Двигатель на топливных элементах. Какие автомобили, использующие водород, уже выпускаются

Двигатель на топливных элементах. Какие автомобили, использующие водород, уже выпускаются

Последний энергетический кризис прокатился по миру в далеком 2008 году, и может показаться, что проблем с количеством нефти уже не возникает: нормы выработки становятся больше, а цена – ниже. Но несмотря на это, никто не может отрицать того, что запасы топлива на планете уменьшаются. Автомобильные концерны оплачивают исследования и разработки альтернативных видов топлива. Двигатель Риваза, работающий на воде, появился еще в начале XIX века. Изобретение было представлено в 1806 году и являлось первым двигателем внутреннего сгорания, обогнав бензиновые и газовые двигатели. Разработчики долгое время пытались продолжить разработку в этом направлении, но для того, чтобы провести электролиз и получить необходимое количество энергии требовалось много электричества, что делало такой вид топлива нерентабельным. В конце концов, это в сочетании с взрывоопасностью и поставило точку на исследованиях.

Возврат к водороду произошел в конце 50-х гг. прошлого века: топливный элемент был установлен на тракторы в США. Через три года – в 1962 году – водородный двигатель появился в маленьких автомобилях для гольфа, еще через пять – в мотоциклах. Водород в двигателях внутреннего сгорания (ДВС) может использоваться в двух вариантах: как гибридный двигатель и как топливный элемент.

Гибридный водородный двигатель

Гибридный водородный двигатель используется в качестве присадки в двигателях внутреннего сгорания к бензину или газу. При использовании водорода улучшается воспламеняемость топлива, но из-за высокой степени летучести газа повышается риск воспламенения. Но несмотря на этот недостаток, уменьшается коррозия металлов и вибрация. Для применения водорода нет необходимости в устройстве дополнительного топливного бака, водород вырабатывается из дистиллированной воды. При использовании водорода расстояние, которое можно проехать, увеличивается на 30 процентов. Безопасное использование газа возможно при низких температурах до -30⁰С и при относительно высоких до +30⁰С.

Топливный элемент

Двигатели с топливным элементом самостоятельно производят электроэнергию путем расщепления водорода на отрицательные электроны и положительные протоны. Использование таких двигателей приносит пользу при больших объемах, поэтому чаще всего применяются в большегрузах. На данный момент в Дании, США и Японии тестируют железнодорожные составы, которые работают на двигателях с топливным элементом. Это перспективный путь развития альтернативного топлива, потому что расход водорода меньше расхода бензина на единицу расстояния.

Еще одним направлением для разработки таких двигателей является авиация. В самолете ТУ-154 как раз таки и использовался такой топливный элемент, конечно же, после распада СССР все разработки в этом направлении были заморожены. Тем не менее над проектом пассажирского самолета, который будет работать на водороде, работают ученые Европейского Союза и Китая. Для того чтобы двигатель мог работать, такой самолет должен развить гиперскорость, что будет возможно сделать только при наличии дополнительного двигателя. Преимущества ДВС на водороде связаны с его воздействием на окружающую среду и высоким КПД.

Высокий уровень экологичности

Конечно, невысокая степень загрязнения присутствует, но из-за наличия в механизме автомобиля масла. Даже при добавлении водорода в обычное топливо производительность повышается на 20%. На 5 кг водородного топлива автомобиль проезжает до 500 км. Ученые считают водород единственным возобновляемым источником энергии.

При его неоспоримых преимуществах на сегодняшний день недостатков намного больше, которые в основном связаны с конструктивом двигателя:

  • Летучесть водорода. Заправить автомобиль с ДВС на водороде возможно только на заправке. Дозаправиться от другого автомобиля или из канистры по дороге не получится.
  • Взрывоопасность и пожароопасность. Всем известна катастрофа дирижабля «Гинденбург», который от одной искры загорелся в полете: из 97 человек, находящихся на борту, погибла треть.
  • Высокая стоимость топливных элементов и водородного двигателя, что, в свою очередь, увеличивает стоимость автомобиля. Аналог с водородным двигателем стоит в два раза дороже. Автомобиль на базе водородного двигателя обслуживать в 100 раз дороже, чем обычный двигатель.
  • Водородный двигатель занимает большой объем. В грузовиках и автобусах это не создает никаких неудобств, но в легковых автомобилях уменьшается объем багажного отделения.

Водородный двигатель – это не фантастика. Например, Honda, Toyota и Hyndai наладили линию по производству автомобилей с двигателями на базе водорода и плотно оккупировали рынок: Toyota Mirai (2015), Honda FCX Clarity (2008), Hyundai ix35 Fuel Cell. В середине декабря прошлого года Audi объявило о своем решении выпустить новый концепт на водороде – Q6 H-Tron.

Несмотря на все недостатки, водород – это единственный возобновляемый и неограниченный ресурс на планете. Для того чтобы автомобили с таким ДВС получили широкое распространение, ученым и разработчикам надо будет решить, как устранить негативные характеристики и уменьшить стоимость механизма, а государствам наладить инфраструктуру, чтобы машины на водороде перестали быть редкостью на дорогах.

Рано или поздно запасы нефти по всему миру подойдут к концу. Естественно, это вряд ли произойдет прямо завтра, но уже сегодня цены на топливо на основе нефти существенно выросли. Данный факт стал хорошим стимулом для разработчиков, которые занимаются изобретением топлива будущего. К тому же это должно быть не просто топливо, а, желательно, возобновляемое топливо. Многие уверены, что машина на водороде - игрушка. Давайте посмотрим, так ли это.

Топливо будущего

Про такое топливо еще давным-давно писал в своих приключенческих романах известный писатель Жюль Верн. В одном из своих романов на тему альтернативного источника энергии писатель сказал, что продуктом для энергии станет обычная вода. И так случилось. Да, это не вымысел.

Вода, а точнее, один из ее составляющих - водород - не только первый химический элемент. Это еще и источник энергии будущего. И представьте себе, это будущее уже совсем рядом.

Сегодня японские компании производят двигатели, которые работают только на таком виде топлива. от «Тойоты» - первый в мире серийный автомобиль, оснащенный данным двигателем.

Машина представляет собой седан с четырьмя дверями. В нем установлен электрический двигатель мощностью в 151 л. с. Вы спросите, при чем здесь водород, ведь мотор электрический? Давайте разберемся.

Технологии «Тойоты-Мирай»

Электрический двигатель запитан от специального конвертера. А он уже получает энергию непосредственно из водорода. Газ содержится в баках автомобиля под высоким давлением. Емкости изготовлены из

Но для реакции еще необходим кислород. Да, это так. Кислород машина получает прямо из радиатора во время движения. Одной заправки двух баков водородом будет достаточно, чтобы преодолеть на автомобиле до 480 км. Заправка занимает всего 3 минуты. За данное время в баки машины зальется 170 литров газа. В среднем машина на водороде расход составит порядка 4,7 литра на 100 км пробега.

Как это работает?

Когда водород вступает в реакцию с кислородом, происходит бурная химическая реакция, в ходе которой вырабатывается электрическая энергия. Она сохраняется в аккумуляторе. В движение автомобиль приводится синхронным двигателем переменного тока.

Технические характеристики «японца»

Максимальная скорость, на которую способна машина на водороде, составляет 180 км/ч. До 100 км автомобиль способен разогнаться всего за 9 секунд.

Кроме того что на «японце» можно ездить и не наносить вреда экологии, также данный автомобиль можно применять в домашних условиях в качестве электростанции. Инженеры и конструкторы, которые принимали участие в разработке новинки, утверждают, что при помощи такой системы ток подается на целый дом. Таким образом, можно свободно пользоваться в течение 5 дней.

Скидки на топливо для покупателей

Те жители Японии и США, которые приобретут автомобиль на водороде, получат большие скидки и бесплатную заправку своих машин. Авторы грандиозного проекта уверены, что их ждет успех. Однако другие автопроизводители не сидят сложа руки. И вскоре потребители могут получить большой выбор машин на альтернативном топливе.

Великий и ужасный

О том, что водород может стать номером 1 в вопросах альтернативного топлива, говорят достаточно давно. Еще до экономического кризиса в далеком 2008 году СМИ постоянно печатали репортажи о том, как прекрасно можно использовать силу водорода.

Любая машина на водороде считалась прорывом, а ее создателей возводили чуть ли не в лик святых. Неподготовленные читатели и автолюбители уверенно считали это настоящим прорывом, но нужно сказать, что это не так.

150 лет назад

Реальное положение вещей немного отличается от того, что пишут в блогах, посвященных альтернативной энергетике. Водород в таком качестве используется уже около 150 лет. Автомобиль на водороде помог выиграть войну.

Самый первый двигатель внутреннего сгорания на таком топливе был построен Ленуаром в 1860 году. Затем, в 1942 году, случился достаточно массовый перевод всей автомобильной техники именно на водородный источник энергии.

Это случилось в блокадном Ленинграде. Изначально водород должен был применяться в системах ПВО для аэростатов. Однако великие русские инженеры сумели изменить ситуацию.

Как это было?

Аэробусы применялись для защиты города. Эти, наполненные до краев водородом, летающие объекты из резины не давали возможности фашистским самолетам вести прицельную стрельбу по городу.

Однако резиновая воздушная защита имела один огромный минус. Из-за того, что оболочка аэробуса пропускала этот газ, аэробусы снижались. Вместо водорода его место занимали различные водяные пары, а также другие газы. Поэтому иногда аэробусы опускали на землю, стравливали и заправляли заново.

Для заправки аэробусов применялись лебедки и бензиновые грузовики ГАЗ АА. А в условиях блокады бензин стоил в Ленинграде очень дорого. Война истощила запасы, а Борис Шелиц, который тогда был военным техником, служил как раз на заправочной станции этих самых аэробусов. Так вот. Не стало бензина то есть совсем. Он пробовал использовать для спуска летающих тел электрические лебедки. Однако вскоре закончилось и электричество. Было испробовано множество различных источников альтернативной энергии.

Однажды военный техник подумал, что водород можно использовать иначе, чем просто стравливать в небо. Ведь тепло, которое выдает этот газ при сгорании, в 4 раза превышает таковое от угля, в 3 раза - от бензина и других нефтепродуктов. Шелиц попросил разрешения на эксперимент, и ему его подписали. Нужно ли говорить, что так появилась машина на водороде?

Принцип работы

Схема ученого сводилась к присоединению аэробуса при помощи шланга ко входному коллектору двигателя автомобиля. Водород попадал прямо в цилиндры, минуя при этом карбюратор. Дозировка водорода, а также необходимого для реакции воздуха, выполнялась при помощи дроссельной заслонки или же педалью «газа».

Первые опыты Шелиц проводил в мороз. Двигатель завелся легко, несмотря на температуру за бортом. Мотор проработал стабильно и долго. Правда, аэростаты взорвались, а Шелица контузило. После этого была придумана специальная система защиты. Она основана на водяном затворе, который исключал загорание смеси при вспышках в коллекторе мотора. Так машина на водороде стала более безопасной.

Кстати, после того как один из двигателей разобрали, на нем практически не было следов износа. В цилиндрах не было нагара, а были лишь водяным паром.

Водород спасает жизни

Изобретенная таким образом машина на водороде во время войны помогла спасти множество жизней, выстоять блокаду, а сам Шелиц получил за эту разработку награду, и даже запатентовал ее. Разработчик был награжден Красной Звездой.

Водородное такси

После войны, когда водород уже негде было достать, об этом стали забывать. Однако некоторые люди еще помнят, как на Украине, в Харькове, работало такси, но не простое, а водородное.

Сэкономить вместе с газом Брауна

В большинстве даже самых современных автомобильных ДВС топливо сгорает далеко не оптимально. Около 60% смеси воздуха и горючего просто-напросто теряются в недрах выпускного коллектора. В коллекторе смесь сгорает не полностью, а при этом еще и образует достаточно токсичные выхлопные газы.

Можно использовать водородный генератор. Это принципиально новое оборудование, которое позволит значительно сэкономить на топливе в машине. Большинство таких устройств обладают стандартной принципиальной схемой. Однако непосредственно генератор водорода для автомобилей различных производителей может иметь определенные различия.

Водород в качестве добавки к топливу хотели использовать давно. Но тогда не было систем, позволяющих оптимизировать смесь топлива и так называемого газа Брауна, который подавался в цилиндры.

Генератор водорода для автомобиля в своей работе применяет принцип электролиза. Вода здесь применяется в качестве катализатора. Но она не разлагается на две составляющие - кислород и водород. В современных генераторах используют не что иное, как Это гидроген коричневого или же зеленого цвета. Иногда его называют водяным газом или оксигидрогеном. Формула его HHO. Его отличие в том, что он полностью безопасен и не взрывается. К тому же весь газ, который выработается, полностью поступит в цилиндры.

Подобные генераторы состоят из устройства, которое производит электролиз, и емкости. Процессы электролиза контролируются специальным модулятором. В инжекторных моторах конструкция также предусматривает оптимизатор. Он позволяет в автоматическом режиме регулировать соотношение смести топлива и воздуха с газом Брауна.

Виды катализаторов

Устройства, которые используются в электролизерах, бывают простые, с разделенными ячейками и сухого типа.

В первом случае электролизер имеет самую простую и достаточно примитивную конструкцию. Управление им тоже очень простое. Устройство способно выдавать до 0,7 л газа за минуту. Он предназначается для автомобилей с объемом двигателя до 1,4 л.

Катализатор с раздельным типом ячеек - уже нечто более эффективное. Здесь в комплекте с оборудованием имеется все необходимое программное обеспечение. Устройство может выдать порядка 2 л в минуту. Данный аппарат имеет максимальную эффективность.

Устройство сухого типа применяется преимущественно на машинах с достаточно длительными рабочими циклами. Производительность у него средняя. Она зависит от того, сколько пластин в этой конструкции. Так как пластины имеют открытое расположения, то получается обеспечить хорошее охлаждение.

Как сделать топливную ячейку для авто?

Топливную ячейку или устройство, которое будет вырабатывать водород из воды и размещаться на борту автомобиля, можно сделать самостоятельно. Сгенерированный газ затем необходимо подать во впускной коллектор. Так можно добиться существенного снижения расхода топлива, а в некоторых случаях можно увеличить мощность автомобиля.

Модернизируем генератор

Для того чтобы улучшить систему добычи водорода, добавьте к этой системе еще одну емкость. Она должна находиться немного выше, чем первая. Соединить их можно при помощи трубок. Так можно более эффективно использовать систему.

Электронный блок

Данную часть генератора можно также собрать своими руками, особенно если есть познания в сфере электроники. Если таких познаний и навыков нет, то лучше обратиться к специалистам в этих областях. Блок управления должен в автоматическом режиме изменять ток, который подается на пластины, исходя из оборотов мотора.

Мощность можно установить лишь опытным путем на холостых оборотах мотора, а также под нагрузкой. Электронный блок должен получать информацию с датчиков автомобильной системы управления.

После монтажа этого генератора нужно еще раз удостовериться в герметичности и надежности всех соединений этой конструкции. Утечка опасна не только вероятностью взрыва, такая машина будет вести к В итоге эффект будет крайне отрицательным. Но в целом такая машина на водороде, своими руками сделанная, позволяет экономить от 25% до 40% топлива.

Подобная техника и такие способы экономии топлива уже давно и успешно используются во всем мире. Известный актер Арнольд Шварценеггер уже давно ездит на комбинированной машине, которая работает на бензине с водородом. Автомобиль обошелся кинозвезде в 150 тысяч долларов. Расход топлива на этом комбинированном двигателе составляет 5,8 л на 100 км.

Сегодня такая машина на водороде в России тоже может быть очень актуальной.

Итак, мы выяснили все особенности и принцип работы автомобилей на данном экологическом виде топлива. Как видите, это вполне реальная альтернатива сегодняшнему бензину. И есть надежды, что уже в ближайшие десятилетия человечество перейдет на новую ступень развития, где по улицам будут ездить автомобили, работающие на водороде.

К сожалению, природные ресурсы нашей планеты не являются безграничными. И хотя запасов нефти, являющейся сырьём для производства автомобильного топлива, хватит не на одну сотню лет, неуклонно растущая цена чёрного золота принуждает производителей уже сегодня подыскивать альтернативные источники питания.

Кроме того, к этому приводит необходимость заботы о чистоте окружающей среды. Хотя в большинстве современных транспортных средствах изготовителями предусмотрена тщательная очистка выхлопных газов, полностью уберечь экологию от их негативного воздействия пока не удаётся

Одним из наиболее перспективных вариантов альтернативных источников энергии для автомобилей считается инновационная разработка конструкторского бюро концерна Тойота. Существует ли возможность самостоятельно изготовить водородный двигатель? Попробуем разобраться, предварительно ознакомившись с устройством и принципом действия силового агрегата, предназначенного для машин грядущего поколения.

Водородный двигатель - достойный преемник моторов на традиционном топливе. Рекомендации по самостоятельному изготовлению

Мастерство отечественных умельцев всегда поражало и вызывало неприкрытую зависть автолюбителей всего мира. Стремление избежать лишних расходов принуждает доморощенных механиков совершенствовать личные средства передвижения своими руками. Водородный двигатель не является исключением. Российские автолюбители научились изготавливать его самостоятельно.

Чтобы лучше разобраться во всех тонкостях этого процесса, предварительно следует ознакомиться с устройством силового агрегата, которому, несомненно, принадлежит будущее моторостроения. Также необходимо досконально изучить принцип работы подобного устройства.

Разновидности водородных двигателей

Современная наука не стоит на месте, постоянно находясь в поисках новых решений. Однако реального воплощения в жизнь удостаиваются только самые перспективные из них. Разработки, не обладающие достаточно высокой рентабельностью вкупе с приемлемыми показателями производительности, отметаются сразу. На сегодняшний день известно два вида силовых агрегатов, работающих на водороде:

  1. моторы, в качестве источника питания которых используются топливные элементы. Рядовому обывателю, к сожалению, установить подобный водородный двигатель на свой автомобиль не представляется возможным. Объяснением такой весьма печальной для водителей среднего достатка действительности является довольно ощутимая стоимость комплектующих деталей, составляющих его конструкцию. Некоторые из них изготавливаются из драгоценных материалов, в частности из платины;
  2. второй разновидностью считается водородный двигатель внутреннего сгорания. Его принцип действия аналогичен силовым установкам, работающим на пропане. Поэтому часто газовые агрегаты подвергают определённой перенастройке, приспосабливая к использованию водорода. Несмотря на то, что КПД таких моторов значительно ниже устройств, функционирующих на топливных элементах, многих автолюбителей привлекает их доступная стоимость и возможность самостоятельного изготовления.

Следует отметить, что учёные не остановились на изобретении этих двух типов водородных двигателей. В настоящее время проводятся изыскания по их усовершенствованию. Поэтому невозможно с уверенностью утверждать, какому из них принадлежит будущее.

Принцип действия водородных силовых установок

Чтобы любой мотор мог нормально работать, необходимо его обеспечить надёжным источником питания. Водородный двигатель функционирует за счёт электролиза. С присутствием особого катализатора в воде под воздействием электрического тока образуется не обладающий взрывоопасными свойствами газ с названием гидроген. Его можно представить химической формулой ННО.

В конструкции силового агрегата предусмотрены специальные ёмкости, Они предназначены для соединения гидрогена с топливно-воздушной смесью.

Устройство генератора представлено электролизёром и резервуаром. Процесс образования гидрогена осуществляется при помощи модулятора тока. Водородные двигатели инжекторного типа дополнительно комплектуются особым оптимизатором. Основным предназначением данного приспособления является обеспечение требуемого соотношения гидрогена и топливно-воздушной смеси. С его помощью происходит регулирование процесса для создания идеальных пропорций.

Разновидности катализаторов

Рекомендации по созданию водородного двигателя своими руками

В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:

  1. достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
  2. наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
  3. на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.

Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.

Формирование водородного агрегата

Для начала надлежит обеспечить устройство трубопровода с добавочными ёмкостями Датчик уровня жидкости, закреплённый в центре крышки, препятствует ложному срабатыванию во время движения вверх-вниз. Этим прибором управляется система автоматической подпитки.

Датчик давления регулирует подкачку воды, включая т отключая её при показателях соответственно 40 и 45 psi. При достижении нагрузки в 50 psi приводится в действие предохранитель, в конструкции которого предусмотрены две функционально значимые части:

  • вентиль аварийного сброса используется в экстремальных ситуациях;
  • разрывной диск, принцип работы которого заключается в активации при показателе давления в 60 psi, обеспечивая сохранность системы.

Особое внимание следует уделить качественному отводу тепла. Для этой цели подбирается наиболее холодная свеча.

Электрическая начинка

В качестве импульсного генератора, регулирующего продолжительность и частоту импульса, рекомендуется использовать таймер 555. В микросхеме двигателя на водороде должно быть два таких прибора. При этом конденсаторы первого из них обязаны обладать большей ёмкостью Включение второго генератора происходит с выхода третьей частоты первого таймера.

Резисторы на 220 и 820 Ом соединяются с третьим выходом второго прибора 555. Для получения силы тока требуемой величины используется транзистор. Его защита возложена на диод 1N4007, чем поддерживается нормальное функционирование всей системы.

Заключение

Вполне вероятно, в ближайшем будущем подавляющее большинство транспортных средств будет комплектоваться водородными двигателями. Поскольку кругооборот воды в природе сделал этот материал практически неистощимым, и процесс её добычи не вызывает никаких трудностей, экономия становится очевидной.

Помимо того, главными преимуществами таких агрегатов считаются сокращение потребления бензина и сохранность окружающей среды благодаря абсолютной экологической безопасности.

Несмотря на то, что характеристики самодельного мотора, использующего водородное топливо в качестве источника питания, несколько уступают заводским моделям, отечественные умельцы могут по праву гордиться собственноручным творением.

После того как все государства мира объявили курс на снижение выбросов вредных веществ, производители транспортных средств задумались . Причём они начали вести разработки не только в области электромобилей, но и в направлении использования водорода в качестве топлива для автомобилей. При этом различные компании рассматривают собственные технологии, которые обладают массой . Поэтому стоит подробнее рассмотреть авто на водороде, чтобы понять, что может ожидать нас в ближайшем будущем.

Автомобили на водороде — это довольно перспективное направление в поиске альтернативных источников энергии

Различные методы

Двигатель внутреннего сгорания

Вспомните, почему водород называют «гремучим газом» - правильно, он очень легко взрывается с выделением огромного количества энергии. Почему бы не использовать эту его особенность для приведения в движение автомобилей? Именно так решили специалисты компаний Mazda и BMW, которые несколько лет назад представили свои прототипы автомобилей, работающих на водороде, поступающем внутреннего сгорания.

При этом инженеры BMW вполне справедливо решили, что экспериментировать лучше с более крупным двигателем, который позволит варьировать технические характеристики в очень широком диапазоне. Так появился на свет автомобиль седьмой серии, который оснащался крупным баком для сжатого водорода - при рабочем объёме мотора он обладал производительностью всего в 260 лошадиных сил и расходовал около 50 литров горючего на сто километров пути. Кроме того, фирма BMW экспериментировала и с автомобилями на сжиженном водороде - для этого использовались специальные криогенные баки, которые обладали , сопоставимой с ценой самой платформы машины - это делалось для увеличения запаса хода. Однако отличительной чертой всех экспериментальных автомобилей BMW, работавших на водороде, было наличие традиционной бензиновой системы питания - она позволяла перейти на обычное горючее при исчерпании запаса водорода или при неполадках, связанных с его подачей.

А вот Mazda пошла другим путём, решив не ограничиваться в своих экспериментах - японцы смонтировали установку питания водородом на автомобиле RX-8, оснащённом Ванкеля объёмом 1,3 литра. К сожалению, результат оказался провальным - мощность упала с 240 до 100 лошадиных сил, в расход топлива возрос почти до 60–70 литров на сотню километров. В отличие от BMW 7, которая сдавалась в лизинг в США и странах Европы, Mazda RX-8, работающая на водороде, так и осталась в виде прототипа. В настоящее время обе компании свернули эти исследовательские программы, сосредоточившись на других направлениях развития альтернативной энергетики.

Видео об автомобилях на водороде:

Причину понять легко, если углубиться в отчёты инженеров - они столкнулись с такими , как:

  • Сниженный ресурс мотора;
  • Частые поломки, связанные с разрушением стенок цилиндров, клапанов и поршней;
  • Малый запас хода;
  • Частые утечки, грозящие возгоранием или даже взрывом.

Конечно, многие небольшие исследовательские институты создавали водородные автомобили, работавшие по принципу сгорания «гремучего газа», и обладавшие лучшими характеристиками, чем . Однако стало понятно, что двигатель автомобиля необходимо изначально разрабатывать под водород - а производители оказались не готовыми к таким сомнительным инвестициям.

Топливные ячейки

Решение проблемы пришло из области космонавтики - так как сжигать горючее для получения электроэнергии на орбите нерационально, учёные разработали специальные топливные ячейки, в которых протекала химическая реакция с выделением огромного количества электроэнергии. При прохождении водорода сквозь такую ячейку, наполненную каталитическим материалом, происходит его соединение с кислородом, в результате которого образуется вода. Соответственно, пользователь получает только плюсы - никаких вредных веществ, на выходе только чистая вода и определённый запас электроэнергии . Остаётся только запастись нужным количеством водорода.

Автомобиль на водороде, работающий с применением топливных ячеек, функционирует - в нём отсутствует двигатель внутреннего сгорания, который полностью заменён электрическим мотором. Энергия, полученная от реакции водорода с кислородом, накапливается в аккумуляторах - а некоторые производители, ориентированные на достижение автомобилем хороших динамических характеристик, используют суперконденсаторы, которые позволяют максимально быстро отдавать полученный заряд. Благодаря этому преодолевается один из недостатков топливных ячеек на водороде - они являются инертными, то есть не могут изменять свою отдачу по желанию водителя автомобиля.

Основные преимущества

Основной плюс, которым обладает машина на водороде, использующая топливные ячейки в качестве источника энергии - сочетание в ней лучших характеристик автомобилей с двигателями внутреннего сгорания и электромобилей. Запас хода очень высок - особенно в случае, когда не только от реакции водорода с кислородом, но и от обычной электрической сети. Вместе с тем отсутствие агрегата, сжигающего углеводородное топливо, позволяет получить просто огромное количество преимуществ :

  • Отсутствие вредных выбросов - как и при сгорании водорода, в топливных ячейках образуется только водяной пар, который не наносит вреда окружающей среде.
  • Меньшая масса - кстати, комбинация водородных топливных ячеек, электродвигателя и аккумуляторов имеет меньшие габариты и вес, чем у батарей и мотора в традиционном электромобиле при сходных характеристиках и запасе хода.
  • Уменьшение количества движущихся и соприкасающихся между собой частей в несколько раз - за счёт этого существенно повышается ресурс эксплуатации .

Если же рассматривать водородный автомобиль, который оснащается двигателем внутреннего сгорания, адаптированным к этому виду топлива, то пока у него больше минусов, чем положительных сторон. Однако отчёты научно-исследовательских институтов, которые занимаются разработками в этом направлении, позволяют надеяться на то, что в скором будущем ситуация коренным образом поменяется. Уже сообщается о том, что двигатели автомобилей, которые изначально создавались для работы на водороде, имеют :

  • Ресурс эксплуатации, увеличенный на 20–30%, а также уменьшенная вероятность возникновения меньших поломок.
  • Мощность, большая на 15–20%, больший КПД, означающий лучшее использование энергетического потенциала горючего.
  • Стоимость пробега, в 2 раза меньшая, чем аналогичный показатель для бензина - однако только при условии промышленного производства водорода.

Вот только стоимость , очень уж высока - как в силу применения дорогостоящих инновационных материалов, так и благодаря штучному производству, ведущемуся по обходным технологиям.

Недостатки

К сожалению, не обходится и без минусов - впрочем, это касается не только водорода, но и всех прочих технологий альтернативной энергетики, работа над которыми ведётся относительно недавно. С точки зрения рядового потребителя пока существенным недостатком является высокая стоимость производства топлива - относительно недорого можно купить только водород, создаваемый в промышленных масштабах - он является редкостью, так как заводов по выпуску этого газа пока относительно немного. Кроме того, при проведении опросов в странах, где уже продано либо достаточно много автомобилей, работающих на водороде, результаты показали, что очень многие люди боятся взрыва «гремучего газа», хотя о таких случаях они даже не слышали. Действительно, на испытаниях нередко случались возгорания в результате утечки водорода, однако в серийное производство были отправлены только автомобили с многоуровневыми системами безопасности, предотвращающими возникновение взрыва.

Однако благодаря применению многих инновационных технических решений водородная машина является не только экономичной и безопасной, но и дорогой. В частности, никогда не разглашала стоимость автомобиля седьмой серии, работающего на водороде, разрешая только брать его в лизинг. Однако некоторые эксперты говорят о том, что его рыночная цена могла бы быть установлена на уровне 1,2–1,5 миллиона долларов. Даже наиболее дешёвые автомобили, выпускаемые Honda и Toyota, стоят не менее 30–50 тысяч долларов при минимальном уровне оснащения - и то, только благодаря демпинговой политике компаний и компенсациям, выделяемых правительством Японии. Стоит сказать и о том, что топливные ячейки и баки не могут быть долговечными в силу длительной эксплуатации в условиях агрессивной среды - и если ячейки можно выпускать в сменном виде, то на придётся затратить немало денег.

Пришло время поговорить о главном - где заправлять автомобиль, работающий на водороде? Говорить о создании сети заправок даже в Японии, США и Германии очень рано - пока они представляют собой единичные экземпляры. В то же время строительство соответствующей инфраструктуры для электромобилей идёт полным ходом, что позволяет получить сведения о приоритетах, которые устанавливаются современным обществом и государственными учреждениями. Заправлять водородом машину с использованием самодельных приспособлений очень опасно - вероятность взрыва будет невероятно высокой.

Топливо будущего или нет?

Сейчас приходится слышать о том, что водород является топливом будущего - однако стоит вспомнить о том, что подобные слоганы звучали во всём мире ещё в конце 60-х годов - причём Советский Союз, в котором исследования свойств этого газа шли полным ходом, исключением не был. Несмотря на всё прошедшее время, водородные автомобили так и остались прототипами, не слишком пригодными к серийному производству и эксплуатации общего пользования. Однако разработки не прекращаются, несмотря на то, что пока положительные результаты были достигнуты только единичными компаниями, начавшими мелкосерийное изготовление таких автомобилей. Кроме того, необходимо вспомнить о том, что водород является даже для окружающей среды источником энергии, чем электричеством. Ведь несмотря на развитие энергетики, в мире до 70% электростанций работают на таких «грязных» видах топлива, как нефть и уголь.


Автомобиль Toyota Mirai - водородная альтернатива завоевывающих рынок электрокаров - успешно завершил последний «секретный» этап дорожных испытаний. Буквально на днях представители компании заявили, что готовы запустить автомобиль в производство.


Благодаря усилиям японских производителей авто, уже в обозримом будущем водородные автомобили могут стать привычным явлением на дорогах в самых разных странах. Так, гибридный автомобиль на водородном двигателе Toyota Mirai уже сегодня готов к выходу на мировой рынок.


Впервые, еще концептуальная модель, Toyota Mirai была представлена в 2013 году на Токийском автосалоне. Позже машина демонстрировалась публике в доработанном виде в 2014 и 2015 годах. Ожидалось, что авто выйдет на дороги до конца 2015 года, однако в последствии дата была перенесена на 2016. При этом предварительные продажи авто начались еще в 2014 году в Японии. Стоит одна Toyota Mirai порядка 57 тысяч американских долларов. В США и странах Европы Toyota Mirai будет продаваться уже после официального релиза.


Водородный автомобиль имеет кузов седана на четыре места. Длина кузова – 4 870 мм, ширина – 1 810 мм, высота – 1 535 мм. Используемая модель - ZBA-JPD10-CEDSS. Машина использует только передний привод. Радиус поворота – 5.7 метров, а размер шин 215/55. Базовая комплекция использует легкосплавные диски R17. Дорожный просвет – 130 мм. На сегодняшний день это все, что официально известно о технической составляющей Toyota Mirai.


Были анонсированы и параметры силовой установки авто. Ездить автомобиль будет благодаря FCA110, которая будет питаться от топливных элементов класса FC stack. Двигатель производит электроэнергию за счет протекающей в нем химической реакции водорода и кислорода. Максимальный КПД составляет 83%, для сравнения 1.3-литровый бензиновый двигатель дает всего 38%. Максимальная мощность электродвигателя при этом составит 153 л.с.


Никаких вредных выбросов Toyota Mirai не создает, выходит из двигателя машины только энергия в чистом виде и вода. За 4 км, машина выбросит в атмосферу 240 миллилитров воды.


Куда важнее и интереснее то, что 10 февраля 2016 года закончились последние 107-дневные испытания Toyota Mirai. Машина проехала по дорогам Японии, США, Германии и многих других стран. В общей сложности машин, а прошла 100 тысяч километров. За это время автомобиль сменил два раза свои шины и один раз колодки. Топливные элементы водородного авто показали себя с лучшей стороны.

Стоит отметить, что бренд Toyota вошёл в .



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков