Современное программное обеспечение для автомобиля. Диагностирование электронных систем управления

Современное программное обеспечение для автомобиля. Диагностирование электронных систем управления

Ни для кого не секрет, что в наш высокотехнологичный век каждое инновационное средство, в основе работы которого заложена электронная составляющая, начиная с мобильного телефона и заканчивая спутниками, содержит массу внутренней «начинки», которая управляет процессами функционирования агрегата.

Во многом это касается и средств передвижения или, проще говоря, автомобилей. Современные машины настолько напичканы электроникой, что порой задумываешься, а зачем здесь, собственно, водитель.

Насколько безопасна автоматическая система?

Однако все ли так просто и безопасно, можно ли полностью довериться , главной задачей которой является облегчение процесса управления автомобилем водителем? Ответ абсолютно не однозначен.

Возможно, кого то удивит тот факт, что программное обеспечение современной машины составляют строки кода, которых примерно в 2,5 раза больше, чем в одной из самых популярных компьютерных ОС современности – Windows 7.

Какой из этого можно сделать вывод? Очень простой – очевидно, что при столь грандиозном объеме данных могут случатся ошибки, которые, впоследствии, будут влиять на неправильную работу всего автомобиля.

В качестве примера приведем случай, который случился с Toyota Prius. Не будем вникать во все тонкости работы системы автоматического управления двигателем, отметит только, что в случае ошибки системы полупроводники, встроенные в установку, перегреваются, а это приводит к тому, что автомобиль внезапно может остановится. Чтобы обновить всю систему, понадобится посетить сервисный центр.

Производители электрокаров

Самый популярный сегодня производитель электрокаров в мире, на практике использует более усовершенствованный метод: обновить систему можно дистанционно, с помощью беспроводной связи. Но здесь следует внимательно прислушаться к мнению экспертов, которые практически в один голос утверждают, что данный способ не настолько безопасен, как может показаться изначально. Почему?

Дело в том, что в таком случае, хороший хакер может получить доступ к автоматике транспортного средства используя обычный ноутбук. Ярким тому подтверждением стал эксперимент компьютерных специалистов Чарли Миллера и Криса Валасека, который они продемонстрировали на конференции Black Hat. Хакеры смоделировали взлом электроники автомобиля и показали, к чему это может привести.

Хорошо, что это был только научный пример и никто не пострадал. Набрав скорость и достигнув 80 км/час, автомобиль внезапно перестал отвечать на команды, тормоза полностью отказали, а при нажатии на педаль акселератора, машину резко завернуло вправо.

Самое удивительное случилось после этого: программное обеспечение, которое и принесло вред автоматической системе управления автомобилем, молниеносно удалилось, поэтому внешне все это выглядело, как несчастный случай. Э

тот эксперимент хакеров показал, что не все так идеально в мире современной автоэлектроники и автопроизводителям еще предстоит много поработать над тем, чтобы представить оптимальное сочетание комфорта и безопасности при использовании электронных бортовых систем автомобиля.

В конструкциях автомобилей все более широкое применение находят электронные системы управления. Проведение диагностирования современного автомобиля без использования средств для анализа работы электронных систем управления может дать недостаточно полную информацию о его техническом состоянии.

Диагностические средства для определения технического состояния электронных систем управления можно подразделить на три категории:

  1. стационарные (стендовые) диагностические системы
  2. бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами
  3. бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное считывающее устройство

Стендовые диагностические системы

Эти системы не подключаются к бортовым электронным блокам управления и, таким образом, не зависят от бортовой диагностической системы автомобиля. Они обычно диагностируют отдельные механизмы двигателя и системы зажигания, поэтому их часто называют мотор-тестерами. Основными элементами мотор-тестера являются датчики, а также блок обработки и индикации результатов измерений воспринимаемых сигналов. Датчики и регистрирующие приборы соединены с кабелями с помощью штекеров и зажимов.

Рис. Мотор-тестер

Мотор-тестеры выполняются на базе компьютеров, имеют клавиатуру, дисплей, дисководы, привод CD-ROM. В комплект обычно входит набор соединительных проводов и кабелей, стробоскоп, а в отдельных случаях - и газоанализатор отработавших газов. Информация вводится в компьютер с помощью соответствующего анализатора, в котором размещены аналогово-цифровые преобразователи, компараторы, усилители и другие устройства предварительной обработки сигналов. Анализатор подключается к необходимым элементам на автомобиле с помощью комплекта кабелей, который представляет собой набор проводов, подключаемых к отрицательной, положительной клеммам аккумулятора и катушке зажигания, провода высокого напряжения к катушке зажигания и к свече первого цилиндра, а кроме того, бесконтактный датчик тока на шине зарядки аккумулятора, датчик температуры масла в двигателе (вставляется вместо щупа), датчик разрежения во впускном коллекторе и т.п.

Основная часть мотор-тестера - осциллоскоп, на экране которого появляются различные осциллограммы, отражающие режим работы и техническое состояние проверяемых деталей и приборов системы зажигания. Оценка сигнала, появляющегося на экране осциллоскопа, основывается на анализе изменений (при наличии неисправностей) характера электрических процессов, протекающих в цепях низкого и высокого напряжения. По отдельным частям изображения можно судить также о работе некоторых элементов систем питания и зажигания, а характер изменения позволяет выявлять причины неисправностей.

Компьютер мотор-тестера обрабатывает информацию, полученную от двигателя, и представляет результаты на дисплее или в виде распечатки на принтере. С мотор-тестером может поставляться комплект лазерных компакт-дисков с технической информацией о различных моделях автомобилей, а также с инструкциями оператору о порядке подключения мотор-тестера к автомобилю и о последовательности проведения контрольных операций.

Перед проведением диагностирования вводят модель автомобиля, тип двигателя, трансмиссии, системы зажигания, впрыска топлива и другие параметры, характеризующие объект диагностирования. Мотор-тестеры способны диагностировать большинство автомобильных систем, в том числе системы пуска, электроснабжения, зажигания, оценивать компрессию в цилиндрах, измерять параметры системы питания.

Современные мотор-тестеры могут выдавать информацию о состоянии системы зажигания в виде цифр или осциллограммы процесса. Примером служит мотор-тестер М3-2 (Беларусь), с помощью которого можно определять состояние двигателя (по развиваемой мощности, балансу мощности по цилиндрам, относительной компрессии), стартера, генератора, реле-регулятора, аккумулятора, прерывателя-распределителя, электропроводов, свечей зажигания, лямбда-датчика, форсунок системы впрыска бензиновых двигателей, дизельной топливной аппаратуры, измерять с помощью стробоскопа углы опережения зажигания для бензиновых двигателей и впрыска для дизельных двигателей.

По мере усложнения автомобильной электроники расширяются и функциональные возможности стационарных систем, поскольку необходимо диагностировать не только управление двигателем, но и тормозные системы, активную подвеску и т.д.

Универсальность компьютерных мотор-тестеров определяется их программным обеспечением. Многие из них работают в привычной большинству пользователей операционной системе Windows.

К недостаткам мотор-тестеров следует отнести то, что с их помощью трудно обнаружить непостоянные неисправности в сложных электронных системах, когда неисправность в одной системе проявляется в виде симптомов в других системах, функционально связанных с первой.

Бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами

Системы программного обеспечения автомобилей большинства ведущих стран мира начиная с 80-х годов XX в. обеспечиваются функцией считывания кодов неисправностей с помощью контрольной лампы, например Check engine - проверь двигатель. Это наиболее простой вид бортового диагностирования, которое заключается в условном присвоении ряду неисправностей электронной системы управления цифровых кодов. Эти коды при проявлении соответствующих им неисправностей заносятся в память электронного блока управления системой. После проведения определенных манипуляций данные коды могут отображаться контрольной лампочкой в виде ряда длинных и коротких импульсов. После визуального считывания импульсов их значение может быть расшифровано с помощью специальных таблиц.

Рис. Пример размещения индикатора Сheck engine (позиция 1)

Бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное считывающее устройство

Считывание информации с такого программного обеспечения осуществляется с помощью специальных устройств - сканеров. Контролируемые параметры и коды неисправностей считываются непосредственно с электронного блока управления и интерпретируются специалистами сервиса.

Сканером, или сканирующим прибором, называют портативные компьютерные тестеры, служащие для диагностирования различных электронных систем управления посредством считывания цифровой информации с диагностического разъема автомобиля.

Сканер, как правило, имеет небольшой по размеру жидкокристаллический дисплей, поэтому просматривать данные на нем, даже используя прокрутку кадра, не всегда удобно. Обычно имеется возможность подключения сканера к компьютеру через последовательный порт для передачи данных. Специальное программное обеспечение позволяет просматривать данные со сканера в табличном и графическом виде на мониторе компьютера, сохранять их, создавать базы данных по обслуживаемым автомобилям.

Рис. Программируемый сканер ДСТ-2М (Россия) без персонального компьютера

Сканеры различаются своими функциональными возможностями и спектром тестируемых автомобилей.

Наиболее широкими возможностями обладают специализированные сканеры, используемые для диагностирования автомобилей только одной марки. Применение таких сканеров вследствие их узкой специализации ограничивается отдельными предприятиями автосервиса, обслуживающими автомобили конкретных моделей. Более широкое распространение получили сканеры, предназначенные для диагностирования систем впрыска и других механизмов, агрегатов и систем автомобилей различных моделей.

Имеются программы, позволяющие вводить непосредственно в компьютер информацию через последовательный порт с автомобильного диагностического разъема с помощью соответствующего соединительного кабеля. Персональный компьютер в таком случае выполняет функции сканера, его иногда так и называют - компьютерный сканер. При использовании персонального компьютера нет необходимости иметь комплект программных картриджей для различных систем и моделей, так как емкость жесткого диска компьютера позволяет хранить на нем все необходимые данные и программы.

Система самодиагностики транспортного средства в процессе его работы непрерывно сравнивает текущие величины сигналов с эталонными значениями в памяти электронного блока управления. Кроме того, она отслеживает реакцию исполнительных механизмов. Любые несоответствия параметров друг другу или эталонным значениям расцениваются как неисправность, каждой из которых присвоен свой код. Ранее системы управления могли определить и запомнить 10-15 кодов, современные системы хранят до нескольких сотен кодов, относящихся не только к двигателю, но и к автоматической коробке передач, антиблокировочной системе (АБС), подушкам безопасности, климат-контролю и т.д.

В некоторых блоках управления самодиагностика позволяет корректировать угол опережения зажигания, а на автомобилях без нейтрализатора - регулировать содержание оксида углерода в отработавших газах. Кроме того, на современных моделях сканеров реализовано так называемое тестовое диагностирование: входные сигналы подаются в определенный момент с последующей проверкой датчиков и реакции исполнительных элементов.

Сканер проверяет входные и выходные параметры электрических цепей и информирует оператора об их величине. Таким образом, он всего лишь фиксирует наличие или отсутствие неисправностей в каком-либо узле, но не позволяет определять их причины, которых может быть много для одних и тех же значений контролируемых параметров.

По способу хранения информации аппаратные сканеры делятся на картриджные и программируемые. Для приведения картриджного сканера в рабочее состояние необходим картридж с диагностическим кабелем, соответствующим проверяемой модели автомобиля. Комплект такого сканера состоит из трех основных частей: самого сканера, сменных картриджей и соединительных кабелей, предназначенных для присоединения к диагностическому разъему проверяемого автомобиля. Каждый картридж предназначен для работы с блоком управления своего типа.

Рис. Картриджный сканер для диагностирования автомобилей одной или определенных марок

Указанного недостатка лишены программируемые сканеры. Их встроенную память (Flash-память) можно многократно перепрограммировать с помощью персонального компьютера. Устаревшие версии программного обеспечения можно обновить через интернет либо компакт-диск, поставляемый производителем транспортного средства или сканера. Такие сканеры хорошо приспособлены к эксплуатации в условиях автосервиса. Более того, они позволяют диагностировать системы движущегося автомобиля.

Более информативными являются сканеры, соединенные с персональным компьютером. Для согласования данных, получаемых компьютером с блока управления, используется адаптер.

Рис. Программируемый сканер с персональным компьютером

В настоящее время наибольшее распространение получили сканеры KST-500 и KST-520 фирмы «Бош», используемые с персональным компьютером, а также сканеры ДСТ-2, ДСТ-10-Кф (Россия) и др.

Сканеры имеют несколько режимов работы. В режиме «Ошибки» на экране высвечиваются цифровые коды той или иной неисправности, хранящиеся в памяти блока управления на автомобиле. Режим «Параметры» позволяет оценить работу двигателя при движении автомобиля: напряжение в бортовой сети, детонацию, частоту вращения коленчатого вала, состав смеси, скорость движения и т.д. Для просмотра изменения параметров работы двигателя в динамике предусмотрен режим «Сбор данных». Некоторые сканеры, например KST-520, для наблюдения за работой системы впрыска и других систем автомобиля в динамике могут выдавать графическое изображение сигналов на экране, т.е. позволяют наблюдать их визуально. Возможности сканеров при проверке системы впрыска конкретного автомобиля определяются диагностическими функциями блока управления данного автомобиля, однако, как правило, все сканеры считывают и стирают коды неисправностей, выводят цифровые параметры в реальном масштабе времени, могут приводить в действие некоторые исполнительные механизмы (форсунки, реле, соленоиды).

Сканер подключается через специальный разъем на автомобиле к конкретному блоку управления или электронной системе в целом.

До 2000 г. большинство автомобилей было оборудовано диагностическими разъемами, имеющими разное количество и расположение штырьков, что не позволяло применять универсальные сканеры для съема информации. Поэтому в 2000 г. большинством производителей транспортных средств был принят стандарт OBD-II по оборудованию электронных систем управления. Требования этого стандарта предусматривают:

  • стандартный диагностический разъем
  • стандартное размещение диагностического разъема
  • стандартный протокол обмена данными между сканером и автомобильной бортовой системой диагностики
  • стандартный список кодов неисправностей
  • сохранение в памяти электронного блока управления кадра значений параметров при появлении кода ошибки («замороженный» кадр)
  • мониторинг бортовыми диагностическими средствами элементов, отказ которых может привести к увеличению объемов токсичных выбросов в окружающую среду
  • доступ как специализированных, так и универсальных сканеров к кодам ошибок, параметрам, «замороженным» кадрам, тестирующим процедурам и т.д.
  • единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок

На рисунке показан 16-штырьковый диагностический разъем, являющийся стандартным на автомобилях, соответствующих требованиям OBD-II.

Рис. Стандартный диагностический разъем

Диагностический разъем размещается в пассажирском салоне (обычно под приборной панелью) и обеспечивает доступ к системным данным. К такому разъему может быть подключен любой сканер.

Считывание диагностических кодов

Коды неисправностей могут быть считаны двумя способами. Первый (для уже уходящих в прошлое систем самодиагностики) - светодиодным пробником, подключаемым к диагностическому разъему, или с помощью контрольной диагностической лампы. Расшифровка кодов производится с использованием уже упоминавшихся таблиц, входящих в состав эксплуатационных документов на автомобиль. Второй, современный, способ - получение кодов сканером. Как правило, эти приборы не только извлекают коды ошибок, но и расшифровывают их.

Для предупреждения водителя о неисправности электронной системы управления на панели приборов имеется контрольная лампа. После включения зажигания на исправном автомобиле лампа горит в течение 3…10 с, а затем должна погаснуть. Если лампа не гаснет, это свидетельствует о неисправности системы управления, и следует проверить эту систему по определенным кодам. По требованиям нормативных документов по безопасности движения некоторых стран, автомобиль, имеющий активные коды неисправности определенных электронных систем управления, не допускается к эксплуатации.

Коды неисправностей иногда условно делят на «медленные» и «быстрые».

Рассмотрим «медленные» коды. При обнаружении неисправности ее код заносится в память и на панели приборов включается соответствующая контрольная лампа. Выяснить, какой это код, можно одним из следующих способов (в зависимости от конкретного исполнения блока управления):

  1. считать информацию по светодиоду на корпусе блока управления, который периодически вспыхивает и гаснет
  2. соединить проводником определенные клеммы диагностического разъема или замкнуть определенную клемму разъема на «массу» и включить зажигание, после чего контрольная лампа начнет периодически мигать, передавая информацию о коде неисправности
  3. подключить светодиод или аналоговый вольтметр к определенным контактам диагностического разъема и по вспышкам светодиода (или колебаниям стрелки вольтметра) получить информацию о коде неисправности

Так как «медленные» коды предназначены для визуального считывания, частота их передачи очень низкая (около 1 Гц), объем передаваемой информации мал.

Коды обычно выдаются в виде повторяющихся последовательностей вспышек. Код содержит несколько цифр, смысловое значение которых затем расшифровывается по таблице неисправностей, входящей в состав эксплуатационных документов на автомобиль. Длинными вспышками (1,5.2,5 с) передается старший (первый) разряд кода, короткими (0,5.0,6 с) - младший (второй) разряд.

Пример высвечивания кода 1-3-1-2, соответствующий неисправности электронной форсунки впрыска первого цилиндра двигателя Hyundai, приведен на рисунке:

Рис. Пример высвечивания кода неисправности

После обнаружения неисправности она локализуется путем последовательной проверки тех элементов электронной системы управления, которые находятся в электрической цепи, отвечающей за генерирование считанного кода (датчиков, разъемов, проводки и т.д.).

«Медленные» коды просты, надежны, не требуют дорогостоящего диагностического оборудования, но малоинформативны.

«Быстрые коды» обеспечивают выборку из памяти электронного блока управления большого объема информации через последовательный интерфейс. Этот интерфейс и диагностический разъем используются как при проверке и настройке автомобиля на заводе-изготовителе, так и при диагностировании.

Одной из функций, реализуемых сканерами, является проверка сигнала датчика на рациональность, т.е. на соответствие требуемым (штатным) сигналам. Датчик может быть неисправен и посылать в блок управления неверную информацию. Если проверка сигнала датчика на рациональность в программе блока управления не предусмотрена, то в них управляющие алгоритмы реализуются с использованием неверной информации датчика. При этом будут неправильно рассчитаны важные выходные параметры, например угол опережения зажигания и длительность импульса отпирания форсунок, что приведет к ухудшению ездовых характеристик автомобиля, двигатель может глохнуть после запуска и т.д. Однако пока в количественном выражении неверный сигнал с датчика будет в пределах нормы, никакие коды ошибок в память электронного блока не запишутся и неисправность никак не обозначится.

Для обнаружения неисправности реализуется функция отключения «подозрительного» датчика. Тогда электронный блок запишет в память код ошибки и изменит сигнал с датчика на расчетное (резервное) значение. Например, при отключении датчика массового расхода воздуха его сигнал заменяется резервным сигналом, рассчитанным по положению дроссельной заслонки и частоте вращения коленчатого вала двигателя. Если после отключения «подозрительного» датчика работа двигателя улучшится, это означает, что датчик неисправен.

В современных блоках управления по мере совершенствования программного обеспечения появляется возможность выявлять подобные неисправности. Это так называемая проверка на рациональность и правильное функционирование, которая реализуется в бортовых диагностических системах второго поколения (OBD-II). Она заключается в том, что текущие значения сигналов со всех датчиков постоянно проверяются на взаимооднозначное соответствие штатным сигналам для данного режима работы двигателя. Штатные значения сигналов хранятся в постоянной памяти микропроцессора электронного блока.

Для удобства измерения входных и выходных сигналов электронного блока управления применяют разветвитель сигналов. Он представляет собой комплект кабелей и разъемов, подключаемых между электронным блоком управления и жгутом проводов для доступа к входным и выходным сигналам. В состав разветвителя входит коммутационная панель для подключения контрольно-измерительных приборов к любой цепи жгута.

Рис. Разветвитель сигналов РС-2 (Россия)

Работа отдельных датчиков может быть сымитирована специальным имитатором датчиков, например типа ИД-4. Он предназначен для имитации выходного напряжения потен- циометрических и резистивных датчиков электронной системы управления инжекторных двигателей. Данный имитатор позволяет имитировать сигнал датчика положения дроссельной заслонки, потенциометра регулировки содержания оксида углерода, датчиков давления во впускном коллекторе, атмосферного давления, массового расхода воздуха и других датчиков. Входящие в состав имитатора кабели позволяют подключаться к разъемам различных типов.

Рис. Имитатор датчиков ИД-4 (Россия)

Удаление кодов неисправности

После ремонта все коды следует удалить из памяти блока управления, иначе блок будет ошибочно учитывать их при последующем управлении системами автомобиля.

Применяют три метода удаления (стирания) кодов неисправностей:

  1. Стирание кодов по команде со сканера, подключенного к диагностическому разъему. На некоторых автомобилях ранних моделей такая процедура невозможна, поскольку она не поддерживается блоком управления. Этот метод является наиболее предпочтительным и рекомендуемым производителями.
  2. Если нет сканера или электронный блок не поддерживает стирание кодов сканером, следует отключить питание блока путем извлечения соответствующего предохранителя. Вместе с кодами ошибок из памяти блока сотрется и информация для адаптивного управления.
  3. Отключение от «массы» шины аккумуляторной батареи. Следует иметь в виду, что в этом случае вместе с кодами стирается и прочая информация (установка времени на электронных часах, коды радиоприемника и т.д.).

В век высоких технологических задумок нет ничего удивительного в том, что постоянно выходят различные умные программы, способные помочь человеку в его работе, связанной с различными сферами деятельности. Не исключением стала и стезя водителей-автомобилистов, для которых были придуманы полезные утилиты. Примечательно, что обычный смартфон сегодня способен заменить собой опытного советчика, а бесплатные программы для и различные сервисы помогут в создании важных заметок, оптимизации расходов и т. д.

На видео рассказано, как с толком использовать планшет или телефон в автомобиле:

Компьютеры, ноутбуки, смартфоны и полезные программы для них

Люди лет десять назад лишь мечтали о такой возможности, как иметь в автомобиле компьютер. В то время представить себе умный аппарат, делающий практически половину работы вместо водителя, было возможно, но это больше всего было похоже на фантастический фильм. Тогдашним автомобилистам было невдомёк, что умный компьютер способен осуществлять навигацию посредством специальных программ, самостоятельно проводить проверку мотора через разъём OBD2, следить за и даже вести особый дневник, где указаны все выезды водителя.

Вначале роль такого помощника выполняли громоздкие компьютеры, затем ноутбуки - лёгкие и производительные. Но и эти цифровые помощники стали ненужными с выходом смартфонов и планшетов.

На сегодняшний день смартфоны и планшеты с программами для автомобилистов являются такими же обыденными предметами, как или . Одновременно с обширным рынком удобных мобильных устройств стали развиваться и другие сегменты, не менее важные и предназначенные также для владельцев «железных коней» - различные полезные приложения для автомобилистов, так называемые онлайн-программы. В наш век, несмотря на массу полезных функций, которыми снабжают автомобиль производители, мобильные программы и онлайн-сервисы нужны так, как никогда. Мы попытались подобрать в этой статье самые полезные и нужные инструменты для автомобилиста, не обойдя вниманием различные платные и бесплатные навигационные приложения и программы, а также сервисы, способные решать сложные задачи.

Не секрет, что автомобиль, особенно в нашей стране, содержать было всегда трудно. Да, он не роскошь, а средство передвижения, но фразу эту придумали американцы, у которых другой взгляд на вещи. У нас в стране порой своего любимого «железного коня» уходит больше, чем на предмет роскоши. Такой уникальной ситуацией мы, автомобилисты, должны быть благодарны специалистам, работающим в автосервисах, которые тянут и тянут из кошелька попавшего к ним наивного водителя деньги; работникам , съевшим собаку в теме, касающейся качества бензина и его присадок и т. д.

Казалось бы, уследить за всеми расходами можно, если собраться и начать жить, как практичный немец. Но это удаётся не каждому россиянину и если бы не полезные приложения и программы, наподобие учётника расходов на топливо или программы по оценке стоимости владения автомобилем, туго пришлось бы нашим водителям.

Топливомеры и полезные сайты

На видео показано, как контролировать расход топлива при помощи GPS ГЛОНАСС:

Эти программы абсолютно бесплатны и относятся сегодня к простым инструментам, спасающим водителя от стресса и постоянных головных болей. Они вместо автомобилиста будут отслеживать постоянные и давать отчёт о проделанной работе. Программу Fuel Manager достаточно просто запустить, установив контрольную точку или же заправляясь регулярно до полного бака. Можно сделать иначе. Отмечать тот момент, когда загорается лампочка, указывающая на то, что топливо на исходе.

Fuel Manager - не единственная такая программа. Другое, не менее популярное приложение - это «Топливомер», который предназначен для рассчитывания среднего расхода на основе любых показателей. Кроме того, что программа сохраняет информацию об израсходованном топливе, она и позволяет одновременно устанавливать напоминание - утилиту, которая привязана к пробегу автомобиля. К примеру, таким способом можно будет запрограммировать напоминание о том, что пришла пора заменить масло, ведь автомобиль «пропахал» уже 10 тыс. км.

Другие программы, по сравнению с простыми топливомерами, отличаются набором больших функций. К примеру, такие популярные программы, как «Моя машина» или Beepster, предназначены уже для комплексного учёта расходов, связанных с периодическим обслуживанием и . Эти программы также дают возможность установки напоминаний. Главная задача таких цифровых записных книжек - это подсчёт условной стоимости 1 км пути. Кроме того, эти программы напоминают водителю о важных сервисных процедурах, таких как или тормозных колодок.

Видеообзор приложения Fuel Manager:

Мобильные утилиты прилагаются и к веб-серверам с целью облегчить обслуживание автомобилей. В частности, такой сервер, как drivernotes.net, даёт возможность, помимо основных функций, получать данные о стоимости обслуживания определённой модели автомобиля всеми владельцами, что пригодится в процессе .

Другой сайт, под названием cars.auto.ru, поможет найти быстро любое объявление о продаже или покупке авто. Доступ к этому сервису-программе водитель получает как через браузер, так и через мобильное приложение. Объявления искать очень легко, ведь они открываются, если набрать в поиске марку, год выпуска или другие параметры. Также сайт даёт возможность получить контакты владельца или клиента.

Популярный и раскрученный портал avito.ru, мгновенно и методом телепортации, как показывает рекламный ролик, среди прочего предлагает провести и поиск продавцов/покупателей. Интересно, что у этого ресурса есть очень удобная мобильная программа для «Андроид».

Другой сервис называется «Из рук в руки» и также имеет своего представителя в мобильных программах Google Play.

Примечательно, что человеку при поиске машин нет надобности обращаться к нескольким сайтам. Достаточно воспользоваться услугами какого-нибудь агрегатора, например, такого как auto.yandex.ru. Этот ресурс предлагает, помимо клиентской программы, ещё и отменно оптимизированную мобильную версию сайта. «Железных коней» здесь можно подбирать по различным параметрам, в том числе и таким неоднозначным, как «семейный автомобиль для загородных прогулок». И это ещё не всё. Сервис даёт возможность отслеживать изменения цен. Кстати, схожий с этим сайт bezrulya.ru отличается от аналогов ещё и удобной функцией, моделей авто.

Если раньше было в моде общаться с друзьями посредством SMS-сообщений, то сегодня это в прошлом. Социальные сети и специальные программы позволяют делать это намного быстрее и получать больше комфорта.

Интересно, что в одно время были популярны приложения, которые содержали большое количество так называемых полезных точек. Они отображались на карте, и к ним относились не только , пункты шиномонтажа, автосервисы, но и бистро, отели и даже достопримечательности определённого города или страны. Сегодня такая информация перекочевала на страницы навигационных программ, таких как Яндекс. Полезны в этом плане и Гугл, и тот же «Городской гид», и другие программы.

Видеообзор полезного приложения для автомобилистов - «Парковка»:

Хотелось бы отметить, что «особняком» по-прежнему держатся сервисы, которые позволяют найти не только ближайшую заправку, но и их цены на топливо. Одной из таких программ, пользующихся уважением среди автомобилистов, является «Мультитопливо». Этот сервис представляет собой интерфейс поиска, а также карту с заправками, которая периодически обновляется базой АЗС. Сюда включены , информация о наличии туалетов, кафе и т. п. Данные могут быть обновлены и пользователями портала multigo.ru. Здесь можно не только получать нужную информацию, но и вносить изменения через приложение, если зарегистрироваться как пользователь.

Показать ваше местоположение на карте тоже можно. Этим занимается специальный сервис Гугл Плюс. Он позволяет прикреплять в таких социальных сетях, как Фейсбук и ВКонтакте, теги местоположения к фотографиям или публикациям. Хотя этим занимается не только он.

Существуют специальные сервисы, отображающие координаты водителя или даже его маршрут в режиме Live. К таким сервисам можно отнести и бесплатную программу Glympse. Программа позволит открыть своё местоположение на определённый промежуток времени, к примеру, пока вы доберётесь до места встречи. Делается это путём посылки другу или знакомому ссылки, пройдя по которой на карте можно увидеть ваше местоположение или маршрут.

Стоит отметить, что некоторые важные дела лучше привязывать не к определённому времени, а к некой точке в пространстве. К примеру, проезжая рядом с магазином, нужно не забыть купить хлеба. Вот и подключается своеобразная «напоминалка», когда автомобиль проезжает мимо магазина. Большинство мобильных программ содержат массу полезных опций, для которых напоминание по местоположению - единственная целевая функция. Хотя существуют и более сложные приложения, такие как «Карта напоминания». Программа абсолютно бесплатна и позволяет, кроме создания и хранения заметок, скачивать сопутствующую карту в телефон.

К таким же программам можно отнести и различные планировщики. К примеру, напоминание по месту есть у Remember The milk. Но чтобы её задействовать, придётся подключиться к платной версии продукта.

Что касается онлайн-карт, то их можно использовать для диагностики состояния дорог. Для многих водителей давно не секрет, что они ежеминутно рискуют во время езды по российским дорогам загубить подвеску своего автомобиля. Сами дорожные службы оповестить водителя оперативно о возникающих в разных местах дороги препятствиях не успевают или не желают. А вот сервис «РосЯма» не даст дорожникам времени расслабляться, ведь на этом портале всегда можно оставить заявление о проблемах на . Достаточно будет загрузить на сайт размеры ямы, координаты и фото. Жаль только, что сервис этот мобильных клиентов не имеет.

Почти все сервисы, помогающие искать парковочное место, стоило бы отнести к инструментам, берущим за основу методы GPS. Но во многих мегаполисах и крупных городах России за неправильно припаркованный автомобиль и дефицит свободных мест эту проблему переводят в разряд глобальных. Именно для решения такой задачи и была придумана программа под названием «Парковки Москвы».

Видеообзор мобильного приложения «Парковки Москвы»:

Что касается других городов, то для них можно задействовать схемы , приведённых на картах OpenStreetMap или других картографических порталах. Имеются и специальные базы, такие как «Паркопедиа», где имеются клиентские приложения практически для всех мобильных платформ.

Штрафы ПДД и справочник в цифровой версии

Отдельного внимания заслуживает программа под названием « 2014». Она специально предназначена для тех водителей, которые слабо знают правила ПДД. Да и если честно, кто сегодня назубок их знает? Опыт вождения нашего автомобилиста куётся не на знании правил дорожного движения, а на практике прохождения определённых ситуаций. Другими словами, все знают, что проезжать на «красных свет» нельзя. Но вот какой штраф за это придётся платить, знает один или два процента водителей.

Если раньше водители приобретали новые версии периодически на бумажных носителях и хранили всю эту макулатуру в бардачке, и без того тесном на некоторых моделях авто, то сегодня программа сама будет автоматически загружать обновления. Кроме программы «Штрафы ПДД 2014», аналогичные действия выполняет и программа «Справочник ПДД».

Теперь про те опции, которыми известен . Так вот, оказывается, теперь покупать его для записи дорожной обстановки вовсе не обязательно. Все функции самого крутого видеорегистратора способна выполнить бесплатная программа, установленная на обычный смартфон. Да-да, не удивляйтесь! К таким приложениям, к примеру, можно отнести DailyRoads Voyager. Как и стандартный видеорегистратор, эта опция позволит записать ролики в циклическом порядке. А по мере заполнения памяти предыдущие видеофайлы автоматически стираются. Вот и все дела.

На случай ДТП

Программа под названием «Памятка при ДТП» поможет и нестандартных ситуациях, которые могут произойти на дороге. Эта программа даёт полезные рекомендации относительно того, что предпринять водителю в конкретном случае. Но к сожалению, кроме советов, хотя и толковых, ничем другим утилита больше помочь не сможет. Так что соблюдать безопасную манеру езды никто не отменял.

09.04.2010 Юрген Мессингер

Когда вы купите свой следующий автомобиль, в нем окажется уже 100 млн строк кода, и, наверное, вам стоит задуматься о трудностях, связанных с созданием таких бортовых программных систем, и о новых возможностях, которые они открывают в автомобильной отрасли.

Первые электронные системы появились в автомобилях еще в 60-х годах, и благодаря этому отрасль серьезно изменилась – сегодня электроника, и особенно программное обеспечение, являются основными источниками инноваций. Программное обеспечение повышает надежность с помощью систем активной и пассивной безопасности, таких как антиблокировочная тормозная система и электронная система курсовой устойчивости (ESC). Кроме того, сегодня происходит постепенная интеграция бытовой электроники в автомобили.

Программное обеспечение для автомобилей очень надежно – уровень отказов составляет не более одного сбоя на миллион операций в год. Большинство людей даже не представляют, насколько много автомобильных функций управляются сегодня программно, тем не менее вряд ли вам приходилось когда-нибудь слышать о голубом экране в автомобиле, хотя для ПК это обычное дело.

Сейчас каждый автомобиль имеет несколько электронных блоков управления (electronic control unit, ECU), связанных между собой внутримашинной сетью. Эти блоки взаимодействуют через стандартные шинные архитектуры, такие как сеть контроллеров (controller area network, CAN), сеть передачи данных мультимедийных систем (media-oriented systems transport, MOST), FlexRay и локальный интерконнект (local interconnect network, LIN). В сравнении с Ethernet, широко используемым для связи ПК, перечисленные шины работают медленнее – в автомобилях объем пересылаемой информации невелик, но ее необходимо обработать за несколько миллисекунд. Увеличение числа связываемых ECU приводит к необходимости создания более сложных структур внутримашинных сетей, требующих особой электрической и электронной архитектуры. Основные отличия между автомобильным программным обеспечением и другими видами ПО:

  • надежность: автомобильные программ-ные системы должны работать исключительно надежно в сложной сети ECU в течение всего срока эксплуатации автомобиля;
  • функциональная безопасность: такие функции, как антиблокировочная тормозная система и ESC, требуют безотказной работы, что определяет высокие требования к процессам разработки программного обеспечения и к самим программам;
  • работа в режиме реального времени: быстрая реакция (от микросекунд до миллисекунд) на внешние события требует оптимизированных операционных систем и особой программной архитектуры;
  • минимальное потребление ресурсов: любое дополнение вычислительных ресурсов или памяти увеличивает стоимость продуктов, что при миллионных тиражах выливается в немалые деньги;
  • надежная архитектура: автомобильное программное обеспечение должно выдерживать искажение сигналов и поддерживать электромагнитную совместимость;
  • электронно-механическое управление замкнутого цикла .

При этом надо учесть, что перезагрузка во время работы для большинства ECU недопустима.

Процессы и технология

Если в первые годы появления автомобильного ПО его мог контролировать один разработчик, то теперь это уже невозможно.

В 70-х годах разработчики программного обеспечения для автомобилей начали использовать ассемблер, а Си стал основным языком в 90-х годах. На протяжении последнего десятилетия компания Robert Bosch и другие поставщики автомобильных компонентов стали разрабатывать программное обеспечение на базе моделей, используя ASCET (усовершенствованный инженерный инструментарий моделирования и управления) и Mathlab/Simulink.

Шинные системы, такие как CAN, серьезно усложняют программное обеспечение, поскольку допускают взаимодействия между программами различных ECU. В автомобилях класса люкс сложная сеть связывает сейчас до 80 ECU, в совокупности имеющих до 100 млн строк кода. Поскольку программное обеспечение становится все сложнее, возникает необходимость совершенствовать методы инжиниринга, соответственно в отрасли сегодня предлагаются параллельные организационные и технические процессы для разработки ПО. Компания Bosch давно применяет разработку на базе процессов инжиниринга и управления, соответствующих CMMI уровня 3, а ее инженерное подразделение в Индии уже добилось уровня 5.

Разработка на базе процессов и архитектуры является также необходимым условием эффективного аутсорсинга – компания Bosch стала отдавать на сторону некоторые разработки еще в начале 90-х годов. Сегодня работа над ПО ведется несколькими географически распределенными подразделениями, что оказалось весьма полезным для бизнеса, например, сейчас в филиале, находящемся в Индии, работает свыше 6 тыс. инженеров.

Управление двигателем

Задача сокращения расхода топлива и выбросов вредных веществ стимулирует деятельность по усовершенствованию трансмиссии, например выполнение требований международного законодательства по выбросам вредных веществ требует соблюдения гарантированного времени впрыска топлива и зажигания. Кроме того, частота впрысков значительно выросла – современные дизельные системы могут впрыскивать капли топлива меньше булавочной головки до семи раз за такт, что составляет 420 раз в секунду для четырехцилиндрового двигателя, вращающегося со скоростью 1800 оборотов в минуту. Это требует очень совершенных алгоритмов управления и программных функций для минимизации отклонений.

Необходимость сокращения выбросов CO2 привела к многообразию технологий обеспечения движения – в дополнение к традиционным двигателям внутреннего сгорания со временем существенная доля рынка будет принадлежать гибридным системам и электрическим двигателям. Возрастет также потребление альтернативного топлива, и программное обеспечение будет ключом к реализации этих технологий.

Модуль управления двигателем – основа управления трансмиссиями легковых автомобилей. Современные модули содержат свыше 2 Мбайт встроенной флэш-памяти, работают с тактовой частотой до 160 МГц, выполняя программы объемом до 300 тыс. строк кода.

Поставщики автомобильных систем часто продают больше продукции, чем каждый отдельный автопроизводитель. В 2008 году одна из крупнейших автомобилестроительных компаний продала около 9 млн автомобилей при общемировом объеме производства в 65 млн, в то время как объемы продаж поставщиков программных систем гораздо выше. Благодаря этому у поставщиков систем больше возможностей для того, чтобы добиться экономии за счет массового производства, требуемой для крупномасштабной программной разработки.

Стандартизация

Как правило, программные системы для автомобилей разрабатывают с учетом специфики конкретного ECU – программное обеспечение тесно связано с соответствующим оборудованием. Учитывая, что число автомобильных ECU растет, все большую важность приобретают повторное использование программного обеспечения, а для этого необходима стандартизация.

В 2003 году ведущие автопроизводители и поставщики создали сообщество Automotive Open System Architecture (Autosar, www.autosar.org) с целью разработки единого глобального стандарта и соответствующих технологий. Сегодня в Autosar входят свыше 150 компаний, и в рамках этого партнерства разрабатывается архитектура ECU, базовое программное обеспечение, методология и стандартизованные интерфейсы для прикладного программного обеспечения. Партнерство способствует разработке независимых от оборудования компонентов, позволяя автопроизводителям и поставщикам обмениваться программным обеспечением и повторно использовать его на различных ECU.

Архитектура Autosar ECU имеет несколько уровней абстракции, отделяющих ПО от аппаратного обеспечения (см. рисунок). На верхнем уровне расположено прикладное программное обеспечение, реализующее все прикладные функции. Далее идет базовое программное обеспечение, обеспечивающее необходимую абстракцию от аппаратного обеспечения, по аналогии с операционной системой для ПК. Среда исполнения в реальном времени (Autosar Runtime Environment, RTE) обеспечивает все взаимодействия как внутри ECU, так и между ними. Методология Autosar включает в себя шаблоны и форматы обмена, используемые для описания, конфигурации и генерации инфраструктуры.

Сегодня на долю электроники приходится около 80% функциональных инноваций автомобильной отрасли, и программное обеспечение – это ключ к большинству из них. По мере того как ПО становится все более существенной частью стоимости оборудования, в бизнес-моделях начинают учитывать необходимость повторного использования и обмена программным обеспечением.

Высокоскоростные шины, такие как Ethernet, все шире используются сегодня в автомобилестроении для поддержки взаимодействия между ECU и разработки новых функций, особенно в области безопасности. Информация из различных источников анализируется и консолидируется для формирования полной модели среды, позволяя разрабатывать новые функции, поддерживающие водителя в критических ситуациях. Например, если внимание водителя отвлекает пассажир, то приложение может определить, что едущий впереди автомобиль тормозит, и предупредить об этом водителя либо же автономно включить торможение. Водитель никогда не догадается о существовании такого программного обеспечения, пока не возникнет опасная ситуация.

В автомобилестроении сегодня назрела очередная программная революция – все шире начинают применяться средства мультимедиа и бытовой электроники. Автомобили будут подключаться к Интернету и ко всем видам мобильных и установленных дома устройств, причем неуклонно будет расти доля решений на базе свободного ПО.



Сталкиваясь с реалиями машиностроительной промышленности, большинство разработчиков программного обеспечения не справляются – уж очень узкоспециализированы продукты, с которыми приходится работать. Это вам не создание программ для интернет-пользователей, компьютеров и даже не мобильные приложения, а потому новички чувствуют себя, как Томас из фильма «Бегущий в лабиринте». Посмотрите, примерно, 50 секунд трейлера – и вы поймете, какой шок испытывают те, кто имеет дело с разработкой ПО для автомобилей впервые.

Все, что у вас есть - это множество терминов и инструментов, о которых вы понятия не имеете. Когда во время собеседования в одной автомобильной компании я поинтересовался, какую IDE они используют, интервьюеру мой вопрос, мягко говоря, не понравился. Я привык к Visual Studio, и наивно надеялся, что здесь для разработки встроенного программного обеспечения понадобится что-то аналогичное. Я даже не представлял, что меня ожидало! Просто море мелких и серьезных (по сложности) инструментов, которым нужна была очередная жертва.

Причем, когда речь идет о разработке программного обеспечения для автомобилей, инструменты отнюдь не единственная проблема. Практически невозможно найти литературу для новичков или просто обучающие материалы, касающиеся библиотек или архитектуры соответствующих программ. Термин «учебное пособие» и вовсе звучит неуместно, ведь сфера автомобилестроения – весьма закрытое сообщество. Да и сообществом ее вряд ли назовешь, ведь при такой конкуренции никто не должен догадаться, как вы создаете ту или иную программу. Чтобы узнать хоть что-то об отдельных инструментах и механизмах этого сегмента программирования, вы можете записаться на запредельно дорогие курсы, но ваша компания должна быть готова выложить немалую сумму и потребуется не меньше нескольких недель, чтобы получить опыт, который вам нужен уже сейчас. Очень жаль, что разобраться в специфике программирования для автомобилестроения так сложно, а потому я решил посвятить свою статью именно этой теме.

Поскольку мне неоднократно приходилось переключаться с создания приложений для интернет-пользователей/компьютеров на разработку встроенных программ и обратно, мне не понаслышке известно о проблемах, с которыми сталкиваются новички, имеющие дело, в основном, с первым блоком продуктов. Аналогичные сложности возникают и у программистов, которые никогда не сталкивались со спецификой автомобильной промышленности.

В этой и следующей статье мне хотелось бы поговорить о принципах работы встроенных программ для автомобилей, а также заглянуть в недра экзотической архитектуры встроенных приложений.

Какие темы мы рассмотрим?

  • Как встроенное программное обеспечение повышает производительность автомобиля?
  • Как встроенные приложения позволяют управлять автомобилем?
  • Какие существуют типичные ограничения CPU?
  • Как благодаря встроенным программам осуществляется процесс непрерывной обработки данных с датчиков?
  • Как это программное обеспечение структурировано и как отдельные приложения взаимодействуют между собой для управления автомобилем?
Я отвечу на эти вопросы, рассмотрев конкретный пример, а заодно сделаю обзор по разработке архитектуры встроенного программного обеспечения. В качестве примера мы возьмем полностью электронную систему рулевого управления. Это не настоящая модель, но по строению она, в принципе, похожа на то, что вы, скорее всего, видели в своем автомобиле. Мы поговорим подробнее об архитектуре, а затем перейдем к упрощенной схеме, раскрывающей суть функционала системы.

Вы можете посмотреть видео, посвященное разработке электронной системы рулевого управления. Кстати, я тоже работал в этой команде.

Данная модель частично управляется программно. Частично означает, что специализированное ПО лишь помогает водителю, но полный контроль над системой имеет именно он.

Предположим, нам нужно создать полностью электронную систему рулевого управления, в которой руль напрямую не связан с колесами. Вместо этого датчик измеряет угол поворота руля и отправляет полученные данные нашей программе. В автомобильной терминологии это сервопривод. Вы не поверите, но благодаря Nissan на рынке уже появилась модель с сервоприводом .

Работу ПО обеспечивает крошечный процессор или, если говорить точнее, микроконтроллер, по сети подключенный к датчику.

Когда водитель поворачивает руль, благодаря датчику, который постоянно передает информацию о текущем угле поворота, ПО получает соответствующий сигнал. Например, если водитель поворачивает руль на 90 ° вправо, в течение секунды сигнал датчика обрабатывается по следующему принципу:

Помимо этого, ПО также управляет работой электрического двигателя, который перемещает зубчатую рейку слева направо и в обратном направлении, а, значит, изменяется угол поворота передних колес автомобиля. Соответственно, ПО может направить машину влево или вправо. Связь между микроконтроллером, запускающим ПО, и электродвигателем обеспечивается благодаря электронному блоку управления (ECU), в состав которого входит собственно микроконтроллер и усилитель мощности, регулирующий систему питания двигателя. Таким образом, наша программа варьирует подачу тока в двигателе и положение зубчатой рейки изменяется в нужном направлении.


Электронный блок управления (ECU)

При условии, что встроенное программное обеспечение работает корректно, при повороте руля почти мгновенно изменяется положение зубчатой рейки.


Руль - синий, рулевая рейка - розовый (прим.)

Становится понятно, что даже обработка информации здесь не подчиняется ни логике событийно-ориентированного программирования, как в случае с привычными приложениями графического интерфейса пользователя, ни законам пакетных фалов. Вместо этого требуется непрерывная, своевременная обработка входящих данных. Если программе понадобится слишком много времени, чтобы проанализировать показатели датчиков, рулевая рейка и передние колеса автомобиля будут двигаться с задержкой, и водитель это заметит. Скорее всего, в экстремальной ситуации это приведет к потере контроля над автомобилем , например, при повороте руля в целях объезда препятствия машина не сразу среагирует на маневр. Подобная специфика повышает требования к временным показателям программ для автомобилей, особенно, если учесть ограниченную производительность процессора стандартных электронных блоков управления.

В продолжение серии мы рассмотрим архитектуру программного обеспечения, позволяющую устранить обозначенные проблемы, и, надеюсь, с помощью этих материалов начинающие разработчики встроенных приложений для автомобилей гораздо быстрее освоят базовые принципы, действующие в данной сфере.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков