Типы двигателей автомобилей. Типы автомобильных двигателей и их параметры

Типы двигателей автомобилей. Типы автомобильных двигателей и их параметры

Вот уже около ста лет повсюду в мире основным силовым агрегатом на автомобилях и мотоциклах, тракторах и комбайнах, прочей технике является двигатель внутреннего сгорания. Придя в начале двадцатого века на смену двигателям внешнего сгорания (паровым), он и в веке двадцать первом остаётся наиболее экономически эффективным видом мотора. В данной статье мы подробно рассмотрим устройство, принцип работы различных видов ДВС и его основных вспомогательных систем.

Определение и общие особенности работы ДВС

Главная особенность любого двигателя внутреннего сгорания состоит в том, что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. В процессе работы химическая и тепловая энергия от сгорания топлива преобразуется в механическую работу. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, которое образуется в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Классификация двигателей внутреннего сгорания

В процессе эволюции ДВС выделились следующие, доказавшие свою эффективность, типы данных моторов:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на
  • карбюраторные , в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
  • инжекторные , в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
  • дизельные , в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается от температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. В моторах данного типа тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. В данных моторах преображение тепловой энергии в механическую работу осуществляется с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

Технику с прочими видами ДВС можно вносить в Красную книгу. В наше время автомобили с роторно-поршневыми двигателями делает только «Mazda». Опытную серию автомашин с газотурбинным двигателем выпускал «Chrysler», но было это в 60-х годах, и более к этому вопросу никто из автопроизводителей не возвращался. В СССР газотурбинными двигателями оснащались танки «Т-80» и десантные корабли «Зубр», но в дальнейшем решено было отказаться от данного типа моторов. В связи с этим, подробно остановимся на «завоевавших мировое господство» поршневых двигателях внутреннего сгорания.

Корпус двигателя объединяет в единый организм:

  • блок цилиндров , внутри камер сгорания которых воспламеняется топливно-воздушная смесь, а газы от этого сгорания приводят в движение поршни;
  • кривошипно-шатунный механизм , который передаёт энергию движения на коленчатый вал;
  • газораспределительный механизм , который призван обеспечивать своевременное открытие/закрытие клапанов для впуска/выпуска горючей смеси и отработанных газов;
  • система подачи («впрыска») и воспламенения («зажигания») топливно-воздушной смеси ;
  • система удаления продуктов горения (выхлопных газов).

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Определимся в терминологии. Такт - это рабочий процесс, происходящий в двигателе за один ход поршня, точнее, за одно его движение в одном направлении, вверх или вниз. Цикл - это совокупность тактов, повторяющихся в определённой последовательности. По количеству тактов в пределах одного рабочего цикла ДВС подразделяются на двухтактные (цикл осуществляется за один оборот коленвала и два хода поршня) и четырёхтактные (за два оборота коленвала и четыре ходя поршня). При этом, как в тех, так и в других двигателях, рабочий процесс идёт по следующему плану: впуск; сжатие; сгорание; расширение и выпуск.

Принципы работы ДВС

- Принцип работы двухтактного двигателя

Когда происходит запуск двигателя, поршень, увлекаемый поворотом коленчатого вала, приходит в движение. Как только он достигает своей нижней мёртвой точки (НМТ) и переходит к движению вверх, в камеру сгорания цилиндра подаётся топливно-воздушную смесь.

В своём движении вверх поршень сжимает её. В момент достижения поршнем его верхней мёртвой точки (ВМТ) искра от свечи электронного зажигания воспламеняет топливно-воздушную смесь. Моментально расширяясь, пары горящего топлива стремительно толкают поршень обратно к нижней мёртвой точке.

В это время открывается выпускной клапан, через который раскалённые выхлопные газы удаляются из камеры сгорания. Снова пройдя НМТ, поршень возобновляет своё движение к ВМТ. За это время коленчатый вал совершает один оборот.

При новом движении поршня опять открывается канал впуска топливно-воздушной смеси, которая замещает весь объём вышедших отработанных газов, и весь процесс повторяется заново. Ввиду того, что работа поршня в подобных моторах ограничивается двумя тактами, он совершает гораздо меньшее, чем в четырёхтактном двигателе, количество движений за определённую единицу времени. Минимизируются потери на трение. Однако выделяется большая тепловая энергия, и двухтактные двигатели быстрей и сильнее греются.

В двухтактных двигателях поршень заменяет собой клапанный механизм газораспределения, в ходе своего движения в определённые моменты открывая и закрывая рабочие отверстия впуска и выпуска в цилиндре. Худший, по сравнению с четырёхтактным двигателем, газообмен является главным недостатком двухтактной системы ДВС. В момент удаления выхлопных газов теряется определённый процент не только рабочего вещества, но и мощности.

Сферами практического применения двухтактных двигателей внутреннего сгорания стали мопеды и мотороллеры; лодочные моторы, газонокосилки, бензопилы и т.п. маломощная техника.

Данных недостатков лишены четырёхтактные ДВС, которые, в различных вариантах, и устанавливаются на практически все современные автомобили, трактора и прочую технику. В них впуск/ выпуск горючей смеси/выхлопных газов осуществляются в виде отдельных рабочих процессов, а не совмещены со сжатием и расширением, как в двухтактных. При помощи газораспределительного механизма обеспечивается механическая синхронность работы впускных и выпускных клапанов с оборотами коленвала. В четырёхтактном двигателе впрыск топливно-воздушной смеси происходит только после полного удаления отработанных газов и закрытия выпускных клапанов.

Процесс работы двигателя внутреннего сгорания

Каждый такт работы составляет один ход поршня в пределах от верхней до нижней мёртвых точек. При этом двигатель проходит через следующие фазы работы:

  • Такт первый, впуск . Поршень совершает движение от верхней к нижней мёртвой точке. В это время внутри цилиндра возникает разряжение, открывается впускной клапан и поступает топливно-воздушная смесь. В завершение впуска давление в полости цилиндра составляет в пределах от 0,07 до 0,095 Мпа; температура - от 80 до 120 градусов Цельсия.
  • Такт второй, сжатие . При движении поршня от нижней к верхней мёртвой точке и закрытых впускном и выпускном клапане происходит сжатие горючей смеси в полости цилиндра. Этот процесс сопровождается повышением давления до 1,2-1,7 Мпа, а температуры - до 300-400 градусов Цельсия.
  • Такт третий, расширение . Топливно-воздушная смесь воспламеняется. Это сопровождается выделением значительного количества тепловой энергии. Температура в полости цилиндра резко возрастает до 2,5 тысяч градусов по Цельсию. Под давлением поршень быстро движется к своей нижней мёртвой точке. Показатель давления при этом составляет от 4 до 6 Мпа.
  • Такт четвёртый, выпуск . Во время обратного движения поршня к верхней мёртвой точке открывается выпускной клапан, через который выхлопные газы выталкиваются из цилиндра в выпускной трубопровод, а затем и в окружающую среду. Показатели давление в завершающей стадии цикла составляют 0,1-0,12 Мпа; температуры - 600-900 градусов по Цельсию.

Вспомогательные системы двигателя внутреннего сгорания

Система зажигания является частью электрооборудования машины и предназначена для обеспечения искры , воспламеняющей топливно-воздушную смесь в рабочей камере цилиндра. Составными частями системы зажигания являются:

  • Источник питания . Во время запуска двигателя таковым является аккумуляторная батарея, а во время его работы - генератор.
  • Включатель, или замок зажигания . Это ранее механическое, а в последние годы всё чаще электрическое контактное устройство для подачи электронапряжения.
  • Накопитель энергии . Катушка, или автотрансформатор - узел, предназначенный для накопления и преобразования энергии, достаточной для возникновения нужного разряда между электродами свечи зажигания.
  • Распределитель зажигания (трамблёр) . Устройство, предназначенное для распределения импульса высокого напряжения по проводам, ведущим к свечам каждого из цилиндров.

Система зажигания ДВС

- Впускная система

Система впуска ДВС предназначена для бесперебойной подачи в мотор атмосферного воздуха, для его смешивания с топливом и приготовления горючей смеси. Следует отметить, что в карбюраторных двигателях прошлого впускная система состоит из воздуховода и воздушного фильтра. И всё. В состав впускной системы современных автомобилей, тракторов и прочей техники входят:

  • Воздухозаборник . Представляет собою патрубок удобной для каждого конкретного двигателя формы. Через него атмосферный воздух всасывается внутрь двигателя, посредством разницы в показателях давления в атмосфере и в двигателе, где при движении поршней возникает разрежение.
  • Воздушный фильтр . Это расходный материал, предназначенный для очистки поступающего в мотор воздуха от пыли и твёрдых частиц, их задержки на фильтре.
  • Дроссельная заслонка . Воздушный клапан, предназначенный для регулирования подачи нужного количества воздуха. Механически она активируется нажатием на педаль газа, а в современной технике - при помощи электроники.
  • Впускной коллектор . Распределяет поток воздуха по цилиндрам мотора. Для придания воздушному потоку нужного распределения используются специальные впускные заслонки и вакуумный усилитель.

Топливная система, или система питания ДВС, «отвечает» за бесперебойную подачу горючего для образования топливно-воздушной смеси. В состав топливной системы входят:

  • Топливный бак - ёмкость для хранения бензина или дизтоплива, с устройством для забора горючего (насосом).
  • Топливопроводы - комплекс трубок и шлангов, по которым к двигателю поступает его «пища».
  • Устройство смесеобразования, то есть карбюратор или инжектор - специальный механизм для приготовления топливно-воздушной смеси и её впрыска в ДВС.
  • Электронный блок управления (ЭБУ) смесеобразованием и впрыском - в инжекторных двигателях это устройство «отвечает» за синхронную и эффективную работу по образованию и подаче горючей смеси в мотор.
  • Топливный насос - электрическое устройство для нагнетания бензина или солярки в топливопровод.
  • Топливный фильтр - расходный материал для дополнительной очистки топлива в процессе его транспортировки от бака к мотору.

Схема топливной системы ДВС

- Система смазки

Предназначение системы смазки ДВС - уменьшение силы трения и её разрушительного воздействия на детали; отведение части излишнего тепла ; удаление продуктов нагара и износа ; защита металла от коррозии . Система смазки ДВС включает в себя:

  • Поддон картера - резервуар для хранения моторного масла. Уровень масла в поддоне контролируется не только специальным щупом, но и датчиком.
  • Масляный насос - качает масло из поддона и подаёт его к нужным деталям двигателя через специальные просверленные каналы-«магистрали». Под действием силы тяжести масло стекает со смазанных деталей вниз, обратно в поддон картера, накапливается там, и цикл смазки повторяется снова.
  • Масляный фильтр задерживает и удаляет из моторного масла твёрдые частицы, образующиеся из нагара и продуктов износа деталей. Фильтрующий элемент всегда меняется на новый вместе с каждой заменой моторного масла.
  • Масляный радиатор предназначен для охлаждения моторного масла, с помощью жидкости из системы охлаждения двигателя.

Выхлопная система ДВС служит для удаления отработанных газов и уменьшения шумности работы мотора. В современной технике выхлопная система состоит из следующих деталей (по порядку выхода отработанных газов из мотора):

  • Выпускной коллектор. Это система труб из жаропрочного чугуна, которая принимает раскалённые отработанные газы, гасит их первичный колебательный процесс и отправляет далее, в приёмную трубу.
  • Приёмная труба - изогнутый газоотвод из огнестойкого металла, в народе именуемый «штанами».
  • Резонатор , или, говоря народным языком, «банка» глушителя - ёмкость, в которой происходит разделение выхлопных газов и снижение их скорости.
  • Катализатор - устройство, предназначенное для очистки выхлопных газов и их нейтрадизации.
  • Глушитель - ёмкость с комплексом специальных перегородок, предназначенных для многократного изменения направления движения потока газов и, соответственно, их шумности.

Выхлопная система ДВС

- Система охлаждения

Если на мопедах, мотороллерах и недорогих мотоциклах до сих пор применяется воздушная система охлаждения двигателя - встречным потоком воздуха, то для более мощной техники её, разумеется, недостаточно. Здесь работает жидкостная система охлаждения, предназначенная для забирания излишнего тепла у мотора и снижения тепловых нагрузок на его детали.

  • Радиатор системы охлаждения служит для отдачи избыточного тепла в окружающую среду. Он состоит из большого количества изогнутых аллюминиевых трубок, с рёбрами для дополнительной теплоотдачи.
  • Вентилятор предназначен для усиления охлаждающего эффекта на радиатор от встречного потока воздуха.
  • Водяной насос (помпа) - «гоняет» охлаждающую жидкость по «малому» и «большому» кругам, обеспечивая её циркуляцию через двигатель и радиатор.
  • Термостат - специальный клапан, обеспечивающий оптимальную температуру охлаждающей жидкости путём запуска её по «малому кругу», минуя радиатор (при холодном двигателе) и по «большому кругу», через радиатор - при прогретом двигателе.

Слаженная работа данных вспомогательных систем обеспечивает максимальную отдачу от двигателя внутреннего сгорания и его надёжность.

В заключение необходимо отметить, что в обозримом будущем не предвидится появления достойных конкурентов двигателю внутреннего сгорания. Есть все основания утверждать, что в своём современном, усовершенствованном виде, он ещё несколько десятилетий останется господствующим видом мотора во всех отраслях мировой экономики.

Двигатель это очень важная составляющая любого автомобиля. Выбору двигателя надо уделять особое внимание. Если вы не знаете какие виды двигателей существуют, вы не сможете выбрать двигатель который подойдёт именно вам. А от него зависит многое, в том числе и ваша безопасность.

Первым в этом списке двигателей, будет двигатель внутреннего сгорания, двигатель внутреннего сгорания работает на бензине. Конструкция этого двигателя такова, что управление мощностью происходит с помощью довольно мощного потока воздуха и также при помощи дроссельной заслонки. Управление таким двигателем, осуществляется через место водителя, благодаря нажатию на педаль.

Инжекторные двигатели

Есть также другой тип двигателей, а именно инжекторные. В инжекторных двигателях существуют специальные форсунки, благодаря этим форсункам и осуществляется процесс впрыска. Инжекторные двигатели довольно экономичные, затраты на бензин у них гораздо меньше. Так что, если вы хотите сэкономить деньги на бензине, выбирайте автомобиль именно с таким двигателем.

Карбюраторные двигатели

Третий тип двигателей в этом списке, это карбюраторные. В двигателях подобного вида происходит довольно сложный процесс. В них кислород перемешивается с топливом, в специализированном для этого процесса устройстве. Стоит отметить что такие двигатели уже не используют в современных машинах, на смену таким двигателям пришли инжекторные.

Существует поршневой двигатель, этот двигатель называют и по другому, а именно дизельный. Процесс работы в подобном двигателе происходит благодаря поджиганию топлива, (топливо находится в распылённом состояние), потом оно соединяется, с уже другим горячим топливом, и тем самым активирует работу двигателя, стоит отметить, что данный процесс происходит при сжатом воздухе. Именно этот двигатель более подробно описывается в этой статье.

Какой двигатель для автомобиля выбрать?

Чтобы понять какой двигатель подходит именно вам, надо понимать зачем и как вы будете использовать автомобиль, потому что с дизельным двигателем крайне не рекомендуется быстро ездить, вы сможете причинить вред поршневому двигателю, если будете набирать слишком много оборотов, да и разгоняться вы будете тоже долго.

А вот с двигателем на бензине уже можно позволить себе ездить довольно быстро, и не бояться не неожиданной поломки. Но справедливости ради, стоит отметить что с дизельными двигателями, не придётся мучиться с различным свечами зажигания, трамблёрами, но поршневой двигатель довольно тяжело завести на морозе. Также придётся довольно часто менять фильтры, вам надо будет использовать, очень хорошее топливо.

Дизельные двигатели очень шумные, но у поршневого двигателя есть хорошая, можно даже сказать отличная тяга, на не больших скоростях.

Не стоит думать что двигатели на бензине идеальные, и не имеют минусов, это не так. Самым большим минусом бензинового двигателя являются свечи зажигания. В наше время появились машины гибриды, подобные машины представляют собой автомобиль, в котором стоит два двигателя, а именно электрический и бензиновый, когда надо ездить на низких скоростях работает электрический двигатель, а если вам надо ездить на высоких скоростях, включается бензиновый двигатель, подобные автомобили очень качественные, но стоит подметить то что, ремонт подобных авто довольно дорогой.

Можно сделать вывод, что не существует для всех, одного подходящего двигателя. Выбирайте двигатель из собственных предпочтений, а в этой статье просто рассказывается про плюсы и минусы каждого из вида двигателей. Но помните, выбору двигателя надо уделить достаточно много внимания.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует либо перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях, либо создания вращающегося магнитного поля в самом статоре (классический пример - асинхронный трехфазный двигатель).

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

  • Электродвигатели постоянного тока
    Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.

  • Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
  • Шаговые электродвигатели
    Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
  • Серводвигатели
    Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
  • Линейные электродвигатели
    Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
  • Синхронные двигатели
    Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
  • Асинхронные двигатели
    Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Обозначение серии электродвигателя:

  • АИР, А, 4А, 5А, АД, 7АVЕR - общепромышленные электродвигатели с привязкой мощностей по ГОСТ 51689-2000
  • АИС, 6А, IMM, RA, AIS - общепромышленные электродвигатели с привязкой мощностей по евростандарту DIN (CENELEC)
  • АИМ, АИМЛ, 4ВР, ВА, АВ, ВАО2, 1ВАО, 3В - взрывозащищенные электродвигатели
  • АИУ, ВРП, АВР, 3АВР, ВР - взрывозащищенные рудничные электродвигатели
  • А4, ДАЗО4, АОМ, ДАВ, АО4 - высоковольтные электродвигатели

Признак модификации электродвигателя:

  • М - модернизированный электродвигатель (например: АДМ63А2У3)
  • К - электродвигатель с фазным ротором (например: 5АНК280A6)
  • Х - электродвигатель в алюминиевой станине (например: 5АМХ180М2У3)
  • Е - однофазный электродвигатель 220В (например: АИРЕ80С2У3)
  • Н - электродвигатель защищенного исполнения с самовентиляцией (например: 5АН200М2У3)
  • Ф - электродвигатель защищенного исполнения с принудительным охлаждением (например: 5АФ180М2У3)
  • С - электродвигатель с повышенным скольжением (например: АИРС180М4У3)
  • В - встраиваемый электродвигатель (например: АДМВ63В2У3)
  • Р - электродвигатель с повышенным пусковым моментом (например: АИРР180S4У3)
  • П - электродвигатель для привода вентиляторов в птицеводческих хозяйствах («птичник») (например: АИРП80А6У2)

Общепринятое климатическое исполнение ГОСТ - распространяется на все виды машин, приборов, электродвигатели и другие технические изделия. Полная расшифровка обозначения приведена далее.

Буква обозначает климатическую зону

  • У — умеренный климат;
  • Т — тропический климат;
  • ХЛ — холодный климат;
  • М — морской умеренно-холодный климат;
  • О — общеклиматическое исполнение (кроме морского);
  • ОМ — общеклиматическое морское исполнение;
  • В — всеклиматическое исполнение.
  • 1 — на открытом воздухе;
  • 2 — под навесом или в помещении, где условия такие же, как на открытом воздухе, за исключением солнечной радиации;
  • 3 — в закрытом помещении без искусственного регулирования климатических условий;
  • 4 — в закрытом помещении с искусственным регулированием климатических условий (вентиляция, отопление);
  • 5 — в помещениях с повышенной влажностью, без искусственного регулирования климатических условий

По типу работы данные двигатели делятся на:

  • синхронные двигатели;
  • асинхронные двигатели;.

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Ротор такого электродвигателя - это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

  • Однофазным - в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения. Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.
  • Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой). Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно - конденсатор).
  • Трехфазный асинхронный электродвигатель - наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса - изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре - для промышленной сети 50 Гц это 3000 об/мин). Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока. Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым: при подаче напряжения на статор он работает как электродвигатель, при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток. Основная область использования синхронных электродвигателей - высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов - это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора. В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Данные двигатели с наличием щёточно-коллекторного узла бывают:

  • Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
  • Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель - в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора. Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов. По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

Электродвигатель однофазный асинхронный

Устройство представляет собой асинхронный электромотор, в котором на статоре имеется только одна рабочая обмотка. Оборудование предназначено для подключения к однофазной сети переменного тока. Агрегат применяется для комплектации приводных систем промышленной и бытовой техники небольшой мощности — насосов, станков, шлифовальных машин, соковыжималок, мясорубок, вентиляторов, компрессоров и т. д.

Преимущества этого оборудования:

  • простая конструкция;
  • экономичное расходование электроэнергии;
  • универсальность (однофазный электродвигатель применяется во многих производственных сферах);
  • приемлемый уровень вибрации и шума во время работы;
  • повышенный срок эксплуатации;
  • устойчивость к различным типам перегрузок.

Отдельным плюсом однофазных электродвигателей указанных производителей является возможность подключения агрегата к сети 220 Вольт. Благодаря этому устройство может использоваться не только на производстве, но и для решения повседневных задач бытового плана. Представленные однофазные асинхронные электродвигатели легко подключаются и не требуют специального технического обслуживания

Электродвигатель трехфазный асинхронный

Агрегат представляет собой асинхронный мотор переменного тока, состоящий из ротора и статора с тремя обмотками. Устройство предназначено для подключения к трехфазной сети переменного тока. Этот асинхронный электродвигатель нашел широкое применение в промышленности: его нередко используют для комплектации мощного оборудования, например, компрессоров, дробилок, мельниц и центрифуг. Кроме того, агрегат включен в конструкцию многих устройств автоматики и телемеханики, медицинских приборов, а также различных станков и пил, предназначенных для применения в бытовых условиях.

Среди достоинств представленных устройств следует отметить:

  • высокие показатели эффективности и производительности;
  • универсальность (трехфазный асинхронный электродвигатель применяется в различных сферах деятельности);
  • низкий уровень вибрации и шума во время работы;
  • легкий, но при этом надежный и износостойкий корпус;
  • соответствие строгим требованиям европейских стандартов качества.

Кроме того, трехфазные асинхронные электродвигатели характеризуются простотой установки и длительным сроком службы. Стоит отметить, что на модели некоторых производителей можно установить дополнительные модули по запросу клиента. Например, трехфазные электродвигатели серии BN могут быть оснащены системой принудительного охлаждения, которая позволяет обеспечить исправную и эффективную работу агрегата на низких оборотах.

mirprivoda.ru, eltechbook.ru

По сравнению со старыми автомобилями, новые отличаются конструктивными особенностями отдельных узлов. С каждым годом современные и ведущие производители усовершенствуют не только модели машин, но и учитывают другие важные элементы, связанные с деталями. С появлением новейших инновационных технологий, изменилось многое.

Для того чтобы узнать какие существуют виды , необходимо внимательно прочитать статью и прислушаться к советам профессионалов. В первую очередь следует детально ознакомиться с особенностями ДВС. Двигатель является устройством, которое преобразовывается в механическую работу в процессе сгорания топлива. Каждый совершает работу исключительно по циклу, которые состоит из 4 фаз.

Классификация двигателей

Вначале впускается воздух или смесь с наличием горючего, например, бензина или дизеля, а затем, сжимается рабочая смесь. Вследствие чего происходит действие рабочего хода. Когда, наконец, сгорает рабочая смесь, выпускается отработавший газ. Важно отметить, что самыми распространенными считаются поршневые, бензиновые двигатели.

Бензиновый двигатель пользуется большой популярностью. Этот распространенный тип двигателя обладает специальной конструкцией, которая отличается надежностью и долговечностью.

Всем известно, что бензин и его разновидность - это самый распространенный и доступный источник энергии. Подобный силовой агрегат внедрен сложнейшими инновационными технологиями, которые распределяют фазу и обеспечивают электронное управление вспрыском топлива. Для ремонта данной конструкции не потребуется потратить много средств и усилий. Так как процесс достаточно легок и прост.

Современный агрегат, функционирующий на бензине, обладает определенным преимуществом. То есть происходит действие зажигания топливовоздушных смесей при помощи загорания искровых свечей. Однако, топливочная система питания, делится на несколько основных категорий.

Следовательно, бензин смешивается с воздухом в карбюраторном устройстве. Процесс осуществляется через впускной трубопровод. Подобные двигатели отличаются от других агрегатов особой экономичностью.

Впрысковые двигатели подают горючее при помощи инжектора. Топливо поступает в впускной трубопровод. В данном агрегате увеличивается мощность до максимума и, соответственно, горячее расходуется экономичнее. Естественно, уменьшается токсичность отработавшего горючего (газа). Этот процесс осуществляется за счет поступления топлива. Процесс подачи энергии проходит под воздействием специально установленных электронных систем.

В дизельном устройстве воспламеняется смесь топлива при взаимодействии с воздухом. Этот процесс происходит в том случае, если повышается температура при сжатии топлива. Сравнивая бензиновый двигатель с дизельным можно четко сказать, что соотношение экономичности достигает от пятнадцати до двадцати процентов.

При установке дизельного устройства улучшается горение топливовоздушной смеси. Отсутствие дроссельных заслонок способствует созданию сопротивления движения воздуха, когда происходит процесс впуска и, соответственно, увеличению расхода горючего.

Газовый агрегат считается сжатым природным, генераторным и сжиженным топливом. Распространенный двигатель и другие виды агрегата обеспечивают экологическую безопасность транспортного средства. В некоторых случаях газ хранят в специальном баллоне, который постепенно теряет давление при поступлении через испаритель. Газовая система, может, даже и не использоваться в составе испарителя.

Старые дизельные конструкции менее экономичны и практичны. Мощность сжатия составляет в полутора раза больше, происходит увеличение давления в цилиндре. Ранние модели слишком шумные из-за того, что горит топливо. Происходит также меньший оборот коленвала. Теперь вам известные все типы автомобильных двигателей, которые наиболее востребованы и популярны.

Какие бывают новые и современные типы двигатели кроме дизельных и бензиновых

Теперь, рассмотрим виды двигателей, которые отличаются новыми технологиями. Рядный агрегат рекомендован для употребления небольшого цилиндра. Наиболее практичным и удобным считается 6 цилиндровый двигатель. Применение V-образного двигателя способствует уменьшению длины агрегата.

Однако, при этом увеличивается его ширина. Каждый цилиндр данного устройства расположен в 2 разных плоскостях и обозначается «V». В основном шести и восьми цилиндровые двигатели оснащены данной моделью.

Угол развала оппозитного двигателя составляет 180 градусов. В результате чего высота двигателя считается наименьшей. Угол развала VR двигателя составляет примерно пятнадцать градусов.

Благодаря этим параметрам происходит уменьшение как продольного, так и поперечного размера двигателя. Например, W-двигатель оснащен двумя вариантами компоновки, то есть содержание трех цилиндров и большой угол развала. Компактные цилиндры выпускаются серией W8 и W12.

Следует упомянуть о рогативных и звездообразных агрегатах. Например, звездообразное устройство по-другому называют радиальным. ДВС обладает цилиндрами, расположенные под воздействием радиальных лучей. Коленчатый вал окружен жданными цилиндрами, которые проходят через равные углы. Небольшая длина агрегата способствует удобному размещению большого количества цилиндров. В основном этот агрегат применяется в авиации.

Для рогативного агрегата характерно вращение цилиндров. Цилиндры же, в свою очередь, представлены в нечетных количествах. В них также присутствует воздушный винт и картер. Эти изделия закрепляются на моторных рамах. Рогативные агрегаты широко применялись в военный период.

Основные параметры агрегатов

Имеют специальные параметры. Показатель двигателей определяется силой, которая осуществляет действие в цилиндре. Соответственно, при этом действии учитывается система зажигания и питания агрегата, а также степень износа каждой детали.

Рассмотрев и основные характеристики, можно сделать вывод о каждом отдельном устройстве. Принцип действия агрегата определяется по предохранительному клапану, свечами зажигания, выпуску, рубашкой водяного охлаждения, цилиндром с наличием впускных и выпускных окон, воздухопроводом, приводным нагревателем, выпускным КШМ, впускным КШМ.

Современные автомобили оснащены от двух до шестнадцати цилиндров. Различие определяется лишь при подсчете мощности и объема. Однако, существуют и другие параметры. Стоит также отметить тот факт, что для изготовления новых моделей, разработчики воспользовались тремя типами материалов, например, чугуном либо другими ферросплавами, которые обладают наибольшей прочностью.

Вот, к примеру, алюминий обладает малым весом и средней прочностью, магниевые сплавы наименьшим весом и высокой прочностью. Но для приобретения данного средства придется потратить немало денег.

Специалисты, утверждают, что все эти параметры разделяют лишь звуковибрационное и ресурсное качество. Во всех остальных особенностях они практически схожи.

Отдачу максимального уровня измеряют в лошадиных силах или в киловаттах. Для определения максимального тягового усилия приходится измерять в ньютонах-метрах. Теперь вы знаете, какие бывают двигатели и как следует определять определенные модели.

ДВС - это двигатель, работающий по принципу сжигания различного топлива непосредственно внутри самого агрегата. В отличие от двигателей другого типа, ДВС лишены: любых элементов передающих тепло для дальнейшего преобразования в механическую энергию, преобразование происходит непосредственно от сгорания топлива; значительно компактнее; имеют малый вес относительно агрегатов другого типа со сравнимой мощностью; требуют использования определенного топлива с жесткими характеристиками температуры горения, степени испаряемости, октановым числом и т. д.

В автомобилестроении применяются четырехтактные моторы:

1. Впуск;

2. Сжатие;

3. Рабочий ход;

4. Выпуск.
Но существуют и двухтактные версии двигателей внутреннего сгорания, но в современном мире, они имеют ограниченное применение.

В данной статье будут рассмотрены только моторы, устанавливающиеся на автомобили.

Разновидности двигателей по использующемуся топливу

Бензиновые моторы, как понятно из названия используют в качестве топлива для работы - бензин с различным октановым числом, и имеют систему принудительного поджига топливной смеси при помощи электрической искры.

Могут разделяться по типу впуска на карбюраторные и инжекторные. Карбюраторные моторы уже пропадают из производства из-за сложности в точной настройке, высокого потребления бензина, неэффективности смешивания топливной смеси и несоответствия современным жестким экологическим требованиям. В таких моторах, смешивание горючей смеси начинается в камерах карбюратора и заканчивается по пути во впускном коллекторе.


Инжекторные агрегаты развиваются большими темпами, и система впрыска топлива улучшается с каждым поколением. Первые инжектора имели «моновпрыск» с единственной форсункой. По сути, это была модернизация карбюраторных моторов. Со временем, на большинстве агрегатов, начали использоваться системы с отдельными форсунками на каждый цилиндр. Использование форсунок в системе впуска, позволило точнее контролировать пропорции топлива и воздуха в разных режимах работы агрегата, снизить расход топлива, увеличить качество топливной смеси, увеличить мощность и экологичность силовых агрегатов.

Современные форсунки, устанавливающиеся на силовые агрегаты с системой непосредственного впрыска топлива в цилиндры, способны производить несколько отдельных впрысков топлива за один такт. Это позволяет еще улучшить качество топливной смеси и добиваться максимальной отдачи энергии от используемого количества бензина. То есть, еще больше увеличилась экономия и производительность моторов.


Дизельные агрегаты - используют принцип воспламенения смеси дизельного топлива и воздуха при нагреве от сильного сжатия. При этом, в дизельных агрегатах не используются системы принудительного поджига. Данные моторы имеют ряд преимуществ перед бензиновыми, в первую очередь - это экономность топлива (до 20%), при сравнительной мощности. Топливо меньше расходуется из-за большей степени сжатия в цилиндрах, что улучшает характеристики горения и отдачи энергии топливной смеси, а следовательно, и топлива необходимо меньшее количество для достижения таких же результатов. Кроме этого, дизельные агрегаты не используют дроссельные заслонки, что улучшает поступление воздуха в силовой агрегат, что еще уменьшает расход топлива. Дизеля развивают больший крутящий момент, и на более низких оборотах коленчатого вала.

Не обошлось без недостатков. Из-за увеличенной нагрузки на стенки цилиндров, конструкторам пришлось использовать более надежные материалы, и увеличивать размеры конструкции (увеличение веса и удорожание производства). Кроме этого, работа дизельного силового агрегата - громкая из-за особенностей воспламенения топлива. А увеличенная масса деталей не позволяет мотору развивать высокие обороты с такой же скоростью, как и бензиновые, и максимальное значение оборотов коленчатого вала - ниже, чем у бензиновых агрегатов.

Разновидность ДВС по конструкции

Гибридный силовой агрегат

Данный тип автомобиля начала набирать популярность в последние года. Благодаря своей эффективности экономии топлива и увеличению общей мощности автомобиля благодаря комбинированию двух типов агрегатов. По сути, данная конструкция представляет собой два отдельных агрегата - небольшой ДВС (чаще всего дизельный) и электромотор (или несколько электромоторов) с аккумуляторной батареей большой емкости.

Преимущества комбинирования выражаются в способности совмещать энергию двух агрегатов при разгоне, или использование каждого типа двигателя по отдельности, в зависимости от необходимости. К примеру, при движении в городской пробке - может работать только электродвигатель, экономя дизельное топливо. При движении по загородным дорогам, работает ДВС, как более выносливый, мощный и с большим запасом хода агрегат.

При этом, специальная батарея для электромоторов, способна подзарядиться от генератора, или используя систему рекуперации при торможении, что позволяет экономить не только топливо, но и электричество, необходимое для зарядки батареи.

Роторно-поршневой мотор

Роторно-поршневой мотор построен по уникальной схеме движения поршня-ротора, который перемещается внутри цилиндра не по возвратно-поступательной траектории, а вокруг своей оси. Это осуществляется благодаря особой треугольной конструкции поршня и особенному расположению впускных и выпускных отверстий в цилиндре.

Благодаря такой конструкции, двигатель быстро набирает обороты, что увеличивает динамические характеристики автомобиля. Но с развитием классической конструкции ДВС, двигателя Ванкеля начали терять свою актуальность из-за конструктивных ограничений. Принцип движения поршня не позволяет добиться большой степени сжатия топливной смеси, что исключает использование дизельного топлива. А малый ресурс, сложность обслуживания и ремонта, а также - слабые экологические показатели не позволяют автопроизводителям развивать данное направление.

Разновидности силовых агрегатов по компоновке

Из-за необходимости уменьшения веса и габаритов, а также, размещения большего числа поршней в одном агрегате привело к появлению разновидностей моторов по компоновке.

Рядные моторы


Рядный двигатель - это самый классический вариант силового агрегата. В котором все поршни и цилиндры располагаются в один ряд. При этом, современные моторы с рядной компоновкой вмещают в себе не более шести цилиндров. Но именно шестицилиндровые рядные двигатели, имеют наилучшие показатели по уравновешиванию вибрации при работе. Единственный минус - это значительная длина мотора, относительно других компоновок.

V-образные моторы



Данные моторы появились в следствии желания конструкторов уменьшить габариты двигателей, и необходимости разместить более шести поршней в одном блоке. В данных моторах, цилиндры находятся в разных плоскостях. Визуально, расположение цилиндров образует букву «V», откуда и пошло название. Угол между двумя рядами называется углом развала, и варьируется в широком диапазоне, разделяя данный тип моторов на подгруппы.

Оппозитные моторы



Оппозитные двигателя, получили максимальный угол развала в 180 градусов. Что позволило конструкторам снизить высоту агрегата до минимальных размеров, и распределить нагрузку на коленчатый вал, увеличивая его ресурс.

VR моторы



Это комбинация свойств рядных и V-образных агрегатов. Угол развала в таких двигателях достигает 15 градусов, что позволяет использовать одну головку блока цилиндров с единым механизмом газораспределения.

W-образные моторы



Одни из самых мощных и «экстремальных» конструкций ДВС. Могут иметь три ряда цилиндров с большим углом развала, или два совмещенных VR блока. На сегодняшний день, распространение получили моторы на восемь и двенадцать цилиндров, но конструкция позволяет использовать и большее количество цилиндров.

Характеристики двигателя внутреннего сгорания

Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:

Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);

Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;

Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.

Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.

Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.

Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине - выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту.


А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге - на колеса.

Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном - это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов.


Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).

Мощность автомобильного двигателя

Стоит признать, что мощность и крутящий момент - это взаимосвязанные параметры, зависящие друг от друга. Мощность - это определенное количество работы, произведенная мотором за время. В свою очередь, работа мотора - это крутящий момент. Поэтому, мощность характеризуется как количество крутящего момента за единицу времени.

Существует известная формула, характеризующая отношение мощности и крутящего момента:

Мощность = крутящий момент * обороты в минуту / 9549

В итоге, получим значение мощности в киловаттах. Но естественно, просматривая характеристики автомобилей, нам привычнее видеть показатели в «л.с.». Для перевода киловатт в л.с. необходимо умножить получившееся значение на 1,36.

Вывод

Как стало понятно из данной статьи, автомобильные двигатели внутреннего сгорания могут иметь множество отличий друг от друга. А выбирая автомобиль для постоянного использования - необходимо изучить все нюансы конструкции, характеристик, экономности, экологичности, мощности и надежности силового агрегата. Также, будет полезно изучить информацию о ремонтопригодности мотора. Так как многие современные агрегаты используют сложные системы газораспределения, впрыска топлива и выхлопа, что может усложнить их ремонт.

© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков