Принцип работы реактивного двигателя. Описание и устройство

Принцип работы реактивного двигателя. Описание и устройство

Вращающийся воздушный винт тянет самолет вперед. Но реактивный двигатель с большой скоростью выбрасывает горячие отработавшие газы назад и тем самым создает реактивную силу тяги, направленную вперед.

Типы реактивных двигателей

Существует четыре типа реактивных, или газотурбинных двигателей:

Турбореактивные ;

Турбовентиляторные - такие, как используемые на пассажирских лайнерах Боинг-747;

Турбовинтовые , где используют воздушные винты, приводимые в действие турбинами;

и Турбовальные , которые ставят на вертолеты.

Турбовентиляторный двигатель состоит из трех основных частей: компрессора, камеры сгорания и турбины, дающей энергию. Сначала воздух поступает в двигатель и сжимается при помощи вентилятора. Затем, в камере сгорания, сжатый воздух смешивается с горючим и сгорает, образуя газ при высокой температуре и высоком давлении. Этот газ проходит через турбину, заставляя ее вращаться с огромной скоростью, и выбрасывается назад, создавая таким образом реактивную силу тяги, направленную вперед.

Изображение кликабельно

Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.

В турбореактивном двигателе воздух забирается спереди, сжимается и сгорает вместе с топливом. Образующиеся в результате сгорания выхлопные газы создают реактивную силу тяги.

Турбовинтовые двигатели соединяют реактивную тягу выхлопных газов с передней тягой, создаваемой при вращении воздушного винта.

РЕФЕРАТ

ПО ТЕМЕ:

Реактивные Двигатели .

НАПИСАЛ: Киселев А.В.

г.КАЛИНИНГРАД

Вступление

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы:

источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи;

рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.;

сам Р. д. - преобразователь энергии.

Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода);

вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата.

В современных Р. д. в качестве первичной чаще всего используется химическая

Огневые испытания ракетного

двигателя Спейс Шаттла

Турбореактивные двигатели АЛ-31Ф самолета Су-30МК . Относятся к классу воздушно-реактивных двигателей

энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

История реактивных двигателей

Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.

В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя? была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

Р. д. имеют различное назначение и область их применения постоянно расширяется.

Наиболее широко Р. д. используются на летательных аппаратах различных типов.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.


Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.

Один из вновь образованных стволов - это класс воздушно-реактивных двигателей (ВРД). Как показывает само название, они не могут работать вне атмосферы. Вот почему эти двигатели - основа современной авиации, как пилотируемой, так и беспилотной. ВРД используют атмосферный кислород для сгорания топлива, без него реакция сгорания в двигателе не пойдет. Но все же в настоящее время наиболее широко применяются турбореактивные двигатели

(ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. Ведь если давление в камере сгорания не будет значительно превышать атмосферное, то газы не станут вытекать из двигателя с большей скоростью - именно давление выталкивает их наружу. Но при малой скорости истечения тяга двигателя будет малой, а топлива двигатель будет расходовать много, такой двигатель не найдёт применения. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Существует двигатели с осевым и центробежным компрессором, осевые компрессоры могут иметь спасибо за пользование нашей системой меньшее или большее число ступеней сжатия, быть одно-двухкаскадными и т.д. Для приведения во вращение компрессора ТРД имеет газовую турбину, которая и дала название двигателю. Из-за компрессора и турбины конструкция двигателя оказывается весьма сложной.

Значительно проще по конструкции безкомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами, которые имеют названия: пульсирующие и прямоточные двигатели.

В пульсирующем двигателе для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие того давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.

В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой "химический" реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.

Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Принцип работы реактивного двигателя.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов.

Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д.

Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.

Подобных переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания.

После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт.

Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

В случае поршневого двигателя расширяющиеся газы давят на поршень, движущийся внутри цилиндра, поршень толкает шатун, а тот уже вращает коленчатый вал двигателя. Вал связывается с ротором динамомашины, ведущими осями тепловоза или автомобиля или же воздушным винтом самолёта - двигатель совершает полезную работу. В паровой машине, или газовой турбине газы, расширяясь, заставляют вращать связанное с валом турбиной колесо - здесь отпадает нужда в передаточном кривошипно-шатунном механизме, в чем заключается одно из больших преимуществ турбины

Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала. Связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное - создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов - продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию - беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении.

Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы не все в там правда типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, - газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель.

Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".

Схема реактивного двигателя

Турбовентиляторный двигатель - это наиболее широко используемый в гражданской авиации реактивный двигатель.

Горючее, попадая в двигатель (1), перемешивается со сжатым воздухом и сгорает в камере сгорания (2). Расширяющиеся газы вращают быстроходную (3) и тихоходную) турбины, которые, в свою очередь, приводят в движение компрессор (5), проталкивающий воздух в камеру сгорания, и вентиляторы (6), прогоняющие воздух через эту камеру и направляющие его в выхлопную трубу. Вытесняя воздух, вентиляторы обеспечивают дополнительную тягу. Двигатель данного типа способен развивать тягу до 13 600кг.

Заключение

Реактивный двигатель обладает многими замечательными особенностями, но главная из них заключается в следующем. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном пространстве.

К. Э. Циолковский – основоположник теории космических полётов. Научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским учёным и изобретателем Константином Эдуардовичем Циолковским

Список литературы

Энциклопедический Словарь Юного Техника.

Тепловые Явления в технике.

Материалы с сайта http://goldref.ru/;

  1. Реактивное движение (2)

    Реферат >> Физика

    Которое в виде реактивной струи выбрасывается из реактивного двигателя ; сам реактивный двигатель - преобразователь энергии... с которой реактивный двигатель воздействует на аппарат, оснащенный этим реактивным двигателем . Тяга реактивного двигателя зависит от...

  2. Реактивное движение в природе и технике

    Реферат >> Физика

    Сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым... т.е. аппарат с реактивным двигателем , использующим горючее и окислитель, находящиеся на самом аппарате. Реактивный двигатель – это двигатель , преобразующий...

  3. Реактивная система залпового огня БМ-13 Катюша

    Реферат >> Исторические личности

    Головной части и порохового реактивного двигателя . Головная часть по своей... взрыватель и дополнительный детонатор. Реактивный двигатель имеет камеру сгорания, в... резкому увеличению огневых возможностей реактивной

Реактивное движение - это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя. Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки - Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски - революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем - это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику - жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы - это:

Компрессор;

Камера для сгорания;

Турбины;

Выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача - всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом - окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть - это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй - к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

Реактивный двигатель – устройство, создающее требуемую для движения силу тяги, преобразовывая внутреннюю энергию горючего в кинетическую энергию реактивной струи рабочего тела.

Классы реактивных двигателей:

Все реактивные двигатели подразделяют на 2 класса:

  • Воздушно-реактивные – тепловые двигатели, использующие энергию окисления воздуха, получаемого из атмосферы. В этих двигателях рабочее тело представлено смесью продуктов горения с остальными элементами отобранного воздуха.
  • Ракетные – двигатели, которые на борту содержат все необходимые компоненты и способны работать даже в безвоздушном пространстве.

Прямоточный воздушно-реактивный двигатель – самый простой в классе ВРД по конструкции. Требуемое для работы устройства повышение давления образуется путем торможения встречного воздушного потока.

Рабочий процесс ПВРД можно кратко описать следующим образом:

  • Во входное устройство двигателя поступает воздух со скоростью полета, кинетическая его энергия преобразуется во внутреннюю, давление и температура воздуха повышаются. На входе в камеру сгорания и по всей длине проточной части наблюдается максимальное давление.
  • Нагревание сжатого воздуха в камере сгорания происходит путем окисления подаваемого воздуха, при этом внутренняя энергия рабочего тела увеличивается.
  • Далее поток сужается в сопле, рабочее тело достигает звуковой скорости, а вновь при расширении – сверхзвуковой. За счет того, что рабочее тело движется со скоростью, превышающей скорость встречного потока, внутри создается реактивная тяга.

В конструктивном плане ПВРД является предельно простым устройством. В составе двигателя есть камера сгорания, внутрь которой горючее поступает из топливных форсунок, а воздух – из диффузора. Камера сгорания заканчивается входом в сопло, которое является суживающейся-расширяющимся.

Развитие технологии смесевого твердого топлива повлекло за собой использование этого горючего в ПВРД. В камере сгорания располагается топливная шашка с центральным продольным каналом. Проходя по каналу, рабочее тело постепенно окисляет поверхность топлива и нагревается само. Применение твердого горючего еще более упрощает состоящую конструкцию двигателя: топливная система становится ненужной.

Смесевое топливо по своему составу в ПВРД отличается от применяемого в РДТТ. Если в ракетном двигателе большую часть состава топлива занимает окислитель, то в ПВРД он используется в небольших пропорциях для активирования процесса горения.

Наполнитель смесевого топлива ПВРД преимущественно состоит из мелкодисперсного порошка бериллия, магния или алюминия. Их теплота окисления существенно превосходит теплоту сгорания углеводородного горючего. В качестве примера твердотопливного ПВРД можно привести маршевый двигатель крылатой противокорабельной ракеты «П-270 Москит».

Тяга ПВРД зависит от скорости полета и определяется исходя из влияния нескольких факторов:

  • Чем больше показатель скорости полета, тем большим будет расход воздуха, проходящего через тракт двигателя, соответственно, большее количество кислорода будет проникать в камеру сгорания, что увеличивает расход топлива, тепловую и механическую мощность мотора.
  • Чем больше расход воздуха сквозь тракт двигателя, тем выше будет создаваемая мотором тяга. Однако существует некий предел, расход воздуха сквозь тракт мотора не может увеличиваться неограниченно.
  • При возрастании скорости полета увеличивается уровень давления в камере сгорания. Вследствие этого увеличивается термический КПД двигателя.
  • Чем больше разница между скоростью полета аппарата и скоростью прохождения реактивной струи, тем больше тяга двигателя.

Зависимость тяги прямоточного воздушно-реактивного двигателя от скорости полета можно представить следующим образом: до того момента, пока скорость полета намного ниже скорости прохождения реактивной струи, тяга будет увеличиваться вместе с ростом скорости полета. Когда скорость полета приближается к скорости реактивной струи, тяга начинает падать, миновав определенный максимум, при котором наблюдается оптимальная скорость полета.

В зависимости от скорости полета выделяют такие категории ПВРД:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Каждая из групп имеет свои отличительные особенности конструкции.

Дозвуковые ПВРД

Эта группа двигателей предназначена для обеспечения полетов на скоростях, равных от 0,5 до 1,0 числа Маха. Сжатие воздуха и торможение в таких двигателях происходит в диффузоре – расширяющемся канале устройства на входе потока.

Данные двигатели имеют крайне низкую эффективность. При полетах на скорости М= 0,5 уровень увеличения давления в них равен 1,186, из-за чего идеальный термический КПД для них – всего 4,76%, а если еще и учитывать потери в реальном двигателе, эта величина будет приближаться к нулю. Это значит, что при полетах на скоростях M<0,5 дозвуковой ПВРД неработоспособен.

Но даже на предельной скорости для дозвукового диапазона при М=1 уровень увеличения давления равен 1,89, а идеальный термический коэффициент – всего 16, 7%. Эти показатели в 1,5 раза меньше, чем у поршневых двигателей внутреннего сгорания, и в 2 раза меньше, нежели у газотурбинных двигателей. Газотурбинные и поршневые двигатели к тому же эффективны для использования при работе в стационарном положении. Поэтому прямоточные дозвуковые двигатели в сравнении с другими авиационными двигателями оказались неконкурентоспособными и в настоящее время серийно не выпускаются.

Сверхзвуковые ПВРД

Сверхзвуковые ПВРД рассчитаны на осуществление полетов в диапазоне скоростей 1 < M < 5.

Торможение газового сверхзвукового потока всегда выполняется разрывно, при этом образуется ударная волна, которая называется скачком уплотнения. На дистанции ударной волны процесс сжатия газа не является изоэнтропийным. Следовательно, наблюдаются потери механической энергии, уровень увеличения давления в нем меньший, нежели в изоэнтропийном процессе. Чем мощнее будет скачок уплотнения, тем больше изменится скорость потока на фронте, соответственно, больше потери давления, иногда достигающие 50%.

Для того чтобы минимизировать потери давления, организуется сжатие не в одном, а нескольких скачках уплотнения с меньшей интенсивностью. После каждого из таких скачков наблюдается снижение скорости потока, которая остается сверхзвуковой. Это достигается, если фронт скачков расположен под углом к направлению скорости потока. Параметры потока в интервалах между скачками остаются постоянными.

В последнем скачке скорость достигает дозвукового показателя, дальнейшие процессы торможения и сжатия воздуха происходят непрерывно в канале диффузора.

Если входное устройство мотора расположено в области невозмущенного потока (например, впереди летательного аппарата на носовом окончании или на достаточном отдалении от фюзеляжа на крыльевой консоли), оно выполняется асимметричным и комплектуется центральным телом – острым длинным «конусом», выходящим из обечайки. Центральное тело предназначено для создания во встречном воздушном потоке косых скачков уплотнения, которые обеспечивают сжатие и торможение воздуха до момента его поступления в специальный канал входного устройства. Представленные входные устройства получили название устройств конического течения, воздух внутри них циркулирует, образуя коническую форму.

Центральное коническое тело может быть оснащено механическим приводом, который позволяет ему двигаться вдоль оси двигателя и оптимизировать торможение потока воздуха на разных скоростях полета. Данные входные устройства называются регулируемыми.

При фиксации двигателя под крылом или снизу фюзеляжа, то есть в области аэродинамического влияния элементов конструкции самолета, используют входные устройства плоской формы двухмерного течения. Они не оснащаются центральным телом и имеют поперечное прямоугольное сечение. Их еще называют устройствами смешанного или внутреннего сжатия, поскольку внешнее сжатие здесь имеет место только при скачках уплотнения, образующихся у передней кромки крыла или носового окончания летательного аппарата. Входные регулируемые устройства прямоугольного сечения способны менять положение клиньев внутри канала.

В сверхзвуковом скоростном диапазоне ПВРД более эффективен, нежели в дозвуковом. К примеру, на скорости полета М=3 степень увеличения давления составляет 36,7, что приближается к показателю турбореактивных двигателей, а расчетный идеальный КПД достигает 64,3 %. На практике эти показатели меньшие, но на скоростях в диапазоне М=3-5 СПВРД по эффективности превосходят все существующие типы ВРД.

При температуре невозмущенного воздушного потока 273°K и скорости самолета М=5 температура рабочего заторможенного тела равна 1638°К, при скорости М=6 - 2238°К, а в реальном полете с учетом скачков уплотнения и действия силы трения становится еще выше.

Дальнейшее нагревание рабочего тела является проблематичным из-за термической неустойчивости конструкционных материалов, входящих в состав двигателя. Поэтому предельной для СПВРД считается скорость, равная М=5.

Гиперзвуковой прямоточный воздушно-реактивный двигатель

К категории гиперзвуковых ПВРД относится ПВРД, который работает на скоростях более 5М. По состоянию на начало XXI века существование такого двигателя было только гипотетическим: не собрано ни единого образца, который бы прошел летные испытания и подтвердил целесообразность и актуальность его серийного выпуска.

На входе в устройство ГПВРД торможение воздуха выполняется только частично, и на протяжении остального такта перемещение рабочего тела является сверхзвуковым. Большая часть кинетической исходной энергии потока при этом сохраняется, после сжатия температура относительно низкая, что позволяет освободить рабочему телу значительное количество тепла. После входного устройства проточная часть двигателя по всей своей длине расширяется. За счет сгорания топлива в сверхзвуковом потоке происходит нагрев рабочего тела, оно расширяется и ускоряется.

Этот тип двигателя предназначен для проведения полетов в разреженной стратосфере. Теоретически такой двигатель можно использовать на многоразовых носителях космических аппаратов.

Одной из главных проблем конструирования ГПВРД является организация сгорания топлива в сверхзвуковом потоке.

В разных странах начаты несколько программ по созданию ГПВРД, все они находятся на стадии теоретических изысканий и предпроектных лабораторных исследований.

Где применяются ПВРД

ПВРД не работает при нулевой скорости и низких скоростях полета. Летательный аппарат с таким двигателем требует установки на нем вспомогательных приводов, в роли которых может выступать твердотопливный ракетный ускоритель или самолет-носитель, с которого производится запуск аппарата с ПВРД.

По причине неэффективности ПВРД на малых скоростях его практически неуместно использовать на пилотируемых самолетах. Такие двигатели предпочтительно использовать для беспилотных, крылатых, боевых ракет одноразового применения благодаря надежности, простоте и дешевизне. ПВРД также применяют в летающих мишенях. Конкуренцию по характеристикам ПВРД составляет только ракетный двигатель.

Ядерный ПВРД

В период холодной войны между СССР и США создавались проекты прямоточных воздушных реактивных двигателей с ядерным реактором.

В таких агрегатах в качестве источника энергии выступала не химическая реакция сжигания топлива, а тепло, которое вырабатывал ядерный реактор, установленный вместо камеры сгорания. В таком ПВРД воздух, поступающий сквозь входное устройство, проникает в активную область реактора, охлаждает конструкцию и сам нагревается до 3000 К. Далее происходит его истекание из сопла двигателя со скоростью, приближенной к скорости совершенных ракетных двигателей. Ядерные ПВРД предназначались для установки в межконтинентальных крылатых ракетах, несущих ядерный заряд. Конструкторы в обеих странах создали малогабаритные ядерные реакторы, которые поместились в габариты крылатой ракеты.

В 1964 году в рамках программ исследования ядерных ПВРД Tory и Pluto провели стационарные огневые испытания ядерного ПВРД Tory-IIC. Программа испытаний была закрыта в июле 1964 г., летные испытания двигателя не проводили. Предположительной причиной сворачивания программы могло послужить совершенствование комплектации баллистических ракет ракетными химическими двигателями, которые позволяли реализовать боевые задачи без привлечения ядерных ПВРД.

В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

Как работает реактивный двигатель

Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков