Динамик назначение части. Информация Как работает динамик (громкоговоритель)

Динамик назначение части. Информация Как работает динамик (громкоговоритель)

Электродинамический громкоговоритель — это громкоговоритель, в котором преобразование электрического сигнала в звуковой происходит благодаря перемещению катушки с током в магнитном поле постоянного магнита (реже — электромагнита) с последующим преобразованием полученных механических колебаний в колебания окружающего воздуха при помощи диффузора.

Устройство динамического громкоговорителя
Подвес Гофрированный гибкий подвес (краевой гофр, «воротник») должен обеспечивать сравнительно низкую резонансную частоту (то есть иметь высокую гибкость); плоскопараллельный характер движения (то есть отсутствие крутильных и других видов колебаний) подвижной системы в обе стороны от положения равновесия и эффективное поглощение энергии резонансных колебаний подвижной системы. Кроме того подвес должен сохранять свою форму и свойства во времени и под воздействием климатических факторов внешней среды (температуры, влажности и др.). С точки зрения конфигурации (формы профиля), значительно влияющей на все указанные свойства, наибольшее распространение имеют полутороидальные, sin-образные, S-образные подвесы и др. В качестве материалов для подвесов НЧ ГГ применяют натуральные резины, пенополиуретаны, прорезиненные ткани, натуральные и синтетические ткани со специальными демпфирующими покрытиями.

Диффузор — основной излучающий элемент громкоговорителя, который должен обеспечивать линейную АЧХ (Амплитудно-частотная характеристика) в заданном диапазоне частот. В идеале диффузор должен работать как поршень, совершая возвратно-поступательные движения передавать колебания звуковой катушки окружающему воздуху. Однако по мере повышения частоты в нём появляются изгибающие усилия, что приводит к появлению стоячих волн, а значит — пиков и провалов резонанса на АЧХ громкоговорителя, и к искажениям звука. Для того, чтобы снизить влияние этих эффектов, стараются увеличить жёсткость диффузора, одновременно используя материалы с меньшей плотностью. В современных конструкциях для низкочастотных динамиков 8—12" рабочий диапазон простирается до 1 кГц, низкочастотных, среднечастотных динамиков 5—7" — до 3 кГц, высокочастотных динамиков — до 16 кГц.
Диффузоры по типу материала бывают:

  • жесткие (керамические, алюминиевые) обеспечивают наименьший уровень искажений, за счет меньшего изгиба поверхности диффузора, но при этом у них слишком большая добротность, а значит — ярко выраженный пик резонанса. Задача производителя — сдвинуть этот пик за пределы рабочих частот. В то же время эти динамики занимают верхние ценовые позиции;
  • полужесткие (из стеклоткани или кевлара со связующей полимеризованной и запеченной смолой, «сэндвичи») — компромиссный вариант между мягкими и жёсткими. Дают больше искажений, но имеют более низкий выброс резонанса, и как правило на более низких частотах;
  • мягкие диффузоры (полипропиленовые, полиметилпентеновые) обычно имеют ровную АЧХ за счёт поглощения звуковых волн материалом диффузора, и мягкий приятный звук почти во всем диапазоне, но имеют плохие импульсные параметры (отсутствие четкости). Кроме того, мягкий диффузор может крепиться к диффузородержателю без подвеса;
  • бумажные диффузоры стоят особняком, так как дают очень характерный окрас звучания, для устранения которого в бумагу добавляют различные синтетические и натуральные волокна, покрывают диффузор лаком и т. д. Бумажные диффузоры более просты в производстве и позволяют в некоторых случаях делать диффузор, подвес и колпачок из одного материала.

По форме диффузоры могут быть:

  • купольные, обычно применяются в ВЧ-динамиках;
  • конусные — распространены более широко благодаря большей универсальности. Почти не применяются лишь в ВЧ-динамиках из-за направленности излучения. Существует несколько видов профилей конусных диффузоров:
  • линейные являются максимально жесткими, но с максимальным значением резонанса, когда продольная волна сжатия материала от катушки резонирует с поперечной волной колебания самой оболочки;
  • сегмент окружности позволяет сгладить резонанс;
  • экспонента позволяет сгладить резонанс более эффективно.

На практике применяются комбинации всех трех типов с целью сместить резонанс в область высоких частот либо распределить его всплеск на более широкий диапазон уменьшив амплитуду. Реже применяются диффузоры более сложной формы, например гофрированные, сочетающие в одной детали диффузор и сразу несколько подвесов — такое решение применяется для малогабаритных широкополосных динамиков с целью уменьшить интермодуляционные искажения и расширить диапазон воспроизводимых частот. Также от формы образующей и жесткости материала зависят другие важные резонансы системы диффузор—подвес. Все мягкие диффузоры имеют характерный провал и затем всплеск на АЧХ, когда колебания выходят за пределы диффузора и в работу вступает подвес. Также нужно учитывать, что если в бесконечной плоскости АЧХ динамика будет ровной, то в плоскости шириной 200 мм на АЧХ появится подъём в области 700—900 Гц, поэтому у диффузоров, которые дают в этой области провал, в корпусе АЧХ будет ровная, и не понадобится дополнительных корректирующих цепей, и некоторые производители это учитывают.
Пылезащитный колпачок — сферическая оболочка, которая, выполняя функцию защиты рабочего зазора магнитной цепи от попадания пыли, является также окружным ребром жёсткости. Кроме того, колпачок является излучающим элементом, вносящим свой вклад в формирование АЧХ в области средних частот. Для обеспечения конструктивной жёсткости колпачки изготавливают, как правило, куполообразной формы с различными радиусами кривизны. В качестве материала используют композиции целлюлозы, синтетические плёнки, ткани с пропитками. В мощных низкочастотных громкоговорителях иногда используют колпачки из металлической (алюминиевой) фольги, что позволяет использовать их как дополнительный элемент отвода тепла от звуковой катушки. Но у конструкций с колпачками в пространстве между колпаком и катушкой возникают высокодобротные резонансы, поэтому некоторые производители вместо колпаков ставят фазовыравнивающие «Пули», которые не вносят своих искажений.

Центрирующая шайба Между диффузором и корпусом динамика устанавливается специальная шайба, которая должна обеспечивать стабильность резонансной частоты низкочастотных громкоговорителей в условиях динамических и температурных нагрузок, линейность упругих характеристик при больших смещениях подвижной системы, предотвращать смещения звуковой катушки в радиальном направлении и «провисание» подвижной системы, а также защищать магнитный зазор от пыли. Обычно в низкочастотных громкоговорителях используются центрирующие шайбы с синусоидальной гофрировкой (число гофр варьируется от 5—7 до 9—11), плоские или «мостиковые». Однако в некоторых моделях встречаются шайбы более сложных конфигураций (например, тангенциальные), обеспечивающие, по мнению применяющих их фирм, большую линейность упругих характеристик, стабильность формы и т. п. В качестве материалов для шайб применяют натуральные ткани (типа миткаля, бязи и т. п.), пропитанные бакелитовым лаком, синтетические ткани на основе полиамидов, полиэстера, нейлона и др. В некоторых низкочастотных громкоговорителях применяются шайбы, в материал которых вплетаются металлические (алюминиевые, медные) нити, которые по заявлениям производителей улучшают отвод тепла от звуковой катушки.
Звуковая катушка — катушка с проводом, которая находится в зазоре магнитной цепи и обеспечивает совместно с магнитной системой динамика преобразование электрической энергии в механическую. Магнитная система динамика обычно состоит из кольцевого магнита и керна, в зазоре между которыми движется звуковая катушка, не касаясь стенок. Большое значение имеет равномерность магнитного поля в пределах хода катушки, для чего особым образом формируются полюса магнитов, а на керн надевается медный колпачок. Для уменьшения массы катушки (что особенно важно в ВЧ-динамиках) производители иногда применяют алюминиевый провод, в том числе с медным покрытием. Электрический ток к катушке подводится с помощью гибких проводов, представляющих собой намотанную на синтетическую нить проволоку. Провода часто закрепляют на диффузоре, чтобы они при работе не прикасались к другим частям динамика. Противоположные концы проводов подключены к клеммной колодке, расположенной на основании динамика (к который припаиваются проводники электросхемы устройства, в котором установлен динамик). Обычно клеммы помечены знаками «+» и «-», что позволяет выполнить правильную фазировку (синфазное включение) головок, входящих в состав акустической системы или звуковой колонки. Диффузоры головок, включённых синфазно, смещаются в каждый момент времени в одну сторону (внутрь или наружу), что можно визуально проконтролировать путём кратковременной подачи на головки небольшого (1,5 В) постоянного напряжения.

Принцип работы При подаче электрического сигнала звуковой частоты, катушка производит вынужденные колебания в поле постоянного магнита под действием силы Ампера, увлекая диффузор и через неё создавая волны разрежения и сжатия в воздухе. Связка «диффузор-катушка» колеблется с частотой подаваемого тока. При малой толщине магнитопроводов, образующих зазор, действительно работает только малая часть катушки, приблизительно равная толщине магнитопроводов зазора. Выходящие за пределы зазора части катушки почти не работают, у таких динамиков очень низкий коэффициент полезного действия. Силу, действующую на катушку, можно вычислить, применив закон Ампера F = B I l \, где B — индукция магнитного поля в зазоре, I — ток через катушку, l — часть длины провода катушки, находящаяся в зазоре магнитопроводов. l=n\pi d_1\, где n — число витков катушки, находящихся в зазоре, d_1 — диаметр катушки. n=h/d_2\, где h — толщина магнитопроводов, образующих зазор, d_2 — диаметр провода катушки. Для повышения коэффициента полезного действия динамика необходимо увеличивать толщину магнитопроводов, образующих зазор, при этом пропорционально увеличению зазора уменьшается магнитная индукция в зазоре B, но увеличивается относительная рабочая часть катушки, то есть относительная рабочая часть длины провода катушки l до некоторой величины, после которой относительная рабочая часть длины провода катушки начинает уменьшаться. При изменении амплитуды электрического сигнала звуковой частоты также изменяется положение диффузора. Так как электрический сигнал звуковой частоты, подаваемый на катушку, имеет частоту в пределах слышимости человеческого уха (16—20 000 Гц), то и диффузор колеблется относительно постоянного магнита с такой же частотой. Здесь следует сделать замечание, что реальная частота колебаний диффузора большинства динамических головок и прилегающих слоёв воздуха лежит в пределах примерно 300—12 000 Гц, причём чем меньше и проще громкоговоритель, тем меньше этот частотный диапазон и тем менее линейна его амплитудно-частотная характеристика. На частотах за пределами этого диапазона излучаемая мощность незначительна. Для воспроизведения наиболее низких частот (примерно 16—250 Гц) небольшие по размерам динамические головки вовсе непригодны. Колеблющийся диффузор создаёт в воздухе звуковые волны, воспринимаемые ухом человека. Таким образом, с помощью динамической головки электрический сигнал звукового диапазона частот с усилителя преобразуется в звук. Следует повториться, что при воспроизведении наиболее низких частот из частотного диапазона, воспроизводимого динамиком, работает вся поверхность диффузора, а при воспроизведении высших частот из частотного диапазона — только центральная его часть, что располагается над катушкой. Поэтому в широкополосных динамиках часто в центре устраивается металлическая, полимерная или бумажная накладка — купол в целях улучшения воспроизведения высоких частот.

Основными техническими характеристиками динамической головки являются следующие.

Тип динамической головки

  • полно-диапазонная (широкополосная — ГДШ, головка динамическая широкополосная),
  • низкочастотная (ГДН),
  • среднечастотная (ГДС),
  • высокочастотная (ГДВ).

Номинальный диаметр — как правило, внешний диаметр диффузородержателя (рамы). Реже — диаметр подвеса диффузора либо расстояние между противоположными крепёжными отверстиями. Для компрессионных драйверов — диаметр горла рупора.

Мощность — номинальная, программная (длительная), либо пиковая (краткосрочная) подводимая мощность, которую выдерживает головка до своего разрушения. Головка может быть разрушена и гораздо меньшей мощностью, если динамик нагружается сверх своих механических возможностей на очень низких частотах (например, электронная музыка с большим количеством баса или органная музыка), также разрушение может быть вызвано перегрузкой («клипированием») усилителя мощности.
Импеданс (номинальное сопротивление) — как правило, динамические головки имеют импеданс 2, 4, 8 или 16 Ом. Динамические головки наушников более высокоомные (32 Ом и более). Чем выше импеданс головки, тем бо́льшее напряжение звуковой частоты требуется подводить к головке для достижения номинальной мощности. Поэтому высокоимпедансные головки могут не развивать максимальную мощность при работе от УМЗЧ, имеющего недостаточно высокое напряжение питания (портативная техника с низковольтным питанием), а низкоимпедансные — создавать перегрузку (усилителя и самих себя), если подключены к усилителю с большим выходным напряжением, предназначенным для высокоимпедансных головок.
Частотная характеристика — измеренная, либо заявленная выходная характеристика на заданном диапазоне частот при входном сигнале постоянной амплитуды на всём заданном диапазоне. Как правило, указывается предел отклонений характеристики, например, «± 3 дБ». Параметры Тиля — Смолла — набор электроакустических параметров, характеризующих головку как колебательную систему.
Чувствительность — уровень звукового давления, производимый динамической головкой при подаче сигнала мощностью 1 Вт, измеренное на расстоянии 1 м от головки.
Максимальный уровень звукового давления максимальное давление, которое может развить головка без своего повреждения либо без превышения заданного уровня искажений. Зависит во многом от чувствительности головки и её мощности. Данный параметр приводится, как правило, как измеренный на произвольном (по усмотрению производителя) диапазоне частот и типе сигнала.

Мощность динамических головок , как правило, выражается в ваттах (при этом существует PMPO (Peak Music Power Output) — пиковая шумовая выходная мощность, RMS (Rated Maximum Sinusoidal) — номинальная шумовая мощность, номинальная электрическая мощность). КПД динамиков как правило не превышает 1—3 %. PMPO обычно составляет сотни ватт (иногда — киловатты для мощных АС), а выходная мощность — ватты, реже десятки ватт (для мощных головок), очень редко более ста.
Применение Описанная классическая конструкция является базовой и может применяться в недорогой технике, там, где не требуется высокое качество звука. Для высококачественного воспроизведения проектируются более сложные и совершенные громкоговорители. Для создания более качественной аудиосистемы одну или несколько динамических головок помещают в корпус в виде коробки из дерева, либо пластика или металла таким образом, чтобы изолировать лицевую и тыльную поверхности диффузора друг от друга и исключить «перетекание» воздуха вокруг кромки рамы громкоговорителя (акустическое короткое замыкание). Полученное изделие называется акустической системой. Если в акустической системе присутствует встроенный усилитель, такая акустическая система называется активной, в противном случае — пассивной. Создание акустических систем, имеющих максимально чистое, естественное и натуральное звучание — весьма трудоёмкая и сложная задача, так как на конечный результат влияет множество факторов. Устройство электродинамической головки благодаря свойству обратимости идентично по принципу действия устройству динамического микрофона, и, таким образом, эти устройства могут быть взаимозаменяемыми. Например, во многих конструкциях переговорных устройств, домофонов, и даже в подслушивающих устройствах, некогда монтировавшихся спецслужбами в приёмники проводного радиовещания, в качестве приёмника звука — микрофона могли использоваться динамические головки.

,низкочастотные и широкополосные громкоговорители), номинальная электрическая мощность, активное сопротивление звуковой катушки (низкоомные или высокоомные громкоговорители).

К конструктивным признакам относятся: устройство подвижной системы (один диффузор или несколько ) , одна звуковая катушка или две, устройство магнитной системы, форма диффузора - круглая или овальная.

По связи с окружающим пространством головки делятся на рупорные и прямого излучения . Рупор обеспечивает акустическое усиление и является разновидностью акустического оформления.Он может применяться с любыми типами излучателей, но как встроенный в головку элемент конструкции используется только в высокочастотных и, гораздо реже, в среднечастотных излучателях.

Из всех известных на сегодняшний день видов акустических преобразователей в автомобильных аудиосистемах массовое применение нашли динамические головки прямого излучения и пьезокерамические СЧ и ВЧ излучатели (прямого излучения и рупорные ).

Электродинамический громкоговоритель

Принцип действия

Электродинамический громкоговоритель является электроакустическим преобразователем.

Принцип его работы основан на взаимодействии проводника с током и постоянного магнитного поля. Схематически этот принцип, относящийся к любой электродинамической системе, показан на рис. 2 и заключается в следующем. Если в магнитное поле, образованное полюсами магнита, помещен проводник, по которому проходит постоянный электрический ток, то на проводник будет действовать механическая сила, называемая электродинамической. Эта сила стремится вытолкнуть проводник из зоны действия магнитного поля в направлении, перпендикулярном силовым линиям поля и направлению тока (правило "левой руки"). В том случае если ток, протекающий по проводнику, будет переменным, то сила, выталкивающая проводник, будет изменять свое направление с частотой переменного тока и проводник будет совершать колебания в магнитном поле с той же частотой. В электродинамическом громкоговорителе магнитное поле сосредоточено в кольцевом зазоре, а проводник намотан на цилиндрическом каркасе в виде звуковой катушки. Сила взаимодействия переменного тока, протекающего по звуковой катушке, и магнитного поля приводит в аксиальное(осевое) колебательное движение катушку и жестко соединенный с нею диффузор (конус). Количественно эта сила (F) пропорциональна магнитной индукции в кольцевом зазоре (В, вб/м2; 1 вб/м2 = 104 гс), длине проводника звуковой катушки (l, м) и силе тока (I, а), т. е. .

Устройство

Устройство электродинамического громкоговорителя видно из рис. 3 . Постоянный магнит 1 создает сильное магнитное поле в кольцевом зазоре между керном 2 и передним фланцем 3 . В этом зазоре помещается звуковая катушка 4 , жестко соединенная с диффузором конической формы 5 . Звуковая катушка расположена посередине кольцевого зазора благодаря наличию центрирующей шайбы 6 , приклеенной к диффузору вблизи места соединения его со звуковой катушкой. Края диффузора и центрирующей шайбы в виде плоского воротника крепятся к диффузородержателю 7 (корзина), имеющему прорези (окна). Звуковая катушка вместе с диффузором и центрирующей шайбой образуют подвижную систему громкоговорителя. Перемещения (колебания) диффузора возбуждают в окружающем воздушном пространстве звуковые волны, воспринимаемые человеческим ухом как звуки . Амплитуда колебаний диффузора, как указывалось ранее, зависит от величины магнитной индукции, существующей в кольцевом зазоре, где помещается звуковая ка­тушка. В свою очередь величина индукции зависит от конструкции деталей магнитной системы и качества постоянного магнита. Магнитная система громкоговорителя состоит из магнита и магнитопровода . Магнит обычно имеет форму кольца (рис. 4, а, г) или керна (рис. 4, 6, в) . Коль­цевые магниты отливают из специальных алюминие-никелевых сплавов (типа «альни» ЮНД4) с присадками других материалов; для создании нужных индукций в зазоре они имеют достаточно большой объем и вес. Керновые магниты имеют меньшие размеры и вес, так как изготовляются из более высококачественных алюминий-никелево-кобальтовых сплавов с примесями других дорогих металлов (например, сплавы ЮНДК24, ЮНДК25БА и др.).

Для магнитопровода используют сталь (например, "армко"). Магнитопровод выполняют закрытым - в ви­де стакана (рис. 4, б) или открытым - в виде скобы (рис. 4, в) . Вследствие трудностей изготовления магнитного керна с концом нужного диаметра и с минимальными допусками, на торцовую часть керна наклеивают круглую стальную пластинку. Ее толщина равна толщине переднего фланца. Пластинка и круглое отверстие фланца образуют кольцевой зазор. Керновые магниты позволяют создать магнитную систему громкоговорителя со значительно меньшим внешним магнитным полем рассеяния. Это очень важно для громкоговорителей, применяемых в телевизорах и радиоприемниках с внутренними магнитными антеннами; громкоговорители с кольцевыми магнитами там не могут использоваться. Наряду с магнитами из металлических сплавов широко применяются магниты, прессованные из ферритбария (марки 2БА и ЗБА). Они имеют вид сравнительно тонкой, но широкой шайбы для уменьшения магнитного сопротивления. Магнитная система в этом случае отличается мало.

Звуковую катушку наматывают медным или алюминиевым проводом на каркасе из плотных сортов бумаги (в маломощных громкоговорителях) или алюминия, меди, а также пластмассы (в мощных громкоговорителях). Число слоев всегда делается четным, чтобы выводы катушки были с одной стороны; чаще всего делаются два или четыре слоя. Благодаря хорошему отводу тепла допускается большая плотность тока в обмотке - от 30 до 90 а/мм2. Для скрепления обмотки с каркасом витки склеивают между собой и с каркасом лаком. Полное электрическое сопротивление звуковой катушки должно быть одним из следующих номиналов:2; 4; 6,5; 8; 12,5; 16; 30; 60 Ом . Выводы обмотки приклеивают к каркасу и диффузору, а их концы припаивают к пустотелым заклепкам или скобкам, установленным на диффузоре.

К последним припаивают также специальные гибкие и очень прочные проводники, которые другими концами присоединяются к выводным контактам громкоговорителя, установленным на диффузородержателе. С целью уменьшения нелинейных искажений высота звуковой катушки делается или меньше, или больше высоты кольцевого зазора. В обоих этих случаях катушка совершает осевые перемещения в неизменном по силе магнитном поле, т.е. сохраняется постоянным среднее значение индукции.

В конструкции некоторых низкочастотных громкоговорителях применяют две катушки .

Правильное положение звуковой катушки по ширине магнитного зазора обеспечивается центрирующей шайбой , которая обладает значительно большей жесткостью в поперечном оси катушки (радиальном) направлении, чем в продольном. Поперечная жесткость важна для стабильной установки звуковой катушки в магнитном зазоре так, чтобы она не касалась ни керна, ни фланца. Осевая гибкость необходима для получения достаточно низкой частоты основного резонанса подвижной системы громкоговорителя. В тех случаях, когда частота основного резонанса сравнительно высока, например у высокочастотных громкоговорителей, осевая жесткость центрирующей шайбы может быть также увеличена.

Применяются центрирующие шайбы гофрированной (рис. 5,a) или паучковой (рис. 5,6) конструкции. Первые, получившие у нас наибольшее распространение, имеют концентрические гофры с числом гофр два - пять разнообразного профиля (синусоидального, трапецеидального и других) и делаются из пропитанной бакелитовым или цапон-лаком хлопчатобумажной или шелковой ткани. Паучковые центрирующие шайбы изготовляются штамповкой из тонкого текстолита. У большинства громкоговорителей центрирующая шайба расположена с внешней стороны диффузора (рис. 5, а, б) , однако она может быть расположена и внутри диффузора (рис. 5, в) , будучи прикрепленной своей центральной частью к керну. Внутренняя центрирующая шайба не допускает больших перемещений звуковой катушки без нарушения линейности ее упругости. Поэтому она применяется только в маломощных и высокочастотных громкоговорителях, у которых перемещения звуковой катушки малы.

Довольно часто, особенно в громкоговорителях большой мощности центрирующая шайба устанавливается на переднем фланце магнитной системы.

Литература

М.М. ЭФРУССИ "Громкоговорители и их применение" .

Энциклопедия High-End Audio - второе издание.Роберт Харли

Устройство динамика, сабвуфера.
Громкоговоритель - устройство для преобразования электрических сигналов в акустические и излучения их в окружающее пространство
Сегодня в разделе Теория Автозвука, мы постараемся вместе разобраться, как устроен мотор сабвуфера (магнитная система и звуковая катушка), а так же узнаем с какими сложностями сталкиваются производители при проектировании магнитной системы и звуковой катушки сабвуфера.

Основа привода динамика осталась практически без принципиальных изменений со времен выдачи первого патента в 1925 г. Пять основных частей привода неизменны и незыблемы: магнит, полюсный наконечник, передний и задний магнитопроводы и звуковая катушка. Задача первых четырех элементов – создать по возможности мощное магнитное поле и сконцентрировать его в зазоре между полюсным наконечником и верхним магнитопроводом. А «пятый элемент» – звуковая катушка, обязан в этом поле двигаться при протекании по обмотке тока. Все вроде бы просто. Однако подробностей за эти годы выяснилось немало.
Самая консервативная часть привода – материал магнитопроводов. Ничего, кроме магнитомягких материалов, а проще говоря – отожженной малоуглеродистой стали, почти чистого железа, здесь не применяется. С материалами для магнитов колдовали долго, вначале перепробовав разнообразные литые магниты из специальных сплавов, а затем, с разработкой ферритовых композиций, вопрос практически закрылся. Металлические магниты теперь применяются практически исключительно в пищалках, где масса магнита мала и можно использовать значительно более эффективные редкоземельные сплавы – почти всегда на основе неодима. Крупных магнитов из неодимовых сплавов не делают лишь потому, что элемент этот в самом деле редкий, и большая часть выпуска идет, на изготовление микродвигателей.

Момент истины в проектировании привода – как обеспечить эффективное взаимодействие магнитного поля и звуковой катушки, которая в него погружена. Геометрия и пропорции рабочего зазора магнитной системы и звуковой катушки – необъятный простор противоречий и компромисов. Основной параметр, определяющий результаты этого взаимодействия – так называетмый силовой фактор B x L, часто приводимый в технических характеристиках породистых динамиков. Силовой фактор – произведение индукции в зазоре на длину провода звуковой катушки, находящуюся в пределах этого зазора. Чем больше силовой фактор, тем более контролируемым становится движение диффузора и тем больше его электрическое демпфирование. Ясно, что чем массивнее магнит, тем силовой фактор будет больше, поскольку будет больше индукция. Но последняя величина зависит также и от размеров зазора: чем шире кольцевая щель в магнитной системе, чем она большего диаметра и чем она глубже (чем толще верхний магнитопровод), тем меньше будет индукция в зазоре, поскольку магнитное поле окажется «размазанным» в пространстве. Сделать зазор узким, маленьким и неглубоким – и негде будет поместить звуковую катушку, намотанную достаточно толстым проводом. Уменьшить сечение провода – возрастет сопротивление и упадет отдача. И так далее. А если принять во внимание, что диаметр звуковой катушки небезразличен и для поведения диффузора, ситуация еще усложняется.
Существует два основных типа геометрии звуковой катушки в зазоре: короткая катушка и длинная катушка. Длинной звуковая катушка по длине существенно превышает глубину зазора в магнитной системе и в каждый момент «работает» только часть витков, находящаяся в пределах его глубины. Эта часть, а следовательно, длина пповода, находящаяся в зазоре, будет оставаться неизменной пока внутрь зазора не войдет край катушки. Динамик считается работающим в линейном диапазоне перемещений диффузора, именно до этого момента. То, насколько катушка длиннее зазора и будет определять максимальный линейный ход диффузора – знаменитый X max.
Но, поскольу только те витки, что попали «в поле» реально работают, плотность намотки стараются сделать наибольшей и именно за этим придумали в свое время ленточную намотку плоским проводом, уложенным на ребро. Сейчас многослойные катушки, выполненные обычным круглым проводом, мирно уживаются с однослойными ленточными, а высший пилотаж в смысле плотности намотки показала датская компания Dynaudio, которая использует провод шестиугольного сечения, полностью заполняющий медью сечение обмотки. В результате, правда, каждую звуковую катушку наматывают вручную в течение 30 минут (по норме), что потом соответственно отражается в цене готовой продукции.
Привод с длинной звуковой катушкой применяется в подавляющем большинстве сабвуферных динамиков и любим производителями за возможность получить большую индукцию в коротком зазоре, сделать звуковую катушку большой и хорошо охлаждаемой, получить большой ход дифузора. Короткая катушка в пределах линейного диапазона находится полностью внутри магнитного зазора. Сам зазор при этом приходится делать длиннее, а катушку – короче, поэтому типичные значения силового фактора B x L у таких динамиков – меньше. Казалось бы, при таких делах можно эту конструкцию и похоронить, но именно она обеспечивает наименьшие искажения при больших ходах диффузора.

Типичная картина изменения силового фактора со смещением звуковой катушки для двух типов привода выглядит следующим образом:
У длинной звуковой катушки поведение в пределах линейной области пристойное, а за его пределами – значение силового фактора (а, значит, вносимые искажения) меняется довольно плавно. При выходе короткой катушки из зазора искажения нарастают быстро, зато пока этого не случилось, линейность – идеальная.

Здесь есть одна тонкость: различные сочетания длины звуковой катушки и глубины зазора определяют разное поведение динамика на границе его линейного диапазона (и за ней). Возьмем два динамика – у одного глубина зазора (толщина верхней плиты магнитной системы 8 мм, а длина звуковой катушки – 12 мм. У другого – 4 мм и 8 мм соответственно. Максимальный рабочий ход диффузора у обоих будет одинаковым – 2 мм (12-8)/2 = (8-4)/2 = 2.

Однако у первого, с большим отношением глубины зазора к X max за пределами линейного диапазона, нелинейность будет нарастать относительно плавно, а второй = захрипит уже при незначительном превышении X max. Так что есть прямой смысл смотреть не только на величину X max из документации, но и на толщину переднего магнитопровода на самом динамике – чем больше, тем лучше.
Другой источник искажений, определяемых конструкцией привода – его ассиметрия. В идеальном случае сила, действующая на звуковую катушку при движении в одну и другую сторону, то есть внутрь магнитной системы и наружу, должны быть одинаковы по величине. Не будет этого – искажения сигнала неизбежны. Для этого магнитное поле, создаваемое в зазоре, должно быть максимально симметричным. Так бы оно и случилось, без особых ухищрений, если бы все магнитное поле оказывалось в зазоре. На деле этого не происходит и силовые линии поля «выплескиваются» из зазора и образуют поле рассеяния. Но, поскольку выше зазора – воздух, а ниже – сталь полюсного наконечника, рассеяние происходит существенно несимметрично.
Чтобы как-то навести симметирию, некоторые фирмы применяют более сложную геометрию рабочего зазора магнитной системы. Некоторые, например, просто удлинняют полюсный наконечник (в сабвуферах Kicker, например, очень это любят)
В результате магнитная обстановка сверху и снизу существенно выравнивается, но дается это в результате увеличения общего рассеяния – силовые линии «лезут» вверх по стволу удлинненного полюсного наконечника, а место им – в зазоре, все остальное – нежелательные побочные поля. Для компенсации возросшего рассеяния приходится ставить более мощные магниты. Другие фирмы идут «от противного» и уменьшают рассеяние ниже магнитопровода, для чего полюсный наконечник делается ступенчатым.
Более «тощий» ствол замыкает на себя меньше силовых линий и они поневоле скапливаются в зазоре, но возрастает общее магнитное сопротивление системы и падает индукция в зазоре. Вообще, магнитное сопротивление стараются сделать возможно меньшим, для этого часто полюсный наконечник выполняют заодно с нижним магнитопроводом, чтобы не было лишнего стыка, хотя это намного хлопотнее, чем сделать их по отдельности и соединить при сборке. Еще одно, довольно эфективное, но не очень распространенное решение – полюсный наконечник с выемкой, можно найти в довольно пафосных марках динамиков. Здесь, помимо усложнения технологии, возрастает чувствительность к разбросу характеристик магнита, поэтому менее притязательные изготовители головок на такое решение идут неохотно.
Особняком стоят радикальные решения – вывернутые «наизнанку» магнитные системы, у которых магнит – внутри звуковой катушки, а все, что вокруг – магнитопровод, замыкающий магнитную цепь.
Такие «обращенные» магнитные системы сделаны главным образом для того, чтобы улучшить линейность работы диффузора, а с точки зрения их функционирования как «мотора» – сплошная головная боль для разработчиков – оттого они и редки.
Привод динамика, как любая машина постоянного тока – обратим, то есть одновременно работает и как своего рода трансформатор. При движении звуковой катушки в мощном магнитном поле в ней наводится ЭДС и протекает ток, поскольку катушка закорочена практически нулевым выходным сопротивлением усилителя. Этот ток приводит к модуляции магнитного поля в зазоре, а поскольку звуковая катушка то «надета» на полюсный наконечник, то вылезает наружу, характер этой модуляции тоже ассиметричен и приводит к дополнительным искажениям. Для снижения этих нежелательных эффектов необходимо сделать так, чтобы, оставаясь эффективным двигателем, привод динамика перестал быть эффективным трансформатором. Известно, что злейший враг трансформатора – короткозамкнутые витки. Вот их-то и поставили на службу обществу в усовершенствованных магнитных системах. Чаще всего такие короткозамкнутые витки делаются в виде покрытия медью верхнего торца полюсного наконечника,
установки медного (реже – алюминиевого) наконечника…
…или с помощью так называемого «стабилизатора магнитного потока» – проводящего кольца, установленного у основания полюсного наконечника, подобная конструкция замечена в сабвуферах марки Fi Audio.
Побочным эффектом от короткозамкнутых витков в различных вариантах является уменьшение индуктивности звуковой катушки, из-за влияния которой с повышением частоты растет импеданс сабвуфера. Поэтому косвенно о наличии описанных устройств в конструкции динамика можно судить по величине индуктивности звуковой катушки. Если величина этой индуктивности 5-6 дюймового мидбаса не превышает 0,3-0.4 мГн, а у сабвуферов 10 – 12 дюймов 0,6-1,0 мГн, можно дать голову на отсечение, что создатели динамика позаботились о стабилизации потока, за что им можно быть только признательными.

Как работает динамик (громкоговоритель).


Рассмотрим как работает динамик (громкоговоритель). Поймём основные принципы работы динамика (громкоговорителя) и задействованные при этом движущие силы.


Принцип работы динамика (динамической головки) будет наиболее понятен, если головку собрать с самого начала.
Для этого потребуется кольцевой магнит с полюсами, расположенными с плоской стороны кольца:

Магнитное поле в таком магните будет располагаться следующим образом:

Теперь с задней стороны закроем магнит стальным листом, круглой формы и диаметром равным, диаметру магнита

Магнитное поле уже не будет излучаться в окружающую среду, а пойдет по стальному листу, который теперь выступает в роли магнитопровода:

Таким же листом закроем магнит с передней части, только в этом листе должно быть отверстие, диаметр которого равен внутреннему диаметру магнита:

Магнитное поле и с этой стороны замыкается, но магнитные линии внутри магнита нужно распределить более равномерно, поэтому внутрь вставим стальной цилиндр. Диаметр цилиндра должен быть меньше внутреннего диаметра магнита, причем разница в диаметрах зависит от конструктива используемой магнитной катушки. Введение цилиндра так же способствует концентрации магнитного в получившимся зазоре, поскольку разрывает магнитопровод:

Далее в зазор помещается катушка индуктивности, причем величина на которую катушка уходит внутрь магнитного зазора равна половине высоты катушки, т.е. катушка погружается ровно на половину своей высоты. Такое расположение катушки необходимо для обеспечения одинакового хода катушки как внутрь магнитной системы, так и наружу:

Теперь, если к катушке подключить источник напряжения, то катушка будет выталкиваться. если ее магнитное поле будет одной полярности с магнитным полем магнита:

или втягиваться, если ее магнитное поле будет противоположным магнитному полю магнита:

Теперь закрепим катушку на жестком цилиндре, а его соединим с бумажным конусом:

При движении катушки в магнитном зазоре это движение будет передавать конусу и тот будет вызывать механическое движение воздуха, т.е. появится звук. Конус называется диффузором и может быть выполнен не только из бумаги.

Катушка по сути ничем не закреплена, следовательно она может ударяться и о магнит и о стальной цилиндр, находящийся внутри магните и именуемый керном. Для того, чтобы исключить эту неприятность катушку фиксируют в пространстве при помощи центрирующей шайбы:

И магнит, и диффузор крепятся к корзине - магнит либо приклеивается, либо прикручивается винтами. Диффузор приклеивается к корзине через подвес:

Со стороны диффузора остается отверстие и его нужно закрыть, чтобы избежать попадания внутрь пыли и мелкого мусора:

Для этого используется защитный колпачок. Однако эта технологическая деталь выполняет еще одну функцию - она отвечает за воспроизведение высокочастотной составляющей звукового сигнала. Причина такого разделения труда чисто механическая. Для воспроизведения ВЧ сигнала необходима небольшая амплитуда, но слишком быстрое возвратно-поступательное движение диффузора. Если диффузор будет слишком тонким, значит он будет легким и решение воспроизведения вроде бы обеспечено. Однако если диффузор будет тонким он будет слишком мягким и не сможет полноценно воспроизводить НЧ составляющую, где необходимо использование всей площади диффузора. Диффузор попросту будет гнуться в середине:

Поэтому производители идут на различные компромиссы - сами диффузоры могут состоять из нескольких компонентов, например на пропитанную бумагу напыляется алюминий, а защитный колпачок делается из более жесткого материала, его форма изготавливается таким образом, чтобы обеспечить максимальную отдачу на ВЧ. В данном примере бумажный диффузор оснащен пластиковым, металлизированным защитным колпачком:

Иногда, чтобы еще больше усилить отдачу динамической головки на ВЧ используют защитные колпачки в виде рупора, выполненного из бумаги, но пропитанного более жесткой пропиткой и высушенного под бОльшим давлением:

Осталось подключить катушку диффузора к клеммам, и делается это многожильным, мишурным проводом, устойчивым к многократным перегибам:

Обычно выводы катушки тянутся по диффузору примерно до середины его диаметра и запаиваются в специально заштампованные в диффузор клеммы-заклепки. К этим клеммам и подпаивается один конец мишурного провода, а второй подпаивается к установленной на корзине клеммной колодке. К колодке подпаиваются, или подключаются через специальные самозажимные клеммы провода, идущие на клеммы, установленные на корпусе АС.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков