Принцип работы двигателя внутреннего сгорания. ДВС: устройство, работа, КПД

Принцип работы двигателя внутреннего сгорания. ДВС: устройство, работа, КПД

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля , и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала. Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

Это удивительно, что мы уже более 100 лет используем огонь, металл, бензин и масло, чтобы приводить автомобили в движение. И это в то время, когда в наши дни у каждого из нас есть мобильные телефоны, по мощности ничем не уступающие компьютерам. Наши смартфоны могут распознавать лица, отпечатки пальцев и даже измерять сердечный ритм. У нас есть технологии и высокотехнологичные объекты, которые могут разбить друг об друга протоны, позволяющие изучить их обломки. Это позволяет нам раскрывать тайны Вселенной. Мы также можем посадить зонд на комету и отправить спутник за пределы Солнечной системы. И так можно продолжать до бесконечности... Так почему же в век технологической революции мир до сих пор пользуется устаревшими двигателями внутреннего сгорания?

Несмотря на все наши достижения , двигатель внутреннего сгорания фактически остается основным источником движения всего автотранспорта в мире. И это с учетом того, что этот силовой агрегат был придуман более ста лет назад.

Примечательно, что на фоне других, более современных изобретений, двигатель внутреннего сгорания (ДВС) выглядит очень примитивно. Как и сто лет назад, ДВС работает за счет впрыска топлива, его сжатия, воспламенения и ударной волны, которая образуется из-за сгорания топлива.

Давайте немного проанализируем, как все работает в автомобиле с обычным двигателем.

И так. Вы вставляете в зажигание и поворачиваете его, чтобы запустить стартер. В итоге стартер начинает двигать поршни двигателя вверх и вниз. Далее начинает работать топливный насос подавая топливо в камеру сгорания двигателя.

Вместе с ним начинают работать водяной насос, масляный насос, клапана двигателя, которые начинают свой гармоничный танец, чтобы подавать топливо в камеру сгорания двигателя каждую секунду. В итоге двигатель начинает свою работу, где все его компоненты начинают вращаться и смазываться большим количеством масла.

Согласитесь, что этот процесс относится к очень расточительной операции. Ведь для работы двигателя задействовано множество вспомогательного оборудования, которое практически расходует 75 процентов энергии двигателя впустую. К тому же огромное количество вспомогательных компонентов ДВС быстро выходят из строя из-за постоянной высокой нагрузки.

Но, несмотря на это нельзя говорить, что двигатель внутреннего сгорания изначально основывается на глупой идее. Нет конечно. ДВС служит нам верой и правдой уже более 100 лет и фактически изменил наш мир до неузнаваемости. Но это не означает, что этот удивительный мотор должен служить нам еще следующие 100 лет. Для того времени, когда появился ДВС, это был прорыв, что соответствовало тем технологиям, которые господствовали в ту эпоху.

Но сегодня все изменилось и теперь двигатели внутреннего сгорания не вписываются в тот мир, который нас окружает.

Вы посмотрите на современные автомобили. Они фактически стали выглядеть, как транспортные средства, которые мы видели не раз в фантастических фильмах и футуристических рассказах. Новые автомобили имеют удивительный дизайн, благодаря новым технологиям конструкции и достижениям в аэродинамике.

Современные автомобили могут обмениваться информацией со спутниками, автоматически брать на себя управление автомобилем, предупреждать нас об опасностях на дороге, экстренно тормозить, чтобы избежать опасности, выходить в всемирную сеть Интернет и многое другое.

Но, несмотря на высокотехнологичность, под капотом современных автомобилей, чаще всего, устанавливаются двигатели внутреннего сгорания, которые являются пережитками прошлого. Это в наши дни выглядит точно также, если бы iPhone 7 оснащался поворотным диском для набора номера.

В наши дни, в 21 веке действительно выглядит устаревшим. Особенно его технология получения энергии, которая образуется путем сжигания материала (топлива), от которого образуются отходы в виде газа. И этот вредный газ мы возвращаем обратно в природу, нанося непоправимый вред всей планете.

Хочу отметить, что я не сумасшедший эколог, которые часами на пролет разглагольствуют о защите земли, атмосферы и сохранения пингвинов в Антарктиде. Таких "зеленых фанатов" в нашем мире и так предостаточно. Причем хочу отметить, что различных ярых защитников природы (на грани фанатизма) было очень много еще задолго появления паровых двигателей, не говоря уже о появлении ДВС. И хочу вас заверить, что подобных фондов и организаций, будет большое количество даже в том случае, если экологии нашей планеты больше ничего угрожать не будет.

Но несмотря на свой нейтралитет по отношению к экологии природы, я хочу однозначно сказать, что двигатель внутреннего сгорания действительно себя изжил и ему не место в нашем 21 веке и в нашем будущем.

Тем более, что в наши дни уже есть технологии, которые основываются на более простых и более эффективных способах получения энергии для движения транспорта.

Но, для того чтобы двигатель внутреннего сгорания ушел навсегда в прошлое, необходимо, чтобы мы с вами поняли, что пришло время поменять наш мир, начав с себя. Дело в том, чтобы любая технология стала основной для использования по всему миру необходимо, чтобы мы к ней привыкли, перестроив свои устои и привычки. Это точно также, как мы сначала тяжело привыкали к мобильным телефонам и долгое время не могли отказаться от домашних стационарных телефонов. Затем на смену пришли смартфоны, которые долгое время оставались нами незамеченными, но в итоге прочно вошли в нашу жизнь. Также можно сказать и о новых технологий в автопромышленности. Ведь пока с нашей стороны не появится спрос на новые источники энергии, новые технологии не смогут отправить двигатели внутреннего сгорания на пенсию.

К сожалению, в наши дни не стоит пока рассчитывать на скорое исчезновение ДВС из современных автомобилей. До того момента, когда двигатели внутреннего сгорания мы сможем увидеть только в музеи или в технической литературе в библиотеке или в Интернете, может пройти еще достаточно времени. Дело в том, что несмотря на устаревшую технологию получения энергии, двигатели внутреннего сгорания еще имеют небольшой потенциал развития и увеличения мощности и экономичности. Этим и пользуются автопроизводители. Но я считаю, что в настоящий момент мы наблюдаем переломный момент в истории ДВС и в скором времени люди начнут понимать, что пришло время отказаться от использования автомобилей, оснащенных традиционными двигателями, работающие . И как только это произойдет, автомобильные компании будут вынуждены в короткий срок перестроиться и начать выпускать массово автомобили без ДВС.

Поверьте, совсем скоро двигатели внутреннего сгорания, в качестве источника энергии для передвижения транспорта, станут, как лошади в начале 20 века.

На первом этапе заката двигателей , уйдут самые неэффективные силовые агрегаты. На рынке на определенное время останутся только самые инновационные и экологически чистые двигатели внутреннего сгорания. Затем исчезнут и они.

Так что наше будущее связано с автомобилями, которые будут оснащаться двигателями, работающие на альтернативных источниках энергии.

Скорее всего, совсем скоро мы будем владеть автомобилями с электрическими двигателями, часть которых будет заряжаться электроэнергией, а часть водородным топливом.

Принцип работы четырёхтактного двигателя внутреннего сгорания
Данный принцип и цикличность называется "Цикл ОТТО"

смотрим...
Рядный двигатель внутреннего сгорания

V-образный двигатель внутреннего сгорания

Оппозитный двигатель внутреннего сгорания

Роторно поршневой двигатель внутреннего сгорания

Схема системы зажигания двигателя внутреннего сгорания


A. Провод к свече
B. Крышка трамблера
C. Бегунок
D. Высоковольтный провод катушки зажигания
E. Корпус трамблера
F. Кулачок трамблера
G. Датчик импульсов зажигания
H. Блок контроля зажигания
I. Катушка зажигания
J. Свечи

РОТОРНО ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ

Преимущества и недостатки современного РПД по сравнению с традиционными ДВС

Преимущества:
На 30 – 40% меньше деталей
Существенно меньше удельный вес. Компактная конструкция. Полная
уравновешенность масс. Отсутствие газораспределительного
механизма. Двигатель тяговит и очень эластичен, что позволяет реже
переключать передачи. Возможность легкой модернизации для
работы на водороде.

Недостатки:
В растянутой камере сгорания РПД трудно создать турбулентное
движение высокой интенсивности для быстрого и полного сгорания
горючей смеси, что ухудшает показатели экономичности двигателя и
усложняет борьбу с вредными выбросами. Невозможно создать
дизельный РПД. Больший расход масла (для смазки камеры сгорания)

1. Ротор вращается на продольном валу, вал имеет эксцентрик,
собственно на нём и крутится ротор, а шестеря присутствует для
передачи нужной фазы ротору при вращении на эксцентрике.
2. Вращение ротора на валу смазывается, в РПД есть масляный насос
и масляный поддон. Угловая поверхность ротора в камере сгорания
не смазывается, там применняется прокладочный материал из
тефлона, который несёт функцию уплотнения и скольжения, но на
боковые поверхности ротора подаётся масло, которое не избежно
попадает в камеру сгорания, по этому об экологичности РПД не может
идти речи...

ДВС с поршнем "Качели"

Разрезанный пополам поршень нового мотора наглядно показывает
одно из главных своих преимуществ. Синие вставки изображают
охлаждающую жидкость, которая поставляется в поршень через его
опорную ось

Технические термины

DOHC - Double Over-Head Camshaft (Два верхних Распределительных вала)
SOHC - Single Over-Head Camshaft (Один верхний Распределительный вал)
OHC - Over-Head Camshaft (Верхнее расположение Распределительного вала)
Twin Cam - Двойной Кулачёк - НЕ ДВА РАСПРЕДВАЛА!
(Если в двигателе применяется два клапана с единой и
одновременной функцией, на впуске горючей смеси или выпуске
отработанных газов, при этом, оба единофункциональных клапана,
одновременно приводятся в движение собственным кулачком
распредвала. Два клапана -"близнеца", плюс два однофазных
приводных кулачка распредвала и являются системой "TWIN CAM".
Данная система применяется только в двигателях с системой "DOHC")

HETC - High Efficiency Twin Cam - (Двойной кулачёк с высоким КПД,
система Twin Cam с изменяемой фазой газораспределения)
Supercharger - Нагнетатель (компрессор Рутса, механический нагнетатель, который
имеет привод от коленчатого вала через приводной ремень.
Система увеличения мощности, без увеличения оборотов двигателя)
EFI - Electronic Fuel Injection - (электронный впрыск топлива)
GDI - Gasolin Direct Injection - (прямой впрыск бензина)
MPI - Multi Point Injection - (распределенный впрыск топлива)
Intercooler - Промежуточное охлаждение воздуха.
4WD - 4 Wheel Drive - (Привод на 4 колеса)
4WS - 4 Wheels Swivel - (4 поворотных колеса) Все 4 колеса управляются
при повороте, причем задние колеса на скорости до 35км/ч. поворачиваются
в противоположную передним сторону, а при большей скорости в ту же.
AWD - All Wheel Drive - (Все колёса ведущие)
FWD - Four Wheel Drive - (Четыре ведущих колеса)

GT (Gran Turismo)
Дословно переводится как «большое путешествие»
Автомобильный класс GT - это высокоскоростные автомобили, как
правило с 2-х или 4-х местным кузовом купе, предназначенные для
дорог общего пользования. Аббревиатура GT также является
обозначением гоночного класса в автомобильных соревнованиях.
Наблюдается также неверное расширительное толкование термина,
по которому в категорию GT относят все автомобили спортивного
облика.

GTi - Gran Turismo Iniezione (автомобиль оснащен впрыском)
GTR - Gran Turismo Racer
GTO - Gran Turismo Omologato (Автомобиль допущен для участия в гонках класса GT)
GTS - Gran Turismo Spider
GTB - Gran Turismo Berlinetta (купе с длинным капотом и мягко ниспадающей крышей)
GTV - Gran Turismo Veloce (Обозначение форсированных автомобилей класса GT)
GTT - Gran Turismo Turbo
GTE - Einspritzung German for fuel injection (это немецкий аналог индекса GTi)
GTA - Gran Turismo Alleggerita (Облегченный автомобиль класса GT)
GTAm modified lightened car (это аббревиатура модифицированного облегченного автомобиля класса GT)
GTC - Gran Turismo Compressore/Compact/Cabriolet/Coupe
GTD - Gran Turismo Diesel
HGT - High Gran Turismo

BEAMS (Breakthrough Engine with Advanced Mechanism System)
Новейший двигатель с усовершенствованной системой механизмов
BEAMS - это целое семейство (или поколение) двигателей
(абсолютно всех типов) с установленными механическими
газораспределительными механизмами с возможностью изменения
фаз любой конструкции: VVT, VTEC, MIVEC, Vanos или любых
других. BEAMS - это общий автомобильный термин, относящийся не
только к Toyota, но и к Subaru, BMW, Mercedes, Audi, Honda и прочим.
Следующее поколение двигателей было названо Dual BEAMS и
относилось к ДВС с установленными газораспределительными
механизмами VVT-i, iVTEC, Double Vanos, Bi-Vanos и прочими с
дополнительным электронным управлением, кроме механического
привода.

CVVT (Continuous variable valve timin)
Система изменения фаз газораспределения
Alfa Romeo - Double continuous variable valve timing. CVVT используется на впуске и выпуск
BMW - VANOS/ Double VANOS. Впервы была применена в 1993 году для BMW 3-й и 5-й серий
PSA Peugeot Citro?n - Continuous variable valve timing (CVVT)
Chrysler - dual Variable Valve Timing (dual VVT)
Daihatsu - Dynamic variable valve timing (DVVT)
General Motors - Continuous variable valve timing (CVVT)
Honda - i-VTEC = VTEC. Впервые была применена в 1990 году на автомобилях Civic и CRX
Hyundai - Continuous variable valve timing (CVVT) - дебютировала в двигателе 2.0 L Beta I4
в 2005 в автомобиле «Elantra» и «Kia Spectra», также была применена
в новом двигателе (Alpha II DOHC) в 2006 для автомобилей «Accent\Verna» , «Tiburon» и «Kia cee’d»
MG Rover - Variable Valve Control (VVC)
Mitsubishi - Mitsubishi Innovative Valve timing Electronic Control (MIVEC). Впервые применена в 1992 году в двигателе 4G92
Nissan - Continuous Variable Valve Timing Control System (CVTCS)
Toyota - Variable Valve Timing with intelligence (VVT-i), Variable Valve Timing with Lift and Intelligence (VVTL-i)
Volvo - Continuous variable valve timing (CVVT)

ДВС с вращающимся цилиндром, выполняющим
функцию впускного и выпускного клапана.



четырёхтактный двигатель, в котором нет привычных клапанов и
всей системы их привода. Вместо них британцы заставили работать
распределителем газов сам рабочий цилиндр двигателя, который в
моторах RCV вращается вокруг своей оси. Поршень при этом
совершает точно те же движения, что и раньше. А вот стенки
цилиндра вращаются вокруг поршня (цилиндр закреплён внутри
мотора на двух подшипниках). С края цилиндра устроен патрубок,
который попеременно открывается к впускному или выпускному
окну. Предусмотрено тут и скользящее уплотнение, работающее
аналогично поршневым кольцам – оно позволяет цилиндру
расширяться при нагревании, не теряя герметичность. Приводят
цилиндр во вращение всего три шестерёнки: одна на цилиндре, одна
на коленчатом валу и одна – промежуточная. Естественно, скорость
вращения цилиндра – вдвое меньше оборотов коленвала.

Ключевая деталь привода вращения цилиндра – промежуточная
комбинированная шестерня.

Двухтактный двигатель - поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата - продувочного насоса.
В связи с тем, что в двухтактном двигателе, при равном количестве цилиндров и числе оборотов коленчатого вала, рабочие ходы происходят вдвое чаще, литровая мощность двухтактных двигателей выше, чем четырехтактных - теоретически в два раза, на практике в 1,5-1,7 раза, так как часть полезного хода поршня занимают процессы газообмена, а сам газообмен менее совершенный, чем у четырехтактных двигателей.
В отличие от четырехтактных двигателей, где вытеснение отработавших газов и всасывание свежей смеси осуществляется самим поршнем, в двухтактных двигателях газообмен выполняется за счет подачи в цилиндр рабочей смеси или воздуха (в дизелях) под давлением, создаваемым продувочным насосом, а сам процесс газообмена получил название - продувка. В процессе продувки, свежий воздух (смесь) вытесняет продукты сгорания из цилиндра в выпускные органы, занимая их место.
По способу организации движения потоков продувочного воздуха (смеси), различают двухтактные двигатели с контурной и прямоточной продувкой.

На наших дорогах чаще всего можно встретить автомобили, потребляющие бензин и дизельной топливо. Время электрокаров пока не настало. Поэтому рассмотрим принцип работы двигателя внутреннего сгорания (ДВС). Отличительной чертой его является превращение энергии взрыва в механическую энергию.

При работе с бензиновыми силовыми установками различают несколько способов формирования топливной смеси. В одном случае это происходит в карбюраторе, а потом это все подается в цилиндры двигателя. В другом случае бензин через специальные форсунки (инжекторы) впрыскивается непосредственно в коллектор или камеру сгорания.

Для полного понимания работы ДВС необходимо знать, что существует несколько типов современных моторов, доказавших свою эффективность в работе:

  • бензиновые моторы;
  • двигатели, потребляющие дизельное топливо;
  • газовые установки;
  • газодизельные устройства;
  • роторные варианты.

Принцип работы ДВС этих типов практически одинаковый.

Такты ДВС

В каждом есть топливо, которое взрываясь в камере сгорания, расширяется и толкает поршень, установленный на коленчатом валу. Далее это вращение посредством дополнительных механизмов и узлов передается на колеса автомобиля.

В качестве примера будем рассматривать бензиновый четырехтактный мотор, так как именно он является самым распространенным вариантом силовой установки в машинах на наших дорогах.

Такты :

  1. открывается впускное отверстие и происходит заполнение камеры сгорания подготовленной топливной смесью
  2. происходит герметизация камеры и уменьшение ее объема в такте сжатия
  3. взрывается смесь и выталкивает поршень, который получает импульс механической энергии
  4. камера сгорания освобождается от продуктов горения

В каждом из этих этапов работы ДВС заложена своя происходит несколько одновременных процессов. В первом случае поршень находится в самой нижней своей позиции, при этом открыты все клапаны, впускающие топливо. Следующий этап начинается с полного закрытия всех отверстий и перемещения поршня в максимальную верхнюю позицию. При этом все сжимается.

Достигнув снова крайней верхней позиции поршня, на свечу поступает напряжение, и она создает искру, зажигая смесь для взрыва. Сила этого взрыва толкает поршень вниз, а в это время открываются выпускные отверстия и камера очищается от остатков газа. Затем все повторяется.

Работа карбюратора

Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

Устройство карбюратора

Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

Недостатки карбюраторных систем:

  • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
  • превышение лимитов вредных веществ в выхлопных газах;
  • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

Работа инжекторных моторов

Принцип работы инжекторного двигателя заключается в непосредственном впрыске бензина во впускной коллектор или камеру сгорания. Визуально все схоже с работой дизельной установки, когда подача выполняется дозировано и только в цилиндр. Разница лишь в том, что у инжекторных агрегатов установлены свечи для поджигания.

Конструкция инжектора

Этапы работы бензиновых моторов с прямым впрыском не отличаются от карбюраторного варианта. Разница лишь в месте формирования смеси.

За счет этого варианта конструкции обеспечиваются достоинства таких двигателей:

  • увеличение мощности до 10% при схожих технических характеристиках с карбюраторным;
  • заметная экономия бензина;
  • улучшение экологических характеристик по выбросам.

Но при таких достоинствах есть и недостатки. Основными являются обслуживание, ремонтопригодность и настройка. В отличие от карбюраторов, которые можно самостоятельно разобрать, собрать и отрегулировать, инжекторы требуют специального дорогостоящего оборудования и установленного большого числа разных датчиков в автомобиле.

Способы впрыска топлива

В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

Одноточечный вариант впрыска

Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.

Моноточечный вариант подачи топлива

Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

Прямой впрыск в камеру

Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют "атмосферник" - основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это - многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания - самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС , а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме "плюсов" имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде - самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья "СО2", который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Кривошипно-шатунный механизм (КШМ).
  2. Система впуска.
  3. Топливная система.
  4. Система смазки.
  5. Система зажигания (в бензиновых моторах).
  6. Выпускная система.
  7. Система охлаждения.
  8. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ - преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор - охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством , которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название - четырехтактный двигатель.

  1. Первый такт - впуск.
  2. Второй - сжатие.
  3. Третий - рабочий ход.
  4. Четвертый - выпуск.

Во время первых двух тактов - впуска и рабочего такта, движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта "рабочий ход" смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт "выпуск" , после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков