Устройство и принцип работы системы зажигания автомобиля. Система зажигания

Устройство и принцип работы системы зажигания автомобиля. Система зажигания

Автомобили используются для достаточно быстрого транспортирования пассажиров и грузов в определенные пункты назначения. Без автомобиля очень сложно представить работу любого предприятия или завода. Главным элементом является двигатель, ему, в свою очередь, для нормальной работы нужна система зажигания, которая должна быть исправной и по своим характеристикам подходить данной силовой установке машины.

Система зажигания

Система зажигания автомобиля - это достаточно сложная совокупность приборов, отвечающая за появление искры в тот момент, который соответствует режиму работы силовой установки. Данная система является частью электрооборудования. Самые первые двигатели, такие как агрегат Даймлера, в качестве системы для зажигания применяли калильную головку - это первое устройство системы зажигания, которое не лишено было недостатков. Их суть заключалась в том, что воспламенение осуществлялось в самом конце такта, так как камера раскалялась до достаточно высокой температуры. Перед стартом всегда нужно было прогреть саму калильную головку и только потом запускать двигатель. В дальнейшем головка разогревалась за счет поддержания температуры от сгораемого топлива. В современных условиях такой принцип системы зажигания может использоваться только в микродвигателях, применяемых в моделях авто и прочей техники, используемой ДВС. Такое исполнение позволяет уменьшить габаритные размеры, но при этом вся конструкция может быть дороже. В небольших моделях это малозаметно, а вот в полноразмерном автомобиле может очень сильно сказаться на цене. Во всех авто схема системы зажигания практически одинаковая. Некоторые отличия диктуются только видом исполнения.

Общая схема системы зажигания выглядит следующим образом.

Система, работающая с использованием принципа магнето

После калильной головки одной из первых систем зажигания были созданы устройства, которые работали на основе магнето. Главная идея такой установки - это генерация необходимого импульса для зажигания за счет прохождения возле неподвижной катушки небольшого магнитного поля от установленного постоянного магнита, который в свою очередь был связан с одной из вращающихся деталей мотора. Главным достоинством такой системы была максимальная простота конструкции и отсутствие необходимости устанавливать какие-либо элементы питания и батареи. Она всегда готова к работе.

В современном мире ее применяют в основном для двигателей, которые установлены на бензопилах, небольших бензиновых генераторах и другой похожей технике. Не лишена система и недостатков, главный из которых - очень высокая стоимость производства. Нужна была катушка, обладающая большим количеством витков очень тонкой проволоки. Магниты также должны быть высокого качества. Исходя из всех недостатков, от такой системы отказались, заменив на более простые и более надежные.

Виды систем

Для нормальной работы бензинового двигателя обязательно нужна система зажигания. Благодаря ей происходит воспламенение смеси в необходимый момент. Существует три вида систем:

  • бесконтактная;
  • электронная.

Все три вида отличаются по конструкции. Несмотря на это, принцип работы у них практически одинаковый.

Общее строение и устройство зажигания

Все системы зажигания, независимо от вида, состоят из пяти основных конструктивных элементов:

  • Источник питания. При запуске мотора машины источником необходимой энергии служит аккумулятор. После того как двигатель начал работать, эту функцию выполняет генератор.
  • Замок зажигания - специальное устройство, которое используется для передачи напряжения. Замок, он же - выключатель, бывает как механический, так и более современный - электрический.
  • Накопитель необходимой энергии. Данный элемент создан для накопления, а также преобразования энергии в достаточном количестве. В современных авто возможно использование двух видов накопителей: индукционных либо емкостных. Индукционный - более распространён и имеет вид некой катушки зажигания. Преобразование осуществляется за счет прохождения тока через две обмотки этой катушки.
  • Свеча . Непосредственно рабочий элемент, который создает необходимую искру для воспламенения. Представляет собой небольшой фарфоровый изолятор, который накручен на резьбу, и имеет два электрода, которые располагаются на небольшом расстоянии друг от друга. При прохождении тока между контактами за счет малого расстояния создается искра.
  • Система, применяемая для распределения зажигания. Главное предназначение - это снабжение в нужный момент свечей зажигания энергией. Состоит из некоего распределителя (либо коммутатора) и отдельного блока для его управления. Вид распределителя зависит от выбранной системы, он может быть либо электронным, либо механическим, который использует для своей работы вращающийся бегунок.

Контактный тип зажигания

Самая распространенная схема - система зажигания «Газ», используемая для воспламенения топливной смеси, более известная как прерывательно-распределительная система. Данное устройство создает искру очень высокого вольтажа, до 30 тысяч В, на контактах свечей. Для того чтобы это выполнить, свечи соединяются с катушкой, благодаря которой и происходит образование необходимого напряжения. Сигнал на катушку подается при помощи специальных проводов, обладающих необходимыми характеристиками. При размыкании контактной группы при помощи специального кулачка как раз и происходит создание искры.

Стоит отметить, что момент ее возникновения должен четко соответствовать специальному положению поршней. Это достигается в результате установки четко рассчитанного распределителя, который передает вращательное движение на специальный прерыватель-распределитель. Главным недостатком такой системы является присутствие механического износа, и как результат - изменяется время создания искры, а также ее качество. Если искра не будет подаваться своевременно, это повлияет на правильную работу двигателя, а значит, потребуется довольно частое вмешательство в его работу и регулировку.

Несмотря на это, контактно-транзисторная система зажигания используется и по сегодняшний день. Такая система воспламенения горючей смеси популярна благодаря отличным характеристикам и высокими показателями надежности работы.

Бесконтактное зажигание

Бесконтактная система зажигания - это более сложная система, которая напрямую зависит только от размыкания специальных контактов. Самую главную роль в ее работе играет коммутатор, который создан на основе транзисторного типа работы. Для нормальной подачи искры применяется еще и отдельный датчик. Эта система хороша тем, что отсутствует некая зависимость от уровня качества выполнения поверхности контактов и может быть гарантировано более высокого качества искрообразование. Но и этот тип системы зажигания использует распределитель, который необходим для передачи на нужную свечу определенного количества тока. Внешне система чем-то похожа на контактную схему зажигания.

Передача тока необходимой величины осуществляется за счет использования специальных высоковольтных проводов.

Достоинства бесконтактного устройства зажигания

По сравнению с контактной, данная схема обладает рядом своих преимуществ:

  • Не обгорают контакты на прерывателе, а также они не подвержены загрязнению. Отсутствует необходимость очень долго выбирать и устанавливать момент, когда будет выполняться подача тока. Нет надобности контролировать или регулировать положение контактов, а также их угол замыкания и размыкания, все потому, что бесконтактная система зажигания исключает присутствие механических контактов в системе. В итоге двигатель не теряет своей мощности.
  • Благодаря тому, что отсутствует размыкание контактов посредством специального кулачка, также нет вибрации и биения ротора внутри распределителя - не нарушается равномерность подачи искры на каждую свечу зажигания.
  • Обеспечивается уверенный запуск даже холодного двигателя, несмотря на температуру окружающей среды.

Электронное зажигание

Данная система исключает использование движущихся механических деталей. Достигается это благодаря применению специальных датчиков и блока управления. Создание искры, а также момент ее подачи на определенную свечу осуществляются более точно, чем в системах, которые используют механические распределители. В сумме это дает хорошую возможность улучшить работу силовой установки автомобиля, а также существенно увеличить мощность, не увеличивая расхода топлива. Система отличается очень высокой надежностью и качеством исполнения поставленных задач. Такая электронная система зажигания используется на многих современных автомобилях, благодаря высокой надежности и отличным рабочим параметрам.

Микропроцессорный вид зажигания

Микропроцессорная система зажигания - это одна из разновидностей электронного зажигания. Используется для создания некой зависимости опережения зажигания в установках с карбюраторной системой питания от давления воздуха в коллекторе, а также от частоты вращения в двигателе коленчатого вала.

Микропроцессорная электронная система зажигания обладает очень большим количеством достоинств по сравнению со стандартной комплектацией автомобилей с карбюраторной системой питания.

Существенно уменьшается уровень расхода. Это происходит благодаря оптимизации сгорания подаваемой смеси.

Улучшаются все динамические характеристики автомобиля.

Улучшается работа двигателя, переходы между передачами становятся более плавными. Нет потерь мощности на низких оборотах.

Микропроцессорная система зажигания подразумевает установку ГБО, в результате этого и происходит экономия топлива, а также уменьшается стоимость каждого километра пути.

Есть возможность установки дополнительного переключателя для смены режимов. К примеру, между видами топлива.

Сегодня система зажигания ВАЗ позволяет установить данную схему для улучшения всех динамических показателей. Такая возможность снова возвращает ВАЗ в строй актуальных автомобилей, благодаря низкой цене, но при этом с неплохими скоростными характеристиками.

Основные этапы в работе зажигания

Существует несколько самых основных этапов при работе системы зажигания, они не зависят от вида и конструкционного исполнения:

Накопление и подача необходимого уровня заряда.

Специальное высоковольтное преобразование.

Этап распределения.

Образование искры при помощи свечей.

Воспламенение топливной смеси.

На каждом из этапов необходима максимально точная и слаженная работа всех элементов. В таком случае лучше выбирать наиболее надежные и давно проверенные системы. По статистике, лучшей считается электронная система зажигания двигателя, благодаря отсутствию механических узлов.

Свечи зажигания

Ни одна система зажигания не способна работать без главного элемента - свечи. Данная деталь способна преобразовать импульсы, получаемые от высокого напряжения, в специальный искровой заряд для воспламенения паров топлива в камере сгорания. Для хорошей работы свечи уровень температуры ее нижнего изолятора должен быть в районе 500-600 градусов. Стоит отметить, что при температуре в 500 градусов может быть отложение нагара на поверхности изолятора. Как результат - перебои в работе, плохая передача искры. При температуре 600 градусов возможно так называемое калильное зажигание - это преждевременное зажигание смеси за счет высокой температуры изолятора.

При выборе свечей руководствуются так называемым калильным числом, величина которого изначально устанавливается заводом-изготовителем. Чем больше калильное числ, тем меньше свеча подвержена нагреванию, ее еще называют более холодной свечой.

Проверка состояния и исправности зажигания

Время от времени система зажигания автомобиля для нормальной работы требует проверки целостности и слаженности элементов системы воспламенения. Только правильный подход обеспечит долговечность и надежность работы двигателя. В частности, проверяют следующие параметры:

Опережение зажигания и его угол. При необходимости производится регулировка и установка стандартного значения для данного автомобиля.

Проверка цепей напряжения. Для этого снимаются провода высокого напряжения и при помощи специального тестера проверяется их пропускная способность и наличие пробоя.

Для того чтобы получить максимально точную информацию о состоянии цепей зажигания, а также обо всех процессах, протекающих внутри, применяют специализированные стенды, оборудованные осциллографами. Благодаря этому можно получить максимально точное значение и очень быстро определить уровень работоспособности систем. Все эти действия нужны, чтобы определить неисправности системы зажигания. На начальном этапе можно обойтись минимальными потерями, к примеру, заменой проводов. При этом сохраняется работоспособность двигателя, что очень важно, так как его ремонт стоит гораздо больше, чем замена одного из элементов системы зажигания.

Наиболее характерные неисправности зажигания

Неисправности системы зажигания могут повлечь за собой выход из строя и остальных устройств, используемых для нормальной работы машины. Выделяют отдельный список часто встречаемых неисправностей, при которых затрудняется работа системы воспламенения рабочей смеси:

Возможны замыкания первичной обмотки катушки зажигания на массу, а также замыкание вторичной на первичную. В результате происходит перегорание дополнительного резистора и появляются характерные трещины в изоляторе, а также в крышке катушки. В этом случае необходима замена поврежденных элементов, если же катушка практически разрушена - то замена всего узла.

Характерные неисправности прерывателя: возможно обгорание либо загрязнение маслом контактов внутри прерывателя; нарушение стандартного зазора между контактами, что приводит к перебоям в переключении между свечами.

Обгорание либо замасливание контактов может вызвать очень резкое увеличение уровня сопротивления между ними, из-за этого уменьшается ток, создаваемый в первичной обмотке, и как результат - снижается мощность искры, которую создают свечи.

Нарушение зазора также приводит к ухудшению образованию искры, которая создается между электродами свечи. Как результат - перебои в нормальной работе двигателя.

Свечи: возможно появление нагара на внутренней поверхности, а также обильное загрязнение снаружи. Нарушение зазора между электродами, различные трещины в изоляторе, неисправность бокового электрода - все это приводит к плохой подаче искры либо вовсе ее отсутствию. Это вызывает нестабильную, неравномерную и неустойчивую работу мотора, снижает его мощность. Возможна и остановка при повышении нагрузки.

Нормальная работа свечей зажигания возможна только в случае, если:

Поверхность резьбы сухая (ни в коем случае не мокрая);

Присутствует очень тонкий слой нагара либо копоти;

Цвет электродов, а также изолятора должен быть от светло-коричневого до светло-серого, почти белого.

Обо всех неисправностях может рассказать мокрая поверхность резьбы - это может быть как бензин, так и масло. У неисправной свечи электроды и часть изолятора покрыты толстым слоем нагара и мокрые.

Замасленные свечи и другие признаки неисправности

Если двигатель обладает очень большим пробегом, и при этом все свечи были заменены в одно и то же время, то главной виной такого состояния является повышенный износ цилиндров, колец или поршней. Возможно появление масла на поверхности свечи в период, когда автомобиль проходит обкатку. Это со временем проходит. Если же масло было обнаружено только на одной свече, то причиной этого, скорее всего, может быть неисправность выпускного клапана, он может прогореть. Чтобы это определить, нужно хорошо прислушаться к работе двигателя, на холостом ходу он работает неравномерно. В этом случае нельзя откладывать с проведением ремонтных работ, так как потом прогорит и седло, и ремонт будет еще дороже.

Выгоревшие либо очень сильно корродированные электроды говорят только о перегреве свечи. Такое возможно, если был использован низкооктановый бензин, либо была неправильная установка момента произведения зажигания. Слишком обедненная смесь - тоже результат оплавки электродов.

Возможны различные механические повреждения на поверхности свечи. Она может иметь изогнутый вид, или же будет деформирован электрод, расположенный в боковой части свечи. Последствия такой работы - перебои в зажигании. Причиной возникновения таких неприятностей может быть неправильно выбранная длина свечи, либо же длина резьбы не соответствует посадочному месту в головке мотора. В таком случае стоит подобрать стандартную свечу, рекомендуемую заводом-изготовителем. Если ее длина была выбрана правильно, стоит обратить внимание на присутствие посторонних механических элементов во внутренней части цилиндра.

После того как свечи были поменяны местами, можно узнать очень большое количество информации об их состоянии. Если свеча продолжает покрываться нагаром уже в другом цилиндре - это говорит о её неисправности. Но если нормальная и исправная свеча одного из соседних цилиндров также начинает покрываться нагаром, как и её предшественница, тогда это неисправность непосредственно в кривошипно-шатунном устройстве этого цилиндра.

Выводы

Все системы, используемые для воспламенения топливной смеси, хороши в определенных областях машиностроения. Все не лишены своих недостатков. Не всегда нужно создавать сложную и высоконадежную систему, иногда гораздо дешевле использовать простые и более дешевые. Нет необходимости устанавливать дорогую систему зажигания на автомобиль, который по своей стоимости гораздо ниже, чем остальные в его классе. Такими действиями можно только поднять его стоимость, но качество, к сожалению, останется прежним. Зачем что-то менять, если работа системы зажигания показала только лучшие результаты на многих тестах?

2060 Просмотров

Запускается всего одним легким движением. Уже давно не нужно вращать ручку кривого стартера, чтобы привести ДВС в движение, да и сам запуск теперь стал более вероятен, тогда как раньше в холодное время года оживить машину было делом весьма трудоемким. Сегодня мы расскажем о незаметной глазу системе, за счет которой происходит запуск двигателя и его постоянная работа и сгорание топливной смеси. является темой данной статьи, и сегодня мы расскажем именно о ней.

Общий принцип

Система зажигания состоит всего из нескольких функциональных элементов. Все они связаны друг с другом в единую схему и тесно взаимодействуют все то время, пока двигатель внутреннего сгорания находится в рабочем состоянии и функционирует. Главная задача системы зажигания - обеспечение постоянного сгорания смеси, состоящей из бензина и воздуха. За счет горения смесь расширяется и толкает поршни ДВС, именно поэтому начинает вращаться вал и соединенные с ним ведущие колеса.

Система зажигания запитывается от аккумуляторной батареи: она снабжает распределитель, свечи, и все те элементы, которые так или иначе причастны к работе двигателя и его исправному функционированию.

Начало работы системы зажигания знаменуется поворотом механизма замка. В этот момент начинает вращаться моторчик стартера, который приводит во вращение распределитель, шкивы и валы двигателя. Также в моторном отсеке присутствует катушка зажигания, призвание которой – преобразовывать малое напряжение в большое.

Принцип работы системы зажигания таков, что сначала ток от катушки попадает на распределитель. Распределитель, который не имеет многочисленных датчиков и собственного блока управления, в свою очередь, занят тем, что распределяет усиленный импульс с катушки по всем цилиндрам, так, что именно в нужную секунду искра подается и поджигает нагнетенную заранее смесь.

Ток, который идет от механизма распределителя к двигателю, не может быть подведен к цилиндрам непосредственно. Для передачи искры в систему встраиваются свечи, которые посредством резьбового соединения вкручиваются в цилиндры и выводят в них свои электроды. Таким образом, свеча не просто передает искру, но и нагревается. Это позволяет обеспечить более эффективную и экономичную работу мотора, а также более высокий ресурс всех его составляющих.

Как устроен трамблер?

Современные системы зажигания являются бесконтактными. Они обладают большим числом датчиков и элементов управления, которые способны подстраивать характеристики системы зажигания таким образом, чтобы достигалась наибольшая эффективность работы двигателя. Тем не менее контактные и бесконтактные системы зажигания устроены по-разному, и схема их работы различна.

Механизм распределителя представляет собой цилиндр небольшого диаметра, который закрывается крышкой и имеет несколько клемм под провода. Один, центральный, провод подводится к распределителю от катушки зажигания. Еще четыре провода отводятся к свечам и имеют к ним контактную подводку. Датчики и блоки управления здесь отсутствуют, и схема работы трамблера характеризуется лишь наличием механического привода.

В нижней части механизма располагается ротор, который связан с валом ДВС посредством шестеренчатой передачи: один оборот коленчатого вала равняется по частоте одному обороту трамблера. Система зажигания устроена так, что контактная группа трамблера, привязанная к датчикам, блоку управления и свечам зажигания, вращается таким образом, что контакт, подведенный ко входному проводу, поочередно соединяется с теми, что привязываются к выходным.

В результате такой схемы работы системы зажигания и ее механизмов смесь в соответствующих цилиндрах поджигается ровно в те моменты, когда поршень достигает своей нижней мертвой точки и максимально заполнен парами топлива. Это позволяет добиться достаточно высокой эффективности , а экономия топлива весьма существенна.

Трамблер может подвергаться регулировке. За счет этого управление свечами зажигания будет производиться в более точно подобранной фазе, а эффективность работы ДВС серьезно повысится. Для настройки необходимо поворачивать крышку трамблера против или по часовой стрелке. Благодаря тому, что на ней закреплены все провода и их выходные контакты, искра, передаваемая контактом ротора, будет подаваться в смещенный момент времени, что неизбежно повлияет на работу мотора и его характеристики.

Тем не менее, как уже было сказано, в последнее время стали особенно популярны так называемые . Их механизм основывает свою работу на сигналах многочисленных датчиков. Эти датчики позволяют сделать команды управления, которые подает блок зажигания, более рациональными, не запрограммированными, а действительно тщательно подобранными и проанализированными.

Бесконтактная система зажигания лишена большего числа недостатков, которыми обладает контактная система и ее механизмы. К примеру, контакты здесь отсутствуют, и здесь вместо них выступают магнитные импульсы, которые могут передаваться «по воздуху». Благодаря этому систему попросту не нужно постоянно настраивать, изменяя зазоры контактов должным образом.

Вдобавок ко всему полностью отсутствует проблема механизма контактов, залипающих на морозе. Именно поэтому старт двигателя внутреннего сгорания на морозе стал более простым, и даже при экстремально низких температурах машина гарантированно находится в работоспособном состоянии.

Преимущества электроники

Так как уже была затронута тема, в которой обсуждалась электронная система зажигания и механизм ее действия, расскажем подробнее о том, как работает блок зажигания, как он формирует команды управления, и каким образом датчики, встроенные в мотор, позволяют прогнозировать его поведение и менять характеристики всей системы различным образом.

В основе электроники, которой наделена система зажигания, лежит электронный блок зажигания, принимающий непосредственное участие в функционировании системы зажигания. Главная задача, которую выполняет блок зажигания, - выдавать команды управления, которые будут направлены на изменение характеристик как системы, так и самого мотора.

Эти команды формируются посредством сигналов датчиков, которые располагаются в ДВС и снимают с него целый ряд показаний, за счет которых и работает система зажигания. Эти датчики, подключенные к системам двигателя внутреннего сгорания, могут оказывать влияние на характеристики авто. Кроме того, именно электронный блок зажигания, перестраивающий режимы работы системы, самостоятельно определяет такты работы ДВС и без дополнительной настройки способен понимать, когда такт ДВС завершается, и необходима подача электрического импульса.

Как устроены свечи

Схема, по которой работает система зажигания, не могла бы быть столь полной, если бы не свечи. Это не удивительно, ведь именно через них проходит ток, эквивалент силы которого равен нескольким десяткам киловольт. В связи с этим изготавливаются свечи из специальных материалов, а технология, по которой их делают, является достаточно сложной и трудоемкой.

Устройство системы зажигания таково, что в основе свечи лежат два электрода. Они всегда изготавливаются из благородных и редких материалов, которые обладают уникальными свойствами токопроводимости, и при этом практически не нагреваются. Такими материалами является платина, иридий и другие металлы. Электроды выполняются таким образом, что расстояние между ними составляет порядка 2–3 мм. Расстояние выдерживается с той целью, чтобы искра несколько задерживалась и успевала поджечь смесь полностью, не оставив несгоревших или сгоревших не полностью частиц.

Эти электроды всегда встраиваются в оболочку, которая изготавливается из диэлектрика. Это делается с той целью, чтобы ток, проходящий по электродам, не перекинулся на головку блока цилиндров и не вывел из строя те системы, которые подведены к самому ДВС. Кроме того, такой материал не подвергается нагреву, а потому металл головки блока и свеча не будут соединены термически.

Еще одной составляющей свечи является клемма. К клемме подсоединяются высоковольтные провода, которые соединяют ее с трамблером. Обычно клемма изготавливается из более недорогих проводников, наподобие меди или алюминия, однако в некоторых случаях контакты могут быть выполнены из платины или иридия.

Резюме

Система зажигания современного автомобиля устроена достаточно сложно. Однако это позволяет сделать вывод о том, что такие системы являются более долговечными и эффективными. Такие свойства позволили полностью исключить сторонние вмешательства в сложную технику и практически лишить владельца необходимости проводить настройку регулярно и следить за состоянием отдельных комплектующих и запасных частей.

Система зажигания

Систему зажигания, которая обеспечивает работу двигателя, придется рассмотреть в этом разделе, хотя она и является составной частью "Электрооборудования автомобиля".

Когда мы изучали рабочий цикл двигателя, было отмечено, что в самом конце такта сжатия рабочую смесь необходимо поджечь. Это означает, что между электродами свечи зажигания в этот момент должна проскочить высоковольтная искра.

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель.

На автомобилях прежних лет выпуска устанавливалась контактная или бесконтактная система зажигания. В современном автомобиле с системой впрыска топлива система зажигания является частью комплексной электронной системы управления двигателем.

Контактная система зажигания

Источники электрического тока (аккумуляторная батарея и генератор, подробный разговор о которых будет в разделе "Электрооборудование автомобиля") вырабатывают ток низкого напряжения. Они "выдают" в бортовую электрическую сеть автомобиля 12–14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18–20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи – низкого и высокого напряжения (рис. 21). Контактная система зажигания состоит из (рис. 21):

    катушки зажигания;

    прерывателя тока низкого напряжения;

    распределителя тока высокого напряжения;

    центробежного регулятора опережения зажигания;

    вакуумного регулятора опережения зажигания;

    свечей зажигания;

    проводов низкого и высокого напряжения;

    включателя зажигания.

Катушка зажигания (рис. 21)предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.

а) электрическая цепь низкого напряжения: 1 "масса" автомобиля; 2 – аккумуляторная батарея; 3 – контакты замка зажигания; 4 – катушка зажигания; 5 – первичная обмотка (низкого напряжения); 6 – конденсатор; 7 – подвижный контакт прерывателя; 8 – неподвижный контакт прерывателя; 9 – кулачок прерывателя; 10 – молоточек контактов

б) электрическая цепь высокого напряжения: 1 катушка зажигания; 2 – вторичная обмотка (высокого напряжения); 3 – высоковольтный провод катушки зажигания; 4 – крышка распределителя тока высокого напряжения; 5 – высоковольтные провода свечей зажигания; 6 – свечи зажигания; 7 – распределитель тока высокого напряжения ("бегунок"); 8 – резистор; 9 – центральный контакт распределителя; 10 – боковые контакты крышки

Рис. 21. Контактная система зажигания

Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно.

"Убивает не напряжение, а ток" – известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.

В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько "неприятно", но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на "массе", а другая на тех самых 20000 В.

Прерыватель тока низкого напряжения (контакты прерывателя – рис. 21) нужен для того, чтобы размыкать ток в цепи низкого напряжения. При этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.

Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор, который необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного.

Но это только половина полезной работы конденсатора. Он еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

"Зачем такой длинный разговор о такой маленькой штучке в такой большой машине?" – спросите вы.

Так вот учтите, при выходе конденсатора из строя двигатель работать не будет! Напряжение во вторичной цепи получится недостаточно большим для того, чтобы пробить воздушную преграду между электродами свечи зажигания. Может быть, иногда, слабая искорка и будет проскакивать, но нам нужна достаточно "горячая" и стабильная искра, которая гарантированно воспламенит рабочую смесь и обеспечит нормальный процесс ее сгорания. А для этого, как раз и необходимы те самые "страшные" 20 тысяч вольт, в "приготовлении" которых участвует и конденсатор тоже.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены в одном корпусе и имеют привод от коленчатого вала двигателя.

Часто водители называют этот узел коротко – "прерыватель-распределитель" (или еще короче – "трамблер").

Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 21 и 22) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.

Рис. 22. Прерыватель-распределитель: 1 диафрагма вакуумного регулятора; 2 – корпус вакуумного регулятора; 3 – тяга; 4 – опорная пластина; 5 – ротор распределителя ("бегунок"); 6 – боковой контакт крышки; 7 – центральный контакт крышки; 8 – контактный уголек; 9 – резистор; 10 – наружный контакт пластины ротора; 11 – крышка распределителя; 12 – пластина центробежного регулятора; 13 – кулачок прерывателя; 14 – грузик; 15 – контактная группа; 16 – подвижная пластина прерывателя; 17 – винт крепления контактной группы; 18 – паз для регулировки зазоров в контактах; 19 – конденсатор; 20 – корпус прерывателя-распределителя; 21 – приводной валик; 22 – фильц для смазки кулачка

После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора.

Во время вращения ротора ток через небольшой воздушный зазор "соскакивает" с его пластины на боковые контакты крышки. Далее, через высоковольтные провода импульс тока высокого напряжения попадает к свечам зажигания.

Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности.

Таким образом, устанавливается "порядок работы цилиндров", который выражается рядом цифр.

Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1–3–4–2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий "взрыв" произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.

Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4–6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001–0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.

Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.

В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4–6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.

При увеличении оборотов коленчатого вала двигателя поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В то же время скорость сгорания рабочей смеси остается практически неизменной. Следовательно, для обеспечения нормального рабочего процесса в цилиндре смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя тоже разомкнутся раньше. Это и должен обеспечить центробежный регулятор опережения зажигания (рис. 23).

а) расположение деталей регулятора: 1кулачок прерывателя; 2 – втулка кулачков; 3 – подвижная пластина; 4 – грузики; 5 – шипы грузиков; 6 – опорная пластина; 7 – приводной валик; 8 – стяжные пружины

б) грузики вместе

в) грузики разошлись

Рис. 23. Схема работы центробежного регулятора угла опережения зажигания

Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 22 и 23). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя.

По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны и сдвигают втулку кулачков прерывателя "в отрыв" от приводного валика, в результате чего набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Контакты размыкаются раньше, угол опережения зажигания увеличивается.

При уменьшении скорости вращения приводного валика центробежная сила уменьшается, и под воздействием пружин грузики возвращаются на место – угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от нагрузки на двигатель.

На одной и той же частоте вращения коленчатого вала двигателя положение дроссельной заслонки (педали "газа") может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава, а скорость сгорания рабочей смеси как раз и зависит от ее состава.

При полностью открытой дроссельной заслонке (педаль "газа" "в полу") смесь сгорает быстрее, и поджигать ее можно и нужно попозже. Следовательно, угол опережения зажигания надо уменьшать.

И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает. Значит, угол опережения зажигания должен быть увеличен.

Именно этим и занимается вакуумный регулятор опережения зажигания.

Вакуумный регулятор (рис. 24) крепится к корпусу прерывателя-распределителя (см. рис. 22). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой через соединительную трубку сообщается с полостью под дроссельной заслонкой. С помощью тяги диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.

Рис. 24. Вакуумный регулятор угла опережения зажигания

При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. В этом случае, под воздействием пружины диафрагма через тягу сдвигает пластину вместе с контактами на небольшой угол в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже, угол опережения зажигания уменьшится.

И наоборот, угол увеличивается, когда вы прикрываете дроссельную заслонку (уменьшаете "газ"). Разрежение под заслонкой увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя быстрее встретится с молоточком контактов и разомкнет контакты раньше. Таким образом мы увеличиваем угол опережения зажигания для плохо горящей рабочей смеси.

Свеча зажигания (рис. 25) необходима для образования искрового разряда и поджигания рабочей смеси в камере сгорания. Как вы помните, устанавливается свеча зажигания в головке цилиндра двигателя (см. рис. 6).

Рис. 25. Свеча зажигания: 1 контактная гайка; 2 – изолятор; 3 – корпус; 4 – уплотнительное кольцо; 5 – центральный электрод; 6 – боковой электрод

Когда импульс тока высокого напряжения от распределителя зажигания попадает на свечу, между ее электродами проскакивает искра. Именно эта "искорка" и воспламеняет рабочую смесь, обеспечивая тем самым нормальное прохождение рабочего цикла двигателя (см. рис. 8). Свеча зажигания маленькая, но очень важная деталь вашего двигателя.

В обычной жизни вы можете посмотреть на принцип работы свечи зажигания, поиграв с пьезо- или электрозажигалкой, которая используется на кухне. Искра, проскакивающая между электродами зажигалки, воспламеняет газ и обеспечивает рабочий "кухонный" процесс.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от него на свечи зажигания.

Основные неисправности контактной системы зажигания

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними, "пробоя" конденсатора. Искра может отсутствовать также при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.

Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами свечей, повреждения ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.

Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в соответствии с рекомендациями завода-изготовителя, а неисправные детали следует заменить.

Бесконтактная система зажигания

Преимущество бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи (увеличение "мощности" искры). Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах, что имеет особое значение для суровых зимних месяцев.

Немаловажным фактом является то, что при использовании бесконтактной системы зажигания двигатель становится более экономичным.

У бесконтактной системы, как и у контактной, есть цепи низкого и высокого напряжения.

Цепи высокого напряжения контактной и бесконтактной систем зажигания практически ничем не отличаются, но цепи низкого напряжения у них различны. В бесконтактной системе используются электронные устройства – коммутатор и датчик-распределитель (датчик Холла) (рис. 26).

а) схема электрической цепи низкого напряжения: 1 –аккумуляторная батарея; 2 – контакты замка зажигания; 3 – транзисторный коммутатор; 4 – датчик-распределитель (датчик Холла); 5 – катушка зажигания

б) схема электрических соединений коммутатора и датчика-распределителя

Рис. 26. Бесконтактная система зажигания

Бесконтактная система зажигания включает в себя следующие узлы:

    катушку зажигания;

    датчик-распределитель;

    коммутатор;

    свечи зажигания;

    провода высокого и низкого напряжения;

    выключатель зажигания.

В такой системе зажигания отсутствуют контакты прерывателя, а значит, нечему подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого напряжения в те самые "страшно большие" вольты.

Основные неисправности бесконтактной системы зажигания

Если "заглох" и не хочет заводиться двигатель с бесконтактной системой зажигания, то в первую очередь стоит проверить... подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если с бензином все в порядке, а искры на свече нет, то у вас есть три варианта решения проблемы.

Начнем с третьего. Надо хлопнуть дверцей машины, сказать нехорошие слова и опоздать на работу, добираясь туда на общественном транспорте.

Первый вариант предполагает попытку проверить на практике мнение о том, что "электроника – это наука о контактах". Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на свои места все провода и проводочки, которые попадаются под руку. Если до этих судорожных движений где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще второй вариант.

Для возможности воплощения в жизнь второго варианта вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой "меняльной" процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.

Эксплуатация системы зажигания

При нормальной эксплуатации автомобиля и периодическом его обслуживании система зажигания не доставляет водителю больших хлопот. Но некоторые водители вообще забывают о том, что кроме пепельницы и магнитолы в автомобиле есть еще и многострадальный двигатель, и в частности его система зажигания.

Наступает момент, и машина "говорит" водителю о том, что у нее тоже есть "нервы и предел терпения". Двигатель начинает фыркать и дымить, глохнуть и не заводиться. Это могут быть крупные поломки или мелкие неисправности в системах и механизмах двигателя, но, как правило, проблема кроется всего лишь в нарушенных регулировках и соединениях.

Так как мы уже знаем, что "электроника – это наука о контактах", то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы.

Периодически следует контролировать зазор в контактах прерывателя (рис. 21)и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35–0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше – неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор меняет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).

К сожалению, качество нашего бензина нередко оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль не очень качественным бензином, то в следующий раз он может оказаться еще хуже. Естественно, это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под "сегодняшний" бензин.

Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):

    затрудненный запуск холодного двигателя;

    "хлопки" в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска двигателя);

    потеря мощности двигателя (машина плохо "тянет");

    перерасход топлива;

    перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору);

    повышенное содержание вредных веществ в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):

    "выстрелы" в глушителе;

    потеря мощности двигателя;

    перерасход топлива;

    перегрев двигателя.

Короче говоря, при неправильно выставленном зажигании двигатель хочет "умереть", а машина не хочет ехать. Перечень вышеописанных "кошмаров" можно было бы и продолжить, но и этого достаточно для того, чтобы вы поняли, что двигатель и его системы требуют периодических регулировок. А кто будет этим заниматься, зависит от вас. Можно самостоятельно овладеть некоторыми навыками в не очень трудоемких и не очень сложных операциях по регулировкам. Или можно обращаться к специалисту, которому вы будете доверять свою "ласточку".

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания, но это только с виду.

Нормальная работа двигателя возможна при условии, если зазор между электродами свечи будет конкретным и одинаковым в свечах всех цилиндров. Для контактных систем зажигания зазор должен быть в пределах 0,5–0,6 мм, а для бесконтактных систем 0,7–0,9 мм и более.

Теперь вспомните "жуткие" условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому со временем электроды свечей подгорают и покрываются нагаром.

Вообще-то, изношенные или обросшие нагаром свечи рекомендуется заменить. Но если в пути запасных свечей не оказалось, то очищаем электроды "забарахлившей" свечи от нагара мелкозернистым надфилем или специальной алмазной пластинкой, регулируем зазор, подгибая боковой электрод, и вкручиваем свечу на место.

Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые, то свеча работает нормально. А если они черные, то возможно свеча вообще не работает.

Сегодня в продаже есть силиконовые высоковольтные провода. При замене вышедших из строя старых проводов имеет смысл приобрести именно силиконовые, так как они не "пробиваются" током высокого напряжения. А ведь перебои в работе двигателя нередко происходят из-за утечки импульса тока высокого напряжения по высоковольтному проводу на "массу" автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и "уходит" на сторону.

Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования и провода, образует токопроводящие мостики, по которым высокое напряжение утекает на "массу".

Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате "купания"

водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель, естественно, глохнет, поскольку ток высокого напряжения уже не может добраться до свечей зажигания. Возобновить поездку в таких случаях удается лишь после того, как горячий двигатель своим теплом просушит все "электрическое" в подкапотном пространстве.

Система зажигания на автомобилях с электронным управлением двигателем

На современных автомобилях с электронным управлением двигателем система зажигания состоит из (рис. 27):

    электронного блока управления (ЭБУ);

    датчиков (угла поворота коленчатого вала, положения дроссельной заслонки, детонации, температуры охлаждающей жидкости);

    катушки зажигания (общей или по одной катушке на каждый цилиндр);

    распределителя тока высокого напряжения (при общей катушке зажигания);

    высоковольтных проводов;

    свечей зажигания.


Рис. 27. Схема электронной системы зажигания. Вариант А – с общей катушкой зажигания; Вариант Б – с отдельной катушкой на каждый цилиндр: 1 маховик с зубчатым венцом; 2 – поршень; 3 – цилиндр двигателя; 4 – камера сгорания; 5 – впускной клапан; 6 – поток воздуха; 7 – дроссельная заслонка; 8 – датчик положения дроссельной заслонки; 9 – катушка зажигания; 9" – катушка зажигания на каждой свече; 10 – распределитель тока высокого напряжения; 11 – высоковольтные провода; 11" – электрический провод, по которому к катушке зажигания поступает импульсный сигнал от ЭБУ; 12 – свеча зажигания; 13 – выпускной клапан; 14 – датчик температуры охлаждающей жидкости; 15 – датчик детонации; 16 – датчик угла поворота коленчатого вала; 17 – электронный блок управления (ЭБУ); 18 – диагностическая лампа-сигнализатор; 19 – диагностическая колодка; 20 – замок зажигания; 21 – аккумуляторная батарея

При работе двигателя информация от датчиков поступает в электронный блок управления (ЭБУ). В результате обработки полученной информации ЭБУ устанавливает оптимальный момент зажигания, необходимый для получения максимальной экономичности работы двигателя в каждый отдельный момент времени, и подает импульсный сигнал катушке (катушкам) зажигания.

Электронная система зажигания не требует регулировок и очень надежна в течение всего срока службы.

Система зажигания двигателя нужна для воспроизводства токов повышенного значения и раздачи его на контактные свечи воспламенения топлива. С учетом изменения оборотов коленчатого вала и нагрузок на мотор импульс высоковольтного напряжения подается к свечам в заданный период. В наше время автомобили оборудуют контактными и бесконтактными системами момента воспламенения.

Устройство контактной системы зажигания

Низковольтные токи служат источником питания и исходят от генератора и аккумулятора автомобиля.

Как правило, значение такого напряжения равно двенадцати-четырнадцати вольтам. А для воспроизводства момента искры в свечах запала нужно подать на них до двадцати тысяч вольт. Учитывая этот фактор, система воспламенения имеет в своей конструкции две различные электрические цепи. Схема системы зажигания собрана из следующих устройств и элементов: АКБ, катушки, трамблера, регуляторов опережения воспламенения вакуумного и центробежного типов, контактных свечек, электропроводов, замкового устройства включения.

Отдельные элементы системы

Для преобразования токов низкого вольтажа в высокие в конструкции предусмотрена установка устройства катушки зажигания. Расположена она в подкапотном пространстве, как и большая часть элементов и механизмов воспламенения. Главный способ работы таковой следующий: по виткам обмотки не высокого вольтажа проходят электротоки, и в этот момент около обмотки преобразуется магнитное поле. В том случае, если прекратить подачу напряжения в витках, исчезнувшее магнитное поле возбуждает токи уже непосредственно в витках высокого напряжения. Процесс преобразования двенадцати вольт в двадцать тысяч происходит за счет разности витков в обмотках катушек. Именно такой высокий показатель напряжения необходим для образования искры между контактами свечей.

Работа прерывателя

Правильная работа системы зажигания невозможна без такого механизма, как прерыватель токовых напряжений не высоких показателей. Его работа заключается в том, чтобы прерывать токи в обмотках малого напряжения. Это, в свою очередь, способствует образованию высокого напряжения.

Далее ток направляется на основной контакт, расположенный под крышкой устройства распределителя. Гибкая пружина передвижного контакта все время прижимает его к неподвижному элементу, а расходятся они лишь на короткий промежуток времени. Это происходит в момент, когда кулачок валика привода механизма прерывателя воздействует на молоточек передвижного контакта.

Конденсатор

Чтобы исключить факт подгорания контактов в момент их размыкания, к ним параллельно подключен конденсатор. В период расхождения контактов механизма распределителя между кулачками возможно искрообразование. В этом случае конденсатор служит для поглощения большей части электроэнергии и сводит возможность образования искры к минимуму. Дополнительно он сопутствует увеличению напряжения во вторичных витках обмотки катушки. В момент срабатывания контактов прерывателя конденсирующее устройство отдает свой ток и таким образом создает обратные токи в цепи низкого напряжения. Это способствует ускорению исчезновения магнитных полей. И чем скорее это произойдет, тем выше будут токи в линии высоких напряжений. В том случае, когда конденсатор трамблера выйдет из строя, мотор также не будет запускаться и работать. Параметры напряжения витков будут слишком малы для возникновения оптимального искрообразования. Искра между электродами свечи будет «бедной», а этого недостаточно для воспламенения топливной смеси. Контакты прерывателя низких токов и распределитель высоких напряжений установлены в корпусе трамблера и приводятся в действие за счет коленчатого вала мотора.

Крышка трамблера

Раздача высокого напряжения на свечи цилиндров силового агрегата осуществляется за счет распределительной крышки трамблера. После образования в катушке токов высоких показателей они поступают на основной контакт колпака распределителя-прерывателя, а уже затем, через подвижной элемент, на пластину ротора. В то время, когда ротор вращается, напряжение проскакивает с пластины на контакты распределительной крышки.

Затем короткие импульсы по бронепроводам высокого напряжения поступают непосредственно на Контакты распределительной крышки имеют определенную нумерологию, которая соответствует определенному цилиндру двигателя.

Именно так и устанавливается момент работы цилиндров. Определенный порядок работы предусматривает равномерное распределение нагрузки на коленвал. В основном четырехцилиндровые моторы имеют следующий порядок работы: 1-3-4-2. Но он может несущественно изменяться в зависимости от производителя. В данном случае формула порядка работы означает, что изначально воспламенение происходит в первом цилиндре, затем в третьем, четвертом и втором. При этом система зажигания двигателя предусматривает подачу напряжения на свечи в момент окончания такта сжатия. Это происходит за счет установки

Опережение момента искрообразования необходимо из-за высокой скорости перемещения поршней в цилиндрах. В том случае, когда топливная смесь будет воспламеняться несколько позже или раньше предусмотренного, коэффициент полезного действия расширяющихся газов значительно снизится. Поэтому воспламенение топлива должно осуществляться в заданный момент, когда поршень подходит к ВМТ. При правильно установленном угле опережения на поршень будет воздействовать оптимальное количество газов, необходимое для нормальной работы двигателя. Угол опережения выставляется путем проворачивания корпуса прерывателя. Так подбирается определенный момент, когда контакты прерывателя разводятся.

Регулятор центробежный

Центробежный регулятор обеспечивает установку правильного угла опережения воспламенения в зависимости от оборотов двигателя. Конструкция механизма регулятора представляет собой пару грузов, которые вращаясь, воздействуют на пластину с контактами прерывателя.

Вакуумный регулятор

В зависимости от степени нагрузки на двигатель момент образования искры корректируется вакуумным регулятором. Это устройство монтируется на корпус трамблера. Вакуумный регулятор состоит из двух камер, разделенных диафрагмой. Одна камера взаимодействует с атмосферой, а вторая при помощи патрубка с емкостью дросселя. При помощи штока диафрагма имеет соединение с пластиной, которая оснащена контактами прерывателя.

С увеличением угла поворота дроссельной заслонки происходит уменьшение разряжения в полости дросселя. При этом диафрагма перемещает пластину на незначительный угол совместно с контактами по направлению к кулачку привода прерывателя. Исходя из этого, размыкание происходит с задержкой, и, соответственно, меняется угол.

Свечи искрообразования (система зажигания контактная)

Система зажигания оснащена стандартными элементами запала. Контактные элементы искрообразования нужны для преобразования электрической энергии в искру, для воспламенения топливной смеси в цилиндрах двигателя. В тот период, когда электрический импульс передается на свечи, ее контакты способствуют образованию искрового пробоя. Эта деталь является неотъемлемым элементом системы зажигания.

Бронепровода

Система зажигания контактная, система зажигания других типов в своем комплекте имеют оснащение бронепроводами, которые могут без повреждений и потерь пропускать через себя высоковольтное напряжение. В частности это электрический гибкий провод, с одной медной жилой и многослойной изоляцией.

При этом контактный провод выполнен в форме спирали, что исключает радиопомехи. Как правило, данные провода устанавливаются на свечи. При длительном использовании изоляция проводов может приобрести микротрещины, через которые возможны потери импульсов высоких значений.

Неисправности системы зажигания и их устранение

Первой и наиболее распространенной поломкой может быть отсутствие искры на свечах. Причинами такой неисправности могут служить следующие моменты:

  • Обрыв электропроводов в цепи низкого напряжения или же окисление их соединительных контактов.
  • Подгорание контактов распределителя и их разрегулировка.
  • Выход из строя катушки, перегорание конденсатора, дефекты крышки распределителя, повреждение бронепроводов и самих свечей.
  • Излишняя влага в устройствах.

Устранение неисправностей возможно следующим методом:

  • Проверка контрольно-измерительным прибором всей цепи и проводки.
  • Очистка контактов трамблера от нагара и регулировка зазора.
  • Замена неисправных и подозрительного состояния деталей системы.

Случается, что когда проворачивается ключ зажигания, не срабатывает стартер, а все системы визуально работают, в этом случае необходимо обратить внимание на блок предохранительных элементов, так как возможно перегорание или окисление посадочного места предохранителя, отвечающего за включение стартера.

Если двигатель автомобиля работает нестабильно и не развивает полной мощности, то причины могут крыться в следующем:

  • Выход из строя одной из свечей зажигания.
  • Слишком большой или, наоборот, маленький зазор на свечах и контактах распределителя.
  • Механическое повреждение ротора или крышки трамблера.
  • Неверно установлен угол опережения.

Ремонт заключается в следующем:

  • Установка новых деталей.
  • Регулировка необходимых зазоров.
  • Регулировка угла искрообразования.

Схема контактной системы зажигания довольно проста и широко применяется на различных автомобилях.

С применением новых технологий элементов зажигания автомобили постоянно усовершенствуются и модифицируются. К примеру, более новые модели машин различных производителей давно применяют электронные системы зажигания. При появлении неполадок в системе можно легко определить причину их возникновения и провести ремонт. Контактная система зажигания автомобиля ВАЗ не имеет кардинальных отличий от элементов иных производителей и обладает высокой эксплуатационной надежностью. При этом недорога в ремонте.

Контактно-транзисторная система

По сравнению с обычной контактной системой контактно-транзисторная имеет в своем оснащении транзистор. Применение его способствует улучшению рабочих характеристик и показателей. С установкой транзистора систему стали оснащать коммутатором.

Устройство контактно-транзисторной системы зажигания не сильно отличается от обычного зажигания и его принципа работы. Но все же она имеет некоторые незначительные отличия.

Ее главной отличительной особенностью является возможность воздействия прерывателя на устройство транзистора, а не на обмотку катушки. Во время прерывания токов в обмотке низкого напряжения в витках обмотки высокого напряжения происходит его образование.

Контактная система зажигания (ВАЗа в том числе) имеет ряд положительных характеристик.

Управление процессами, которые присущи катушке зажигания, способствует возможности повышения значений токов в первичной витковой обмотке, а в результате этого возможно:

  • Увеличение значений вторичного напряжения.
  • Увеличение зазоров между электродами свечей.
  • Улучшение и более стабильный момент искрообразования.
  • Облегчить запуск мотора в холодное время года.
  • Увеличение оборотов и мощности двигателя.

Подобная контактно-транзисторная система зажигания, предусматривает подключение катушки с отдельной первичной и вторичной обмотками.

При этом данная система снижает нагрузку на контакты прерывателя и уменьшает риск их подгорания. Это возможно из-за уменьшения показателей проходящих токов. Благодаря этому факту повышается степень надежности и долговечности всей системы.

К недостаткам такого зажигания можно отнести следующее: напряжение токов, поступающих к транзистору, оказывает значительное влияние на его работу. Понижение показаний токов, связанных с состоянием контактов прерывателя, сильно влияет на эксплуатационные показатели контактно-транзисторного зажигания. Неисправности системы зажигания данного типа идентичны неисправностям обычной контактной системы и устраняются таким же образом. Но дополнительно могут возникнуть проблемы с нарушением нормальной работы транзистора и коммутатора.

Система запуска двигателя

Запуск двигателя невозможно осуществить без дополнительных электронных устройств. В данном контексте речь пойдет о таком механизме, как стартер автомобиля. Этот механизм представляет собой электродвигатель, который приводит в первоначальное движение коленчатый вал мотора до момента воспламенения в цилиндрах и пуска двигателя. В работу стартер включается поворотом ключа в замке в соответствующее положение. Токи через реле зажигания поступают от аккумулятора к виткам стартера и приводят его в действие.

Если рассматривать подробно, то процесс пуска двигателя производится в три этапа:

  1. Втягивающий механизм стартера заводит пусковую шестерню в зацепление с венцом маховика.
  2. Далее происходит вращение ротора стартера совместно с приводной шестерней, а та, в свою очередь, передает крутящий момент на коленчатый вал, что приводит к запуску силового агрегата.
  3. После того как двигатель запускается, а ключ зажигания возвращается в исходное положение, втягивающий механизм выводит приводную шестерню стартера из зацепления с маховиком.

Назначение реле

Любое электрическое реле - это предохранительное устройство, которым оснащается система зажигания. Контактная система зажигания в этом плане тоже не исключение. Основным его назначением является размыкание и замыкание разнообразных участков в электрических цепях автомобиля. Устройства имеют различия по конструкции и способу управляющего сигнала, а также по установке. В данный момент широкое применение получили

Говоря простыми словами, этот вид электрооборудования авто предохраняет различные элементы от высоких токовых нагрузок. Попросту оно служит переключателем. В частности в системе зажигания реле предохраняет стартер автомобиля и генератор от воздействия на них высоких токов. К примеру, для запуска двигателя нужно провернуть и включить стартер в работу, который, в свою очередь, потребляет от 80 до 300А.

В этом случае если не использовать реле, то замок может сгореть, а также и некоторые элементы проводки. Для того чтобы этого не произошло, в систему включают реле зажигания. Когда на корпусе устройства имеется изображение значка диода, то это означает, что при его подключении важно соблюдать полярность клемм. В противном случае поломка неизбежна.

Заключение

В итоге стоит отметить, что первой, получившей широкое распространение на автомобильном рынке, была система зажигания контактная. Система зажигания эта использовалась достаточно уверенно, но на данный момент считается морально устаревшей. Самым слабым местом ее как раз и оказалось наличие в конструкции трамблера контактной пары. Ведь она требовала периодического обслуживания, сводившегося к потребности в проверке и регулировке зазора между контактами, чистке поверхности контактов от различного рода следов подгорания, которые могли значительно повлиять на работоспособность элементов в целом. На смену данной системе пришла бесконтактная, которая таких обслуживающих работ не требует и характеризуется автомобилистами как более надежная.

Итак, мы выяснили, какой имеет принцип работы контактно-транзисторная система зажигания автомобиля.

Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя. Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между , установленной в головке цилиндров. Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.

Рис. Схема батарейной системы зажигания

Система зажигания состоит из следующих основных элементов:

  • источник тока ИТ, функцию которого выполняет или генератор
  • выключатель ВК цепи электроснабжения (выключатель зажигания)
  • датчик Д углового положения коленчатого вала
  • регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
  • источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
  • силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тири­стор)
  • распределитель Р импульсов высокого напряжения по свечам
  • помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
  • свечи зажигания СВ, на которые подается высокое вторичное напряжение

В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). принципиально отличается от батарейной тем, что источник электроэнергии в ней - магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.

Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы. Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.

Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых на­чинается развитие химической реакции оксидирования топлива, со­провождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:

  • начальная, в которой формируется пламя, инициированное ис­кровым разрядом в свече
  • основная, в которой пламя распространяется на большую часть камеры сгорания
  • конечная, в которой пламя догорает у стенок цилиндра

Рис. Система зажигания с накоплением энергии:
а - в магнитном поле; б - в электрическом поле

Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.

Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивле­нием в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.

Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50-225.

В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2. В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2. Конденсатор предварительно за­ряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков