОГ и шум. Установочное значение угла опережения впрыска, являющееся функцией частоты вращения коленчатого вала двигателя и величины подачи топлива, хранится в многопараметровых характеристиках в ЭБУ. Его величина может быть скорректирована в зависимости от температуры охлаждающей жидкости двигателя.

По причине наличия технологических допусков и изменений в работе электромагнитных клапанов высокого давления топлива в течение срока их службы, могут иметь место небольшие различия в моментах включения электромагнитных клапанов данного двигателя. Это приводит к различиям в моментах начала впрыска топлива в индивидуальных ТНВД разных цилиндров.

Для соответствия требованиям норм по эмиссии вредных веществ с ОГ и для достижения хороших результатов по плавности работы двигателя необходимо компенсировать указанные нарушения посредством соответствующего алгоритма управления.

Рассматривая прямую корреляцию между геометрическим началом подачи и началом впрыска топлива, описанными выше, для обеспечения точного регулирования величины угла опережения впрыска достаточно учитывать точные данные о начале геометрической подачи.

Для точного определения момента начала геометрической подачи топлива используется электронный расчет силы тока, проходящего через обмотку электромагнитного клапана, и в этом случае использование дополнительного датчика (например, датчика подъема иглы форсунки) не требуется. Пусковой сигнал на электромагнитный клапан высокого давления формируется постоянным напряжением вблизи момента времени, когда клапан должен закрываться. Магнитная индукция, возникающая при закрытии электромагнитного клапана, придает характеристике тока в обмотке клапана индивидуальное значение. Она оценивается ЭБУ, и отклонения от ожидаемого установочного значения момента закрытия для каждого электромагнитного клапана сохраняются в памяти, чтобы быть использованными как данные для компенсации при последующем процессе впрыска топлива.

Передача данных другим системам

Обзор систем

Современные системы электронного управления автомобилей включают следующие функции:

  • электронное управление двигателем и собственно ТНВД;
  • электронное управление переключением передач в трансмиссии;
  • антиблокировочную систему тормозов (ABS);
  • противобуксовочную систему (TCS);
  • электронную систему курсовой устойчи-вости (ESP);
  • систему управления тормозным момен¬том (MSR);
  • электронные иммобилайзеры (EWS);
  • бортовые компьютеры и т.д.

Использование указанных функций делает необходимым обеспечение связи между индивидуальными ЭБУ посредством работы в сети. Обмен информацией между различными системами управления уменьшает общее количество датчиков, активизируя в то же время использование потенциальных возможностей, присущих индивидуальным системам. Интерфейсы систем связи, которые были специально разработаны для применения в автомобилях, могут быть подразделены на две категории: обычные интерфейсы; последовательные интерфейсы, то есть CAN (Controller Area Network).

Рис. 63 Схема обычной передачи данных. 1 - блок управления коробкой передач, 2 - комбинация приборка, 3 - блок управления двигателем, 4 - блок управления системами ABS/ESP.

Обычная передача данных

В обычных автомобильных системах передачи данных для каждого сигнала предоставлен один канал связи (рис. 63). Двоичные сигналы могут быть переданы только как один из двух возможных - “1” или “0” (высокий или низкий уровень, соответственно). Примером здесь может быть компрессор автомобильного кондиционера, который либо включен (On), либо выключен (Off).

Для передачи постоянно меняющихся данных, таких как сигналы датчика положения педали акселератора, могут быть применены двоичные сигналы “ON/OFF”.

Все увеличивающийся поток данных между различными электронными бортовыми системами означает, что обычные интерфейсы не могут больше обеспечивать удовлетворительные характеристики передачи данных, Сложность электрической проводки и размеры соответствующих разъемов уже сегодня являются очень сложными для контроля, в то время как требования для обмена данными между ЭБУ все повышаются.

В некоторых моделях автомобилей каждый ЭБУ соединяется в сети с числом различных компонентов до 30 - предоставление каналов, которое практически невозможно обеспечить с обычной проводкой за допустимую цену.

Последовательная передача данных (CAN)

Проблемы, связанные с обменом данными при использовании многочисленных проводов и обычных интерфейсов, могут быть решены путем применения шин передачи данных. CAN есть система с шинами передачи данных, специально спроектированная для применения в автомобилях. Данные транслируются в виде последовательной передачи, то есть элементы информации передаются один за другим по одной линии (одному каналу связи). ЭБУ могут получать и передавать данные при условии, что они оснащены последовательным интерфейсом CAN.

Области применения

Имеются четыре представленные ниже основные области применения системы CAN в автомобиле.

  • Мультиплексная передача. Мультиплексная (многократная) передача данных удобна для использования с программами, осуществляющими управление в замкнутых или в разомкнутых цепях в системах бортовой электроники, включая системы комфорта и удобства, такие как климат-контроль, центральный замок и регулировка сидений.

Скорость передачи данных обычно находится в пределах от 10 кбит/с до 125 кбит/с (низкоскоростная CAN).

  • Программы мобильной связи. В области мобильной связи во взаимосвязи с центральным дисплеем и элементами управления работают такие компоненты, как система навигации, телефон и аудиоустановки.

Здесь целью является стандартизация операционных последовательностей, насколько это возможно, и концентрации информации о состоянии систем в данный момент времени так, чтобы свести к минимуму возможность ошибок водителя.

Скорость передачи данных до 125 кбит/с. В этой области прямая трансляция аудио- и видеоданных невозможна.

  • Диагностические программы. В диагностических целях система CAN используется в уже существующей сети для диагностики подсоединенных к ней ЭБУ. Существующая сегодня общая форма диагностики, использующая линию “К” (ISO 9141) в дальнейшем окажется недостаточной.

Скорость передачи данных планируется равной 500 кбит/с.

  • Применение систем в режиме реального времени. Применение систем в режиме реального времени необходимо для управления движением автомобиля.

Такие электрические системы, как системы управления двигателем, управления переключением передач и электронная система курсовой устойчивости (ESP) работают друг с другом в сети.

Скорость передачи данных в пределах от 125 кбит/с до 1 Мбит/с (высокоскоростная шина CAN) требуется для того, чтобы гарантировать быстродействие в режиме реального времени.

Рис. 64 Схема топологии линейной шины. 1 - блок управления коробкой передач, 2 - комбинация приборов, 3 - блок управления двигателем, 4 - блок управления системами ABS/ESP.

Работа ЭБУ в сети

Стратегия работы в сети предусматривает, что такие электронные системы, как электронное управление двигателем, антиблокировочная система тормозов (ABS), противобуксовочная система (TCS), электронная система курсовой устойчивости (ESP), электронное управление переключением передач в автоматической трансмиссии и др. соединяются одна с другой через интерфейс CAN.

Внутри линейной шинной топологии ЭБУ считаются равными “партнерами” (рис. 64). Преимущества этой структуры, известной как принцип ‘Multi-Master”, заключаются в том, что неисправность одного приписанного к ней блока не оказывает влияния на другие. Возможность общей неисправности является, таким образом, существенно более низкой, чем в других логических структурах, как например, в замкнутых цепях или иерархических структурах, в которых неисправность одной системы или центрального ЭБУ вызывает неисправность всей структурной системы.

Типичные скорости передачи данных находятся в пределах от 125 кбит/с до 1 Мбит/с. Скорости должны быть такими высокими, для того чтобы гарантировать заданные характеристики в режиме реального времени. Это означает, например, что данные о нагрузке двигателя от его ЭБУ поступают в ЭБУ коробкой передач в течение нескольких миллисекунд.

Рис. 65 Адресация и фильтрация сообщений.

Ассоциативная адресация данных

Система данных CAN не обращается к каждому терминалу индивидуально, а вместо этого назначает каждое “сообщение” фиксированным “идентификатором” длиной в 11 бит (стандартный формат для легковых автомобилей) или 29 бит (удлиненный формат для коммерческих автомобилей). Таким образом, в идентификаторе заключено содержание сообщения (например, частота вращения коленчатого вала двигателя).

Несколько сигналов могут быть включены в одно сообщение, как, например, число переключающих позиций.

Каждая станция (ЭБУ) обрабатывает только те сообщения, идентификация которых хранится в их собственном перечне, которые должны быть приняты (фильтрация сообщений, рис. 65).

Все другие сообщения просто игнорируются. Эта операция может выполняться специальным модулем CAN (Full-CAN), так что на микропроцессор ложится меньшая нагрузка. Основные модули CAN читают все сообщения, и затем микропроцессор делает выборку соответствующего запоминающего устройства.

С системой ассоциативной адресации данных один сигнал может быть послан нескольким блокам. Данный передатчик должен просто послать свой сигнал прямо в сеть шины передачи данных через ЭБУ, так что сигнал оказывается доступным всем получателям. Кроме этого, поскольку к существующей системе CAN в будущем могут быть добавлены другие блоки, то может быть задействовано множество вариантов оборудования. Если ЭБУ требует дополнительную информацию, которой располагает шина передачи данных, то все, что требуется, это просто вызвать ее.

Назначение приоритетов

Идентификатор не только показывает содержание данных, но также определяет приоритет сообщения. Сигналы, подверженные быстрым изменениям (например, частота вращения), очевидно, должны быть приняты без задержки и без потери данных. В результате эти быстро меняющиеся сигналы имеют более высокий приоритетный рейтинг, чем сигналы, темп изменения которых является относительно низким (например, температура охлаждающей жидкости двигателя). Кроме того, сообщения сортируются в соответствии с их “важностью” (например, функции, касающиеся безопасности работы, относятся к особо “важным”). В шине передачи данных никогда не находятся два или более сообщения одинакового приоритета.

Шина арбитража

Каждый блок может начинать передачу самых приоритетных сообщений, как только шина оказывается незанятой. Если несколько блоков начинают передачу данных одновременно, то возникающий конфликт доступа к шине разрешается путем предоставления первого доступа сообщению с самым высоким приоритетом, без какой-либо формы задержки и без потерь бит данных (неразрушаемый протокол). Это имеет место при использовании “рецессивных” (логические 1) и “доминантных” (логические 0) бит - посредством доминантных бит “переписываются” рецессивные биты. Передатчики с сообщениями низкого приоритета автоматически становятся приемниками и повторяют попытку передачи их сообщения, как только шина передачи данных становится снова свободной. Для того чтобы все сообщения имели возможность войти в шину, скорость передачи данных в шине должна соответствовать числу блоков, работающих с этой шиной. Для тех сигналов, которые постоянно пульсируют (например, частота вращения коленчатого вала двигателя), определяется время цикла.

Рис. 66 Формат сообщения.

Формат сообщений

Для передачи в шину генерируется кадр данных с максимальной длиной 130 бит (стандартный формат) или 150 бит (расширенный формат). Это позволяет свести к минимуму время ожидания следующей - возможно, исключительно срочной - передачи данных. Кадры данных включают в себя семь последовательных зон (полей) (рис. 66).

“Начало кадра” определяет начало передачи данных и синхронизирует все системы;

“Поле арбитража” объединяет идентификатор сообщения и дополнительный управляющий бит. Во время передачи этого поля передающее устройство сопровождает передачу каждого бита для проверки того, что в данный момент не происходит передачи другими блоками сообщения более высокого приоритета. Управляющий бит решает, как классифицировать данное сообщение - как “информационный кадр данных” или как “отдаленный сигнал”.

“Поле управления” содержит в себе код, указывающий на количество битов в кадре данных. Это позволяет приемнику сигнала определить, что все биты информации были получены.

“Поле данных” имеет информационное содержание между 0 и 8-ю битами. Сообщение длиной данных “0” может быть использовано для синхронизации распределенных процессов.

“Поле CRC (Cyclic Redundancy Check - цик-лическая проверка избыточности)” содержит в себе контрольное слово для определения возможных помех при передаче данных.

“Область подтверждения приема” содержит в себе сигнал подтверждения приема, при котором все приемные устройства показывают прием неповрежденных сигналов, независимо оттого, были они обработаны или нет.

“Конец кадра” указывает на окончание приема сообщения.

Встроенные средства диагностики

Система CAN с шиной передачи данных снабжена определенным количеством контрольных функций для выявления ошибок. Эти функции включают в себя проверочный сигнал в “информационном кадре”, а также функцию слежения, при котором каждое передающее устройство снова получает свой собственный сигнал и, таким образом, может определить любые отклонения от него.

Если система определяет наличие ошибки, то она посылает так называемый “признак ошибки’, который останавливает идущую передачу данных. Это предотвращает возможное получение неправильных данных другими блокам.

В случае повреждения блока управления может так случиться, что все передаваемые данные, включая не содержащие ошибок, будут помечены “признаком ошибки”. Для предотвращения этого система CAN включает в себя специальную функцию, которая может различать перемежающуюся или постоянную ошибки или помехи и, следовательно, локализовать повреждения в блоках. Данный процесс основывается на статистическом анализе условий возникновения ошибок.

Стандартизация

Международная организация по стандартизации (ISO) и SAE установила стандарты для системы передачи данных CAN в применении к автомобильной технике:

  • ISO 11519-2 - для низкоскоростной передачи информации - скорость до 125 кбит/с;
  • ISO 11898 и SAE J22584 (легковые автомобили) и SAE J1939 (грузовики и автобусы) -для высокоскоростной передачи информации - скорость больше 125 кбит/с.

Стандарты ISO на CAN-диагностику (ISO 15756 - проект) находятся в процессе подготовки.

Современный автомобиль – это отчасти компьютер на колесах, а если быть точнее – то компьютер, который управляет движением колес. Большинство механических деталей автомобиля давно уже вытеснены, а если и остались – то целиком и полностью контролируются «электронным мозгом». Конечно же, компьютеризированным автомобилем управлять значительно проще, да и о безопасности таких авто конструкторы думают в первую очередь.

Однако, какой бы совершенной ни была конструкция электронных блоков управления (ЭБУ) – они все равно могут выходить из строя. Ситуация это не самая приятная, да и в связи со сложностью устройства о самостоятельном ремонте говорить не приходится (хотя и такие умельцы есть). В сегодняшней статье мы поговорим о том, какие неисправности могут случиться с ЭБУ, чем они могут быть вызваны и как правильно их диагностировать.

1. Причины выхода из строя ЭБУ: к чему следует быть готовым?

В первую очередь, электронный блок управления автомобилем, или же просто , - это очень сложное и важное компьютерное оборудование. В случае неисправности этого устройства, может проявляться некорректная работа всех остальных автомобильных систем. В отдельных случаях автомобиль может перестать работать вообще, включая отказ трансмиссии, зарядных устройств и контрольных датчиков.

Электронные блоки бывают разные и могут управлять разными устройствами. При этом, все системы все равно активно взаимодействуют между собой и передают важную информацию для регулировки всех функций. Самый основной из них – это ЭБУ двигателя автомобиля. Несмотря на конструктивную простоту, он выполняет массу сложнейших задач:

1. Контроль впрыска топлива в камеру сгорания автомобиля.

2. Регулировка дроссельной заслонки (как во время езды, так и во время работы двигателя на холостом ходу).

3. Управление работой системы зажигания.

4. Контроль состава отработанных выхлопных газов.

5. Управление фазами газораспределения.

6. Контроль температуры охлаждающей жидкости.

Если говорить конкретно о ЭБУ двигателя, то все полученные им данные могут также учитываться и при работе антиблокировочной системы тормозов, и при работе системы пассивной безопасности, и в противоугонной системе.

Причины выхода из строя ЭБУ могут быть самыми разнообразными. В любом случае, ничего хорошего это автовладельцу не предвещает, поскольку данное устройство не подлежит ремонту. Даже на станциях технического обслуживания его просто меняют на новое. Но, как бы там ни было, необходимо очень детально разобраться в том, что же может вызвать поломку. Благодаря этим знаниям вы сможете в будущем обеспечить максимально возможную защиту устройства от подобных неприятностей.

Как отмечают автоэлектрики, наиболее часто ЭБУ выходит из строя из-за перенапряжения в электрической сети машины. Последнее, в свою очередь, может возникать из-за короткого замыкания одного из соленоидов. Однако, это не единственная возможная причина:

1. Поломка устройства может возникнуть из-за любого механического воздействия. Это может быть случайный удар или очень сильные вибрации, способные вызывать появление микротрещин в платах ЭБУ и местах спайки основных контактов.

2. Перегрев блока, который чаще всего возникает из-за резкого перепада температур. К примеру, когда вы на сильном морозе пытаетесь завести автомобиль на больших оборотах, выжимая максимум из возможностей автомобиля и всех его систем.

3. Коррозия, которая может возникать из-за перепадов влажности воздуха, а также из-за попадания воды в подкапотное пространство автомобиля.

4. Попадание влаги непосредственно в сам блок управления вследствие разгерметизации устройства.

5. Вмешательство посторонних в устройство электронных систем, вследствие чего могло произойти нарушение их целостности.

Если от автомобиля хотели «прикурить», предварительно не заглушив двигатель.

Если с автомобильного аккумулятора сняли клеммы, предварительно не заглушив двигатель.

Если были перепутаны клеммы во время подключения аккумулятора.

Если был включен стартер, но к нему не была подсоединена силовая шина.

Однако, что бы ни стало причиной неисправности ЭБУ, любые ремонтные работы могут осуществляться только после осуществления полной профессиональной диагностики. В целом же, характер неисправности устройства подскажет вам о неисправностях в других системах. Ведь если их также не устранить, то новый блок управления перегорит так же, как и старый. Именно поэтому в случае перегорания ЭБУ очень важно установить истинную причину поломки и сразу же устранить ее.

Но как же определить, что из строя действительно вышел блок управления, а не какая-нибудь другая система? Понять это можно по ряду самых первых признаков, которые могут проявляться в такой ситуации:

1. Наличие явных физических повреждений. К примеру, перегоревших контактов или проводников.

2. Неработающие сигналы управления системой зажигания или бензонасосом, механизмом холостого хода и другими механизмами, которые находятся под контролем блока.

3. Отсутствие показателей с разных датчиков контроля систем.

4. Отсутствие связи с диагностическим устройством.

2. Как проверить ЭБУ: практические советы для автолюбителей, которые не желают отправляться на СТО.

К счастью, даже в том случае, если у вас нет ни денег, ни желания ехать на СТО, а ЭБУ не желает подавать никаких признаков жизни, есть верный способ определить, в чем причина поломки. Возможно это благодаря наличию встроенной системы самодиагностики на каждом блоке управления автомобиля. Она позволяет определить возможную причину поломки без применения специального диагностического оборудования.

Но сделаем маленькое отступление и расскажем о некоторых особенностях блока управления двигателем автомобиля. Данное электронное устройство представляет собой мини-компьютер, способный выполнять возложенные на него задачи в режиме реального времени. При этом, все специализированные задачи можно разделить на три категории:

1. Обработка и анализ сигналов, которые поступают на блок от всех датчиков.

2. Расчет необходимого воздействия, которое необходимо для управления всеми системами автомобиля.

3. Контроль за работой исполнительных механизмов, то есть тех, на которые подается сигнал от блока управления.

Однако, чтобы получить возможность проверить состояние блока управления двигателя, в первую очередь необходимо выполнить ряд манипуляций, чтобы к нему подключиться. Для этого вам понадобится либо специальный тестер, который по понятным причинам есть далеко не у каждого, либо ноутбук с предварительно установленной на нем специальной программой. Что это за программа должна быть? Она предназначена для того, чтобы считывать с блока управления диагностические данные. Установить ее можно либо из интернета, либо из диска, приобретенного на авторынке.

Однако стоит учесть, что на разных моделях авто могут быть установлены разные модели блоков управления. Исходя из этого, необходимо подбирать диагностическую программу для ноутбука и, естественно, сам способ проверки. Мы же вам расскажем о том, как осуществить диагностику модели ЭБУ Bosch M7.9.7. Данная модель ЭБУ является достаточно распространенной как на автомобилях ВАЗ, так и на иномарках.

Что же касается программы для диагностики, то в данном случае мы будем использовать KWP-D. Сразу отметим, что, кроме самой программы для выполнения диагностики, вам обязательно понадобится специальный адаптер, способный поддерживать протокол KWP2000. С его подключения и начинается непосредственно сам процесс диагностики:

1. Один конец адаптера вставляем в порт электронного блока управления, а второй – в USB-порт вашего ноутбука.

2. Поворачиваем ключ в замке зажигания автомобиля и запускаем на ноутбуке диагностическую программу.

3. Сразу же после запуска на дисплее ноутбука должно появиться сообщение, подтверждающее успешное начало проверки ошибок в работе электронного блока управления.

5. Обратите внимание на раздел под названием DTC, поскольку именно в нем будут высвечиваться все неисправности, которые будет выдавать двигатель. Ошибки будут появляться в виде специальных кодов, расшифровать которые можно, перейдя в специальный раздел, который так и называется - «Коды».

6. Если же в разделе DTC не появилась ни одна ошибка, значит, можете порадоваться – двигатель автомобиля находится в идеальном состоянии.

Однако игнорировать другие раздели таблицы также не стоит, поскольку в них также можно найти очень важную информацию, способную объяснить неисправности ЭБУ. Среди них:

Раздел UACC – в нем высвечиваются все данные, характеризирующие состояние автомобильного аккумулятора. Если с этим устройством все в порядке, то его показатели должны находиться в районе от 14 до 14,5 В. Если же полученный в результате проверки показатель находится ниже указанного значения, следует тщательно проверить все электрические цепи, которые отходят от аккумулятора.

Раздел THR – здесь будут высвечиваться параметры положения дроссельной заслонки. Если автомобиль работает на холостом ходу, и с данным элементом нет никаких проблем, в этом разделе высветится значение в 0%. Если же оно выше – обратитесь за помощью к специалисту.

Раздел QT – это контроль расхода топлива. Так как авто работает на холостом ходу, в таблице должен появиться показатель, который находится в промежутке от 0,6 до 0,0 л в час.

Раздел LUMS_W – состояние коленвала во время выполнения вращений. При нормальной работе его показатель не должен превышать 4 оборотов в секунду. Если же количество оборотов больше, значит, в цилиндрах двигателя происходит неравномерное воспламенение. Кроме этого, проблема может скрываться в высоковольтных проводах или свечах.

3. Что нужно для проверки ЭБУ, или как справляются с данной задачей профессионалы?

Без специального оборудования осуществить полноценную проверку блока управления двигателем автомобиля просто невозможно. Но благодаря его наличию, процесс диагностики становится очень простой задачей. Проблема заключается лишь в том, чтобы приобрести это специальное оборудование, которое, по сути, выполнит всю работу вместо вас.

Итак, что же может понадобиться водителю для осуществления диагностики электронного блока управления? В первую очередь, это осциллограф . С его помощью можно получить данные о работе абсолютно всех систем автомобиля. При этом, все полученные данные будут выводиться на экран либо в графическом, либо в числовом виде.

Сняв цифры, полученные со своего автомобиля, вам необходимо будет сравнить их со стандартными показателями. На основании этого вы сможете определить, в какой системе есть неисправность, и сможете ее устранить. Единственный минус осциллографа – его стоимость, которая далеко не всем по карману.

Но кроме осциллографа, для диагностики состояния блока управления можно использовать и специальный мотор-тестер . Его главная функция – это определение показателей, которые поступают со всех электронных систем автомобильного двигателя. К примеру, он позволяет определить падение оборотов при выключении цилиндров, а также наличие разрежения в коллекторе впуска. Но стоит он не дешевле, чем осциллограф.

Поскольку ЭБУ не так часто выходит из строя, а устранение неисправностей этого блока все равно лучше доверить специалистам, то покупка таких дорогих приборов не всегда является рациональным решением. Тем более, что сами вы не всегда сможете правильно считать информацию с их дисплея. Поэтому, при проявлении любых признаков неисправности ЭБУ мы рекомендуем обращаться за помощью к специалистам. Ведь своими манипуляциями вы можете нанести больше вреда, чем пользы своему автомобилю.

Каждое современное транспортное средство оснащается электронной системой управления двигателем ЭСУД. Основным элементом системы является блок управления двигателем, позволяющий обеспечить оптимальную работу силового агрегата. Что это за устройство, какие функции выполняет ЭБУ, в чем заключается его принцип действия? Ответы на эти и другие вопросы касательно ЭСУД вы можете найти ниже.

[ Скрыть ]

Описание ЭБУ

Для начала рассмотрим описание ЭБУ двигателя автомобиля, его типовые параметры, а также расскажем, где находится девайс. Начнем с основных опций, возложенных на это устройство.

Функционал

Итак, что такое ЭБУ в машине? Блок управления двигателем представляет собой устройство, использующееся для приема сигналов от контроллеров и датчиков, а также их последующей обработки и передачи команд на исполнительные механизмы. Данные, которые получает система управления мотором в машине, обрабатываются по установленному производителем алгоритму. После обработки информации электронный блок управления двигателем передает соответствующие команды на исполнительные механизмы и компоненты.

Электронная система управления двигателем дает возможность оптимизировать важные параметры для функционирования силового агрегата, в частности:

  • наладить наиболее оптимальный расход горючего;
  • контролировать состав и соотношение вредных веществ в выхлопных газах;
  • произвести контроль за показателями крутящего момента;
  • обеспечить наиболее оптимальную мощность силового агрегата;
  • произвести регулировку положения заслонки дросселя;
  • контролировать работу системы зажигания;
  • отрегулировать работу системы рециркуляции выхлопных газов;
  • произвести управления фазами газораспределительного механизма;
  • произвести регулировку температуры антифриза при необходимости.

Нужно учитывать, что это далеко не все функции, которые может выполнять электронный блок управления двигателем. Это самые основные параметры, но в зависимости от модели ЭСУД, управляющий модель может выполнять и другие опции. Этот девайс также дает возможность произвести диагностику автомобиля в целом, если в работе тех или иных узлов были зафиксированы неполадки. О необходимости проведения проверки может свидетельствовать появление лампочки Чек на щитке приборов.

Контрольная лампа системы управления двигателем, которая стоит на приборке, появляется в том случае, если ЭСУД обнаружила неисправности в функционировании тех или иных узлов. Для получения более точных данных о поломках, автовладелец должен осуществить компьютерную диагностику системы и расшифровать полученные комбинации ошибок (автор видео — Павел Ксенон).

Теперь рассмотрим вопрос расположения управляющего модуля в автомобиле. В большинстве случаев, как видно по фото, девайс стоит в салоне автомобиля, за центральной консолью, посредине. Для получения доступа к устройству необходимо будет разобрать часть торпеды. Также ЭБУ может быть расположен за вещевым ящиком или приборной панелью, если же он был установлен самостоятельно, то место монтажа определяется установщиком. В некоторых моделях авто устройство находится в моторном отсеке.

Компоненты

Две основные составляющие любой электронной системы управления двигателем — это программное, а также аппаратное обеспечение.

Программное обеспечение, в свою очередь, включает в себя следующие вычислительные модули:

  1. Контрольный модуль, изначально предназначенный для проверки транспортного средства и инспектирования исходящих сигналов. Благодаря этому модулю, если нужно, осуществляется корректировка импульсов. Помимо этого, контрольный модуль позволяет даже заглушить мотор, если в этом есть необходимость (к примеру, при перегреве или других неполадках).
  2. Не менее важный модуль — функциональный. Он используется для получения сигналов, передающихся на блок управления автомобиля от контроллеров и датчиков. Когда модуль получает сигнал, он его обрабатывает, а затем формирует определенные команды, которые впоследствии посылаются на исполнительные элементы (автор видео — Павел Ксенон).

Также схема ЭБУ включает в себя и аппаратное обеспечение, которое включает в себя разные электронные элементы — микросхемы, процессор и т.д. В конструкции управляющего модуля имеется специальный аналогово-цифровой преобразователь, предназначенный для улавливания аналоговых сигналов, которые передают контроллеры и датчики. С помощью преобразовательного устройства осуществляется перевод полученных импульсов в цифровой формат, с которым в дальнейшем работает сам процессор. Также данный элемент преобразует импульсы и в обратной последовательности, если есть необходимость передачи сигнала от микропроцессора.

Отдельно следует сказать о защите модуля. В случае взлома автомобиля злоумышленник может с легкостью получить доступ к ЭБУ, вскрыв торпеду. Защита ЭБУ может быть обеспечена путем установки дополнительного сейфа либо специального резервуара, который позволит предотвратить получение преступником доступа к устройству. Здесь же нужно отметить такой момент, как взаимозаменяемость ЭБУ.

Взаимозаменяемость ЭБУ автомобиля позволяет заменить управляющий модуль в машине в случае его выхода из строя, однако это также позволит преступнику поменять установленный в авто блок на собственный. Благодаря чему злоумышленник сможет обойти противоугонную систему, именно поэтому важно позаботиться о защите модуля.

Принцип работы

Если говорить о принципе действия, то блок управления мотором получает сигналы от различных датчиков, их количество может изменяться в зависимости от типа авто:

  • сигналы о расходе воздуха, поступающие от ДМРВ;
  • о температуре работы двигателя;
  • о положении коленвала, а также о частоте его работы:
  • о неровной дороге;
  • о скорости авто и т.д.

Обрабатывая полученные сигналы, управляющий блок передает команды на различные системы:

  1. Зажигания машины. Как известно, транспортное средство, в зависимости от того, какой двигатель на него установлен, может быть оснащено одной или несколькими катушками. В соответствии с полученным сигналом система зажигания определяет оптимальный режим для подачи искры, что необходимо для возгорания топливовоздушной смеси.
  2. На приборную панель. Лампа Чек, как сказано выше, является связующим звеном между блоком и водителем. Ее появление на приборке может быть обусловлено обнаружением ЭСУД неполадок в работе тех или иных узлов. В некоторых случаях сообщения об ошибке свидетельствуют о неисправности тех или иных датчиков.
  3. На форсунки силового агрегата, с помощью которых осуществляется наиболее оптимальный впрыск топливовоздушной смеси в цилиндры ДВС. Нужно учитывать, что частота изменения объема смеси может быть разной.
  4. На устройства для тестирования ЭСУД (автор видео — Павел Ксенон).

Плюсы и минусы электронного блока управления двигателем

Сначала рассмотрим достоинства:

  • с помощью ЭСУД осуществляется оптимизация основных рабочих параметров автомобиля;
  • снижается расход воздушного потока;
  • обеспечивается более упрощенный запуск силового агрегата;
  • у автовладельца больше нет необходимости производить регулировку параметров работы мотора, практически все, что нужно, регулируется автоматически;
  • если двигатель работает правильно, то корректная работа ЭБУ позволит добиться оптимальных параметров в плане экологической чистоты.

Основные недостатки:

  1. Стоимость ЭБУ достаточно высокая. В случае выхода из строя девайс можно попытаться отремонтировать, но если это не поможет, то устройство подлежит замене.
  2. Чтобы система работала правильно, проводка автомобиля должна быть целой, в частности, речь идет об участке цепи питания самой ЭСУД.
  3. Для оптимальной работы водитель должен заправлять только качественное горючее.
  4. Фото 3. Схема взаимодействия ЭБУ с автомобильными системами


© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков