Тепловой двигатель стирлинга. Принцип работы двигателя стирлинга

Тепловой двигатель стирлинга. Принцип работы двигателя стирлинга

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.
В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

  • Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга - решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный) .

Недостатки

  • Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
  • Тепло не подводится к рабочему телу непосредственно , а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
  • Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬ
Термоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

Рисунок 1. Поющее пламя Хиггинса

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

Рисунок 3. Трубка Сондхаусса.

Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.
Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания. » Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect ) - эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре - закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы и микрокондиционеры.

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла".
Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.
Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации - в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы - его горячая часть. Однако на самом деле не всё так просто - добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение - например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) - область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил - стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее - возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

Двигатель Стирлинга - это агрегат, который преобразует тепло в механическую энергию. Его можно подключить к генератору и получать электричество. Или к насосу, циркулярке, короче, к любому потребителю механической энергии. Он, в перспективе, очень хорошо подходит для стационарного автономного энергоснабжения. Почему?

1. Может работать на любом топливе. В том числе, на дровах, опилках и т.п. Может сделать Стирлинг, работающий от солнечного тепла или от разности температур воздуха и воды (хотя последний вариант я не рассматриваю всерьез, об этом будет отдельный пункт).

2. Тихая работа и большой моторесурс. Малый расход масла.

3. Простота в обслуживании (особенно, по сравнению с ближайшим аналогом - паровой машиной).

4. Относительно высокий КПД. Гораздо выше, чем у паровой машины, но ниже, чем у ДВС. На получение 1 кВт*ч электроэнергии от хорошо сделанного, мощного любительского Стирлинга будет расходоваться примерно 3-4 кг дров. Можно сравнить это со стоимостью той же энергии, полученной от бензогенератора.

5. Хотя КПД и ниже, чем у ДВС, можно использовать отходящее тепло для нагрева воды. Это повышает суммарную выгоду, извлекаемую из данного двигателя - она оказывается гораздо больше, чем у ДВС. Справедливости ради нужно сказать, что в ДВС такое использование тоже возможно, но для этого нужен дополнительный теплообменник.

На сегодня в серийном производстве по доступной цене таких двигателей нет. Я поставил перед собой задачу разработать такой двигатель, доступный для изготовления силами любителей.

О чем эта страничка

Некоторые мифы о двигателях Стирлинга

КПД двигателя Стирлинга равен КПД цикла Карно? Это не так. КПД ЦИКЛА Стирлинга равен КПД цикла Карно. Но в поршневой машине цикл Стирлинга реализовать невозможно. Тот цикл, который реализуется в двигателях Стирлинга - довольно сильно отличается от цикла Стирлинга. Кроме того, имеются неизбежные потери.

Нужен водород или гелий под страшным давлением? Нет, не нужен. Водород или гелий под большим давлением нужны для двигателя, имеющего такие же массогабаритные показатели, как автомобильный ДВС. Если снизить требования к массогабаритным показателям, то можно снизить давление и использовать другие рабочие тела. Известны случаи применения воздуха, аргона, углекислого газа и я даже слышал про пропан, хотя это вызывает сомнение.

Движущиеся части и уплотнения подвержены высокой температуре? Высокой температуре подвержена только одна движущаяся часть - верхняя часть "горячего" поршня. Поршневые кольца размещаются в холодной и охлаждаемой полости. Поэтому, условия работы уплотнений в двигателе Стирлинга гораздо легче, чем в ДВС. Тут, правда, есть не совсем еще понятная мне проблема теплоотвода от "горячего" поршня, о которой я нигде ничего не читал. Но во всяком случае, известно, что уплотнения для Стирлингов делали из фторопласта и такие уплотнения показывали хороший ресурс. Также могут работать обычные уплотнения, с чугунными поршневыми кольцами и смазкой маслом.

Смазка создает непреодолимые трудности? Нет. Нужен только подбор масла. Фирмой Phillips были выпущенными мелкими сериями двигатели серии 102C, имевшие масляную смазку. Поскольку масло с воздухом могут образовывать взрывоопасные смеси, это все же налагает определенные ограничения на давление, достигаемое внутри машины - насколько я знаю, его боятся поднимать более 6 атмосфер. В истории фирмы Филлипс был случай, когда большой двигатель Стирлинга на воздухе взорвался и убил человека. Впрочем, если внутри будет не воздух, а газ, не поддерживающий горение, например, азот, то масло вроде бы не должно взорваться (это лучше уточнить у химиков). Предпринимаются попытки использовать разные другие материалы для уплотнений поршней - фторопласт, материалы под названием "Рулон", "Витон", графит, композиции графита и стекла. При этом, картер делается сухим. Вроде бы, все это может работать достаточно долго, во всяком случае, пару тысяч часов. Также обсуждалась смазка водой и даже делалась машина с такой смазкой, но нет данных о результатах ее испытаний.

Эффективные двигатели были созданы только в XX веке? Нет. Еще братья Стирлинги создали двигатель мощностью 42 л.с. и КПД порядка 18%, работавший в кузнице (можно предположить, что каждый день по многу часов) около 3 лет. В то время не было никаких хороших сталей, никакой термодинамической науки, только опыт и интуиция. В конце XIX века серийно выпускались двигатели малой мощности (до 1 л.с.), которые не отличались высоким КПД, зато очень тихо работали, были весьма надежны, долговечны, нетребовательны к топливу и просты в обслуживании, что позволяло им держать определенную нишу на рынке вплоть до второй мировой войны.

Чего нет в книге Уолкера

Книга Уолкера была написана достаточно давно, с тех пор тема развивалась. Вот - краткий обзор того, что было достигнуто.

Двигатели с приводом Рингбома

Как известно, в двигателе Стирлинга - не менее двух подвижных поршней (либо один поршень и один вытеснитель). Это дает достаточно сложный механизм привода. Двигатели с приводом Рингбома - это двигатели (гамма или бета-типов), в которых вытеснитель приводится в действие с помощью пневмопривода. При этом, сам пневмопривод работает от перепада давления в газовом тракте машины. См. патент США №856102 Была разработана теория таких машин, которая позволила создавать хотя бы работающие прототипы. Зачастую эти прототипы делались путем переделки одноцилиндровых ДВС. Родной поршень ДВС используется как ползун, к нему добавляется шток и второй поршень, который уже является рабочим поршнем двигателя Стирлинга. А привод вытеснителя пневматический, поэтому никаких изменений в конструкцию ДВС больше не нужно. Прототипы такого рода были построены. Однако до практического внедрения, насколько я знаю, дело не дошло. Вся эта история описана в книге James R.Senft "Ringbom Stirling Engines", которую можно купить где-то в Америке. Я покупал ее с помощью пластиковой карты, кажется, она называетcя Visa Electron, и книжку мне доставляли по почте. Все это работает, так что рекомендую.

С моей точки зрения, двигатели с приводом Рингбома не настолько просты, как кажется. Их преимуществом я вижу более подходящий, чем чистые синусоиды, закон движения поршней. Особенно это важно в случае низкого перепада температур. Другое преимущество - это простота кинематического механизма, впрочем, она отчасти компенсируется дополнительными деталями, необходимыми для привода вытеснителя. Недостатком мне кажется то, что пневматически управляемый вытеснитель движется с большим ускорением - его на каждом такте выстреливает, как пробку из бутылки. Впрочем, ударные нагрузки гасятся пневматическими амортизаторами и скорее тут стоит безпокоиться не о прочности, а об уравновешивании и вибрациях. Поскольку закон движения вытеснителя, управляемого пневматически, заранее неизвестен и зависит от конкретных условий в каждый момент (от температуры нагревателя, числа оборотов, нагрузки), то нельзя предусмотреть даже никаких дополнительных балансирующих приспособлений. То есть, можно быть уверенными, что двигатель с приводом Рингбома вовсе не поддается балансировке.

Ну и вообще, тема двигателей с приводом Рингбома - это тема для изследований. При ориентации на практический результат нужно следовать уже опробованным образцам. Поэтому меня эта тема интересует не слишком сильно.

Единственное, что еще хочу отметить, что двигатели Рингбома в чем-то родственны свободно-поршневым двигателям, но они гораздо проще в плане реализации. Оказывается, свободно-поршневые двигатели исключительно сложны из-за того, что закон их движения допускает слишком много степеней свободы. Заставить их при этом работать стабильно, с учетом изменчивости нагрева, нагрузки и деградации уплотнений - задача сверхсложная. Двигатели Рингбома лишены этого недостатка - поршень у них движется за счет механизма, а пневмопривод вытеснителя в определенном режиме работает устойчиво.

Низкотемпературные двигатели

Это - двигатели, работающие на разнице температур от нескольких градусов. Такие двигатели делаются исключительно гамма-типа, у них - плоский вытеснительный цилиндр, вытеснитель с очень коротким ходом, а объем рабочего цилиндра во много раз меньше объема вытеснительного. Они обладают очень маленькой мощностью. Например, машина с вытеснительным цилиндром диаметром в 25см, с приводом Рингбома, при разнице температур в 90 градусов выдавала всего 1 ватт. Много интересных моделей такого рода придумано и реализовано Хубертом Стерховым (Hubert Stierhof), например http://www.geocities.com/hustierhof/MC_SOLAR.html

В основном, они изучаются для использования солнечной энергии. Тут нужно сделать важное замечание, что любой двигатель Стирлинга можно до определенной степени улучшить, увеличивая давление газа. Если бы этот же двигатель можно было накачать газом на 100 атмосфер, то он выдал бы уже 100 ватт. Напрямую это сделать невозможно, так как прочность материалов ограничена, а также ограничена теплопроводность поверхностей подвода и отвода тепла. Однако, это указывает некоторую перспективу для создания низкотемпературных двигателей значительной мощности. Если чуть-чуть пофантазировать на эту тему, то можно представить себе низкотемпературный двигатель сделанный с вогнутым или выпуклым дном, например, на основе баллонов от сжиженного газа. Например, 5-литровый пропановый баллон имеет диаметр порядка 25 сантиметров и его можно накачать до 10-15 атмосфер. То есть, можно себе представить, что из него получится двигатель примерно на 10 ватт при перепаде температур в 90 градусов.

Двигатели с одной движущейся деталью

Такие машины тоже были придуманы. У них есть настоящий рабочий поршень, но вытеснитель в них - "виртуальный". Во-первых, это машина "замедленного нагрева" или Thermal lag engine. В чем ее смысл? Рабочий поршень и стенки рабочего цилиндра - холодные, но из цилиндра имеется переход в горячую камеру - нагреватель. Сначала происходит сжатие воздуха рабочим поршнем, и он вытесняется в горячую камеру. Пока поршень находится в верхней мертвой точке, газ успевает нагреться и его давление увеличивается. Тогда происходит рабочий ход - газ расширяется и толкает поршень. При этом он выходит в рабочий цилиндр и охлаждается. Это охлаждение происходит за то время, когда поршень находится в нижней мертвой точке. Картинку рисовать не буду и даже не просите, но есть патент США Тайлера за номером 5414997, где все написано и нарисовано, правда, по английски. Более того, в патент включено чуть ли не полное описание, как сделать машину, со всеми основными размерами, и показатели ее производительности.

Эта машина просто подкупает своей простотой. Самое приятное - то, что нет никаких особых требований к точному изготовлению горячих частей. А эти горячие части зачастую делаются из нержавейки, должны сочетать в себе точную форму, устойчивость к коррозии, высокую теплопроводность в одних местах и низкую в других, имеют сложную форму и должны держать давление. Уфф, сколько требований.

Но... на самом деле ее рабочий процесс происходит не совсем так, как хотелось бы. Нагрев и охлаждение газа происходят более интенсивно в тот момент, когда газ движется. То есть, следует ожидать, что газ начнет нагреваться уже во время фазы сжатия, а охлаждаться он начнет уже во время фазы расширения. Также, при отсутствии регенератора происходит постоянный контакт нагретого и охлажденного газа между собой, а это ведет к большим термодинамическим потерям.

Я не думаю, что от этой машины можно ожидать сколько-нибудь существенного КПД. Видимо, автор патента столкнулся с этой проблемой на практике, поэтому в патенте нарисована не только самая простая схема, но и более сложные. Работающую машину такого рода с регенератором люди тоже сделали. http://www.stirlingengines.org.uk/thermo/lamina.html Насколько я могу себе представить, там подобный процесс "замедленного нагрева" и "замедленного охлаждения" происходит не только в нагревателе и холодильнике, но и в каждой точке регенератора. Поскольку при этом температурные градиенты между газом и стенкой меньше, то и КПД такой машины должен быть больше (именно эти градиенты ведут к потерям КПД). Может быть, она может быть вообще серьезной машиной, но это нужно пробовать.

Если кто-то когда-то захочет такую машину построить, то пишите - обсудим, что можно сделать. У меня есть еще кое-какие (довольно сырые) идеи на тему того, как сделать машину подобного рода, но обезпечить сдвиг фаз другим образом. Например, используя двухцилиндровый мотоциклетный двигатель с малым фазовым углом между цилиндрами. Основная идея - что в районе верхней мертвой точки газ (уже сжатый) резко прокачивается через нагреватель, имеющий большое гидравлическое сопротивление. Этот процесс чем-то подобен процессу сгорания в ДВС, но сгорание тут внешнее. А вот как охлаждать газ в такой машине - я так до сих пор и не придумал.

Следующая машина с одной движущейся деталью - это термоакустическая машина. Она, по своей сути устроена почти так же, как и машина замедленного нагрева с регенератором, но там колебания поршня происходят со звуковой частотой, и в игру вступает фазовый сдвиг между давлением и перемещением в звуковой волне. В качестве поршня в такой машине можно использовать просто микрофон соответствующей мощности, резонансная частота которого совпадает с частотой звуковых колебаний в цилиндре.

Примеры двигателей, которые могут послужить прототипами

Источники информации здесь:

1. The Phillips Stirling Engine, C.M.Hargreaves, Elseiver, 1991

Пара слов о масштабировании

Вопросы конструирования

Гильза горячего цилиндра - нужна ли она

Альфа, бэта или гамма?

Так ли вредно вредное пространство?

Некоторые закономерности, взаимосвязи и компромиссы

Материалы нагревателя

Нагреватель - где же узкое место?

Усилитель нагревателя

Регенераторы

Уплотнение поршня, смазка, взрывоопасность

Варианты привода

Картер под давлением, без давления, или вообще без картера

Нужна ли горячая шапка на поршень и цилиндр?

Моя программа расчёта

ссылка

Ущербность метода Шмидта, адиабатной модели и расчёта по числу Била

Метод Шмидта полностью игнорирует все вопросы теплообмена. То же делает и адиабатная модель. Хотя от адиабатной модели есть минимальная польза - она хотя бы позволяет оценить один вид потерь. Расчёт по числу Била говорит о том, что можно ожидать от хорошо сделанной машины, но не даёт никаких указаний на то, как же сделать такую машину.

Сильные стороны программы Simple

Программа simple др.Уриели содержит существенные элементы расчёта теплообменников. Особенно хорошо обстоит дело с расчётом сетчатого регенератора - в неё заведены аппроксимации экспериментальных данных по продувке сеток. Так же очень важно, что посчитаны потери на трение газа в теплообменниках.

Слабые стороны программы Simple

Расчёт нагревателя и холодильника вряд ли удовлетворителен - используется метод аналогии Рейнольдса, который пригоден для развитого турбулентного течения. Числа Рейнольдса в нагревателях могут быть довольно низкими, особенно для машин низкого давления, и соответствовать переходному или ламинарному режиму

Не учитывается такой важный вид потерь, как челночные потери. Величина челночных потерь велика и они могут существенно снизить КПД

Долгое время такие недостатки двигателей внутреннего сгорания (ДВС), как жесткие требования к топливу и маслам, загрязнение атмосферы, шум на выхлопе, резкое ухудшение экономичности и других характеристик при отклонении от оптимального режима работы и, наконец, не возможность использования источников тепла, не связанных с горением, не имели существенного значения. Однако с ростом числа и мощности эксплуатируемых ДВС проблемы токсического и шумового загрязнения окружающей среды приобрели жизненно важное значение.


Быстрое исчерпание разведанных запасов нефти в мире привело к тому, что в последние десять лет происходит переход из эры дешевой нефти в эру высоких цен на энергию в целом. С другой стороны, в новых отраслях техники возникла острая необходимость в специальных тепловых двигателях (например, для работы в космосе, в подводных условиях), не нуждающихся в атмосферном кислороде, но способных работать от любого высокотемпературного источника тепла.

Эти проблемы повысили интерес специалистов к альтернативному двигателю с внешним подводом тепла предложенному еще в 1816 г. шотландским изобретателем Робертом Стирлингом. Принцип работы двигателя Стирлинга (ДС), краткая историческая справка о его развитии и описание некоторых конструкций таких двигателей были опубликованы (см. статью Г. Б. Либефорта «Двигатель внешнего сгорания»).

По прогнозам ведущих специалистов крупных фирм США, Японии, Швеции, Голландии ДС, возможно, станет доминирующим двигателем в следующем столетии.

Почему же ДС прочат такие блистательные перспективы? Чтобы ответить на этот вопрос, необходимо вспомнить историю тепловых двигателей.

К пределу экономичности

В 1824 г. французский инженер С. Карно четко сформулировал условия, необходимые для наиболее эффективного превращения тепла в работу. Он предложил идеальный цикл, состоящий из двух изотерм и двух адиабат . С тех пор данный цикл является термодинамическим эталоном совершенства тепловых двигателей. Но в цикле Карно при большой разности температур нагревателя и холодильника расширение и сжатие рабочего тела необходимо вести в очень большом интервале давлений, в связи с чем его практическая реализация настолько сложна, что оказывается нецелесообразной.

Еще до выхода в свет работы С. Карно Р. Стирлинг удачно обошел эту трудность, введя в цикл тепловой машины регенерацию тепла. Однако низкий уровень технологии в начале XIX в. не позволил создать достаточно совершенные конструкции двигателей этого типа, и они были надолго забыты.

Расчеты, проведенные в 1938 г. специалистами фирмы «Филипс», показали, что оба цикла - и Стирлинга, и Карно - термодинамически равно ценны. Цикл Стирлинга, состоящий из двух изотерм и двух изохор . может служить таким же термодинамическим эталоном, как цикл Карно. Более того, регенерация тепла в этом цикле позволяет работать в большом интервале темпера тур, а следовательно, с высоким КПД при малых соотношениях давления сжатия и расширения рабочего тела. Эта особенность цикла Стирлинга делает реальной его практическую реализацию в двигателях, имеющих КПД, близкий к максимально возможному при данной разности температур нагревателя и холодильника.

Рассмотрим несколько идеализированный рабочий процесс двигателя Стирлинга вытесни тельного типа на наглядной компоновочной схеме с расположением цилиндров под углом 90° и обычным кривошипно-шатунным механизмом (рис. 3).

Термический КПД идеального цикла Стирлинга, как и цикла Карно, определяется формулой


Однако практически термический КПД этих двигателей заметно ниже.

В реальных двигателях Стирлинга энергия расходуется на трение и теплопроводность, а так же отходит с продуктами горения и т. д. Тем не менее, благодаря принципиальным термодинамическим преимуществам цикла Стирлинга в уже созданных ДС достигнуты наибольшие значения эффективного КПД по сравнению с другими тепловыми двигателями одинаковой мощности (рис. 2).

В двигателе Стирлинга можно использовать любое дешевое топливо: газ, уголь, дрова и даже торф. При этом, в отличие от ДВС, топливо сжигается непрерывно при низком давлении и оптимальном избытке воздуха в камере сгорания, расположенной вне рабочего объема Содержание ядовитых веществ в продуктах сгорания при таких условиях уменьшается до минимума, а количество выделяемой энергии увеличивается. Кроме традиционных топлив, для ДС пригодны другие источники тепла, расплавы солей, радиоизотопы, а так же ядерная и солнечная энергия, тепло недр Земли и т. п.

Внутренний объем двигателя Стирлинга герметичен, поэтому в него не попадает абразивная пыль, масло не соприкасается с продуктами горения и не окисляется (следовательно, почти не расходуется). Благодаря плавности рабочего процесса снижаются вибрация и нагрузки на все трущиеся элементы двигателя.

Эти особенности делают ДС более надежным и долговечным по сравнению с ДВС, позволяют использовать его длительное время без обслуживания. Принцип внешнего подвода тепла обеспечивает быстрый и безотказный запуск при низких температурах.

В дополнение к этому уникальному набору качеств двигатель Стирлинга практически бесшумен, так как он работает без клапанов и не имеет резкого пульсирующего выхлопа.

Перспективность двигателей Стирлинга давно подтверждена практикой. Например, фирма «Филипс» в свое время продемонстрировала 16 тонный автобус с ДС мощностью 100 л. с., фирма «Юнайтед Стирлинг» 7-тонный грузовой фургон, а американцы - легковой автомобиль "Форд-Торонто".

В настоящее время за рубежом примерно 60 фирм работают над дальнейшим совершенствованием двигателей Стирлинга. Уже разработаны двигатели этого типа большой мощности для тепловозов и электростанций, работающих на каменном угле. ДС используются для привода тепловых насосов, передвижных электрогенераторов. Созданы образцы для работы на спутниках Земли. Большое количество работ посвящено интереснейшей проблеме - применению миниатюрных ДС с радиоизотопным источником тепла для привода искусственного сердца.

Использование в качестве рабочего тела водорода под давлением до 200 кГ/см 2 (вместо воздуха, на котором работали первые ДС) позволило снизить удельную массу последних образцов ДС до 2,6-3,4 кГ/кВт, а отдельных конструкций до 1,2 кГ/кВт.

Эффективный КПД ДС нового поколения фирмы "Механикл-Технолоджи" (США) достигает 43,5% (вместо 32÷35% у лучших образцов автомобильных дизелей). Успехи в области технологии получения жаропрочной керамики позволят в дальнейшем повысить максимальную температуру цикла и создать ДС с КПД до 60%.

В рамках программы экономии энергетических ресурсов в Японии осуществляется шестилетний план разработок ДС. Уже в 1987 г. должны быть разработаны многотопливные двигатели с высокой топливной экономичностью и экологическими характеристиками для различных целей. В некоторых типах разрабатываемых двигателей будет использован природный газ. Недавно в пустыне Мохова в США было успешно испытано гелиооборудование с двигателем Стирлинга, преобразующее солнечную энергию в электрическую. Его общий КПД составил 29 %. Солнечная энергия, концентрируемая при помощи параболического зеркала, приводит в действие установку, работающую по идее Стирлинга.

Основные эксплуатационные показатели - ДВС - КПД, моторесурс и надежность работы - при уменьшении мощности снижаются в значительно большей степени, чем у ДС. Это и неудивительно, так как при малом размере цилиндра ДВС трудно обеспечить полное сгорание рабочей смеси, а вот горелка двигателя Стирлинга и при малой мощности обеспечивает практически полное сгорание топлива.

Как видно из рис. 2. эффективный КПД ДС в широком диапазоне мощностей более чем в два раза превышает КПД бензинового ДВС. В то же время при мощности на валу меньше 1 кВт КПД двигателя Стирлинга превосходит КПД бензинового ДВС в 3-4 раза.

Как показали результаты сравнительных испытаний, проводившихся в США, область экономичных скоростных и нагрузочных характеристик ДС примерно в семь раз шире, чем у современных ДВС. Благодаря этому при работе на частичных нагрузках и неустановившихся режимах (например, при движении автомобиля в городских условиях) ДС обеспечивает экономию до 50 % топлива по сравнению с ДВС, имеющим тот же эффективный КПД в режиме максимальной экономичности Подобный эффект, несомненно, будет наблюдаться для лодочных и судовых двигателей.

Велики потенциальные возможности экономии топлива и смазочных материалов при эксплуатации ДС а будущем. Действительно, если учесть более высокий КПД ДС, в два раза более низкую стоимость топлива (газ) и экономичность при работе на частичных нагрузках, то получается, что для этого типа двигателя расходы на топливо в широком диапазоне мощностей сокращаются примерно в 4-5 раз, а при мощности меньше 1 кВт - в 6 8 раз.

Один из разработанных и изготовленных мною двигателей Стирлинга с воздушным охлаждением мощностью 0,1 кВт показан на рис. 1. Он работает почти бесшумно, токсичность выхлопных газов ниже предела чувствительности прибора "Инфпалит-8". топливом служит сжиженный пропан.

ДС мощностью до 1 кВт должны найти широкое применение на миниавтомобилях, картингах, культиваторах, газонокосилках и сенокосилках, мотоблоках, для привода водяных насосов различного назначения и т. п. Небывалая топливная экономичность была практически подтверждена автором при использовании ДС малой мощности на газонокосилке и для других целей. На сегодняшний день ДС - это, по существу, единственный тепловой двигатель, который может без вреда для здоровья людей использоваться в закрытых помещениях складах, теплицах, туннелях и т. п.

Способность ДС в течение длительного времени работать без обслуживания позволяет эффективно использовать его в качестве источника питания на маяках, радиобуях, автоматических метеостанциях и т. п.

Двигатель для судов

В ДС примерно 50% теплоты, участвующей в цикле, отводится через холодильник (у дизеля 20%), причем для достижения высокого термического КПД двигателя тепло должно отводиться при пониженной температуре (как правило, 60 °С). В обычных условиях это требует применения более мощной системы охлаждения с радиатором, имеющим в 2,5-3 раза большую поверхность, чем у дизеля.

Это существенное затруднение полностью отпадает при использовании ДС на водном транспорте, где охлаждающая среда - забортная вода - в неограниченном количестве. Сравнительно низкая ее температура (4-15° для средних широт) увеличивает разницу температур нагревателя и холодильника, следовательно, при этом КПД двигателя выше. Например, низкооборотные судовые дизели нового поколения мощностью порядка 1000-9000 кВт имеют эффективный КПД до 50%.

Значительно повысить экономичность эксплуатации судов позволит использование ДС, в котором будет сжигаться каменный уголь. Решающим доводом за такое решение является то, что стоимость угля в 6-10 раз ниже стоимости дизельного топлива. Одновременно, благодаря особенностям нового двигателя, повысится надежность силовой установки и готовность судна к эксплуатации, уменьшится объем работ по его техническому обслуживанию. Канадские ученые должным образом оценили эти преимущества и ведут исследования по переделке обычных судовых дизелей мощностью до 1700 кВт в двигатели Стирлинга, работающие на угле. Порошкообразный уголь предполагается подавать в камеру сгорания ДС при помощи форсунок и сжигать в распыленном состоянии

В последнее время к двигателю Стирлинга проявляют интерес даже некоторые фирмы, специализирующиеся на производстве судовых дизелей. Например, японская фирма «Мицубиси» недавно провела успешное испытание судового ДС мощностью 66 кВт. В период с 1980 по 1983 гг. в Шанхайском НИИ судовых дизелей был разработан двухцилиндровый ДС мощностью 7,5 кВт.

Большой интерес представляет возможность использования для судовых ДС тепловых аккумуляторов вместо топлива. Запас тепловой энергии в расплавах некоторых солей, например, фтористого лития, составляет примерно 0,5 кВт ч/л (500 кВт ч/м 3) Таким образом, энергоемкость тепловых аккумуляторов соизмерима с калорийностью обычных топлив и вполне достаточна для многих судов, совершающих не слишком длительные рейсы. В Николаевском кораблестроительном институте разработан проект судовой энергетической установки мощностью 100 кВт с тепловым аккумулятором, материалом для которого служит обыкновенный графит.

Зарядку тепловых аккумуляторов для судов можно производить при помощи сжигания угля, используя излишки электроэнергии в ночное время, а также от расположенных в портах высокотемпературных ядерных реакторов.

Двигатель Стирлинга весьма эффективен для установки на небольшие суда. Так фирма «Юнайтед Стирлинг» установила одноцилиндровый ДС мощностью 10 л. с. на серийно выпускаемом катере типа "Альбин" длиной 10 м, обеспечив скорость катера 7 уз. Двигатель был установлен в корме и снабжен реверс-редуктором. Уровень шума, который был измерен на расстоянии 1 м от двигателя, работающего на полной нагрузке без какого-либо глушителя, составлял всего 68 дБ, что на 20 дБ меньше, чем у ДВС.

Аналогичные испытания проведены на катере «Стирлинг Силенса» датской постройки. Катер развил скорость 13 уз, работа двигателя оказалась надежной, вибрации не ощущались. Можно полагать, что при серийном выпуске ДС вытеснят ДВС на малых судах.

Одно из специфических качеств двигателя Стирлинга - способность работать с тепловым аккумулятором без атмосферного воздуха может быть успешно реализовано на подводных аппаратах. Полное отсутствие загрязнения водной среды, возможность многократного и быстрого разогрева материала теплоаккумулятора на судне обеспечения позволяют эффективно использовать такой аппарат при любых видах подводных исследований и работ.

Энергозапас силовой установки с ДС и тепловым аккумулятором (с расплавом фтористого лития) в 8-10 раз больше, чем у обычной системы со свинцовокислотными аккумуляторами и электродвигателем постоянного тока.

Двигатель Стирлинга, в отличие от электро двигателя, даже при самом высоком КПД выделяет в окружающую среду много тепла. Поэтому подводный буксировщик с ДС легко приспособить для одновременного обогрева водолаза.

Согласно полученным автором экспериментальным данным, стандартного пятилитрового баллона с пропаном хватает для непрерывной работы самодельного ДС мощностью 0,1 кВт в течение 40 часов. Такой лодочный мотор удобен и надежен в эксплуатации, исключает загрязнение водоемов.

Итак, есть все технико-экономические предпосылки для того, чтобы двигатели Стирлинга мощностью до 1 кВт нашли применение на подводных буксировщиках и в качестве массового лодочного мотора. Дело в том, что при серийном производстве стоимость таких двигателей упрощенной конструкции, по моим предварительным расчетам, уже в настоящее время не может превышать стоимости обычных подвесных лодочных моторов с ДВС.

Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.

С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.

Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.

Роберт Стирлинг (1790-1878 года жизни):

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:


За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Принцип работы двигателя

Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.


Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.

  • Позиция «A»:

Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.

  • Позиция «B»:

Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.

  • Позиция «C»:

Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.

  • Позиция «D»:

Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.

Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:


Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

  • Двигатель «β – Стирлинг»:


Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

  • Двигатель «γ – Стирлинг»:


Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

  • Роторный двигатель Стирлинга.


Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.

  • Термоакустический двигатель Стирлинга.


Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Двигатель Стирлинга своими руками

Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.

Низкотемпературный двигатель Стирлинга:


  • Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
  • Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
  • Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
  • Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
  • В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
  • Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
  • Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
  • Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;


  • Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
  • Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
  • Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.

После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.


Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.

Преимущества

Для двигателя Стирлинга характерны такие плюсы:

  • Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
  • Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
  • Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
  • Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
  • Процесс работы двигателя не сопровождается выбросом отработанных веществ;
  • Работа двигателя сопровождается минимальной вибрацией;
  • Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».

Недостатки

К недостаткам двигателя Стирлинга относятся:

  • Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
  • Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
  • Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
  • Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
  • Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.

Использование

Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:

  • Двигатель Стирлинг-электрогенератор.

Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.

  • Двигатель, как насос (электрика).

Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.

  • Двигатель, как насос (обогреватель).

В странах с тёплым климатом двигатель используют как обогреватель для помещений.

Двигатель Стирлинга на подводной лодке:


  • Двигатель, как насос (охладитель).

Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.

  • Двигатель, как насос, создающий сверхнизкие степени нагрева.

Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.

  • Двигатель для подводной техники.

Подводные корабли Швеции и Японии работают благодаря двигателю.

Двигатель Стирлинга в качестве солнечной установки:


  • Двигатель, как аккумулятор энергии.

Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.

  • Солнечный двигатель.

Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков