Все о свечах зажигания: принцип работы, особенности эксплуатации и ухода. Для чего автомобилю свеча зажигания Устройство и работа свечей зажигания

Все о свечах зажигания: принцип работы, особенности эксплуатации и ухода. Для чего автомобилю свеча зажигания Устройство и работа свечей зажигания

10.10.2019

Устройство свечи зажигания

Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания. Детали свечи, находящиеся в камере сгорания, подвергаются высоким термическим, механическим, электрическим нагрузкам, а также химическому воздействию продуктов неполного сгорания топлива. Температура в ней изменяется от 70 до 2500°С, давление газов достигает 50-60 бар, а напряжение на электродах доходит до 20 кВ и выше. Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов.

Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень. Корпус имеет резьбу, которая ввинчивается в головку блока цилиндров, шестигранник “под ключ” и специальное покрытие для защиты от коррозии. Опорная поверхность может быть плоской или конической. В первом случае для надежной герметизации свечного отверстия используется уплотнительное кольцо. Материалом изолятора служит высокопрочная керамика. Для предотвращения утечки электричества на его поверхности (в верхней части изолятора) делают кольцевые канавки (барьеры тока) и наносят специальную глазурь, а часть изолятора со стороны камеры сгорания выполняют в форме конуса (называемого тепловым). Внутри керамической части свечи закреплены центральный электрод и контактный стержень, между которыми может быть расположен резистор, подавляющий радиопомехи. Герметизация соединения этих деталей осуществляется токопроводящей стекломассой (стеклогерметиком). Боковой электрод “массы” приварен к корпусу.

Электроды изготавливают из жаростойкого металла или сплава. Для улучшения отвода тепла от теплового конуса центральный электрод может изготавливаться из двух металлов (биметаллический электрод) – центральную часть из меди заключают в жаростойкую оболочку. Биметаллический электрод обладает повышенным ресурсом благодаря тому, что хорошая теплопроводность меди препятствует чрезмерному его нагреву. Это позволяет, помимо улучшения термоэластичности, повысить надежность и долговечность свечи. С целью увеличения срока эксплуатации выпускаются свечи зажигания с несколькими боковыми электродами и тонкоэлектродные с центральным электродом, покрытым слоем платины или иридия. Срок службы свечей зажигания (в зависимости от конструкции) составляет от 30 до 100 тыс. км.


В маркировке свечи зажигания указываются ее геометрические и посадочные размеры, особенности конструкции и калильное число. Разные производители имеют свою систему обозначений. Ниже приведены маркировки, применямые российскими и ведущими зарубежными изготовителями, а также таблица взаимозаменяемости свечей разных марок (для просмотра нажмите на нужную картинку – файл откроется в новом окне).


Калильное число является показателем тепловых свойств свечи (ее способности нагреваться при различных тепловых нагрузках двигателя). Оно пропорционально среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке в ее цилиндре начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи). Свечи с небольшим калильным числом называют горячими. Их тепловой конус нагревается до температуры 900°С (температура начала калильного зажигания) при относительно небольшой тепловой нагрузке. Такие свечи применяются на малофорсированных двигателях с небольшими степенями сжатия. У холодных свечей калильное зажигание возникает при больших тепловых нагрузках, и они используются на высокофорсированных двигателях.

Пока тепловой конус не нагреется до 400°С, на нем образуется нагар, приводящий к утечкам тока и нарушению искрообразования. По достижении этой температуры он (нагар) начинает сгорать, происходит очищение свечи (самоочищение). Чем длиннее тепловой конус, тем больше его площадь, поэтому он нагревается до температуры самоочищения при меньшей тепловой нагрузке. К тому же выступание этой части изолятора из корпуса усиливает ее обдув газами, что дополнительно ускоряет прогрев и улучшает очищение от нагара. Увеличение длины теплового конуса приводит к уменьшению калильного числа (свеча становится “горячее”).

Диагностика работы двигателя по состоянию свечей зажигания

Свеча зажигания может обеспечить бесперебойную работу только при соблюдении нижеперечисленных условий:

  • используются свечи, рекомендованные изготовителем двигателя;
  • используется марка бензина, указанная в руководстве по эксплуатации автомобиля;
  • исправны системы зажигания и питания;
  • не превышено усилие при вворачивании свечи в головку блока двигателя.

Наиболее вероятной причиной преждевременного отказа свечей является загрязнение их продуктами неполного сгорания или увеличение искрового зазора из-за износа электродов. При этом решающее влияние на работоспособность свечей оказывает техническое состояние двигателя. Даже по внешнему виду свечи можно многое сказать как о работе двигателя в целом, так и об отдельных его узлах. Осмотр свечи нужно проводить после продолжительной работы двигателя, идеальным вариантом будет осмотр свечи после длительной поездки по загородному шоссе. Ошибкой некоторых автолюбителей, например является то, что после холодного старта двигателя при минусовой температуре и неустойчивой его работе первым делом выкручивают свечи и увидев черный нагар, делают поспешные выводы. А ведь этот нагар мог образоваться во время работы двигателя в режиме холодного старта, когда смесь принудительно обогащается, а неустойчивая работа могла быть следствием скажем плохого состояния высоковольтных проводов. Поэтому если вас что-то не устраивает в работе двигателя, и вы решили сделать диагностику его работы с помощью свечей, нужно проехать на изначально чистых свечах минимум километров 250-300, и только после этого делать какие-то выводы.


На фото №1 изображена свеча, вывернутая из двигателя, работу которого можно считать отличной. Юбка центрального электрода имеет светло-коричневый цвет, нагар и отложения минимальны. Полное отсутствие следов масла. Владельцу данного мотора можно только позавидовать, и есть чему: это экономичный расход топлива и отсутствие необходимости доливать масло от замены до замены.

Фото №2 типичный пример свечи от двигателя с повышенным расходом топлива. Центральный электрод покрыт бархатисто-черным нагаром. Причин тому несколько: богатая воздушно-топливная смесь (неправильная регулировка карбюратора, угла опережения зажигания или неисправностьсистемы впрыска), засорение воздушного фильтра.

Фото №3 – наоборот, пример чрезмерно бедной воздушно-топливной смеси. Цвет электрода от светло-серого до белого. Здесь есть повод для беспокойства. Езда на слишком обедненной смеси и при повышенных нагрузках может стать причиной значительного перегрева, как самой свечи, так и камеры сгорания, а перегрев камеры сгорания прямой путь к прогару выпускных клапанов.

На фото №4 юбка центрального электрода свечи имеет характерный красноватый оттенок. Этот цвет можно сравнить с цветом красного кирпича. Покраснение вызвано работой двигателя на низкокачественном топливе, содержащем избыточное количество присадок, которые имеют в своем составе металл. Длительное использование такого топлива приведет к тому, что отложения металла образуют на поверхности изоляции токопроводящий налет, через который току будет легче пройти, чем между электродами свечи, и свеча перестанет работать.

На фото № 5 свеча имеет ярко выраженные следы масла, особенно в резьбовой части. Двигатель с такими свечами после длительной стоянки имеет обыкновение после запуска “троить” некоторое время, а по мере прогрева работа стабилизируется. Причина этого – неудовлетворительное состояние маслоотражательных колпачков. Налицо повышенный расход масла. В первые минуты работы двигателя, в момент прогрева, характерный бело-синий выхлоп.

Фото № 6 – свеча вывернута из неработающего цилиндра. Центральный электрод, его юбка покрыты плотным слоем масла, смешанного с каплями несгоревшего топлива и мелкими частицами от разрушений, произошедшими в этом цилиндре. Причина этого – разрушение одного из клапанов или поломка перегородок между поршневыми кольцами с попаданием металлических частиц между клапаном и его седлом. В данном случае двигатель “троит” уже не переставая, заметна значительная потеря мощности, расход топлива возрастает в полтора, два раза. Выход один – ремонт.

Фото № 7 – полное разрушение центрального электрода с его керамической юбкой. Причиной данного разрушения мог стать один из перечисленных ниже факторов: длительная работа двигателя с детонацией, применение топлива с низким октановым числом, очень раннее зажигание, и просто бракованая свеча. Симптомы работы двигателя такие же, как в предыдущем случае. Единственное, на что можно надеяться, так это на то, что частицы центрального электрода сумели проскочить в выхлопную систему, не застряв под выпускным клапаном, иначе тоже не избежать ремонта головки блока цилиндров.

Фото № 8 последнее в этом обзоре. Электрод свечи оброс зольными отложениями, цвет не играет решающей роли, он лишь свидетельствует о работе топливной системы. Причина этого нароста – сгорание масла вследствие выработки или залегания маслосъемных поршневых колец. У двигателя повышенный расход масла, при перегазовках из выхлопной трубы сильное синее дымление, запах выхлопа похож на мотоциклетный.

Если вы хотите, чтобы с работой вашего двигателя было меньше проблем, вспоминайте о свечах не только тогда, когда мотор отказывается работать. Производитель гарантирует безотказную работу свечи на исправном двигателе 30 тыс. километров пробега. Однако не лишним будет в среднем каждые 10 тыс. километров пробега проверять состояние свечей. Прежде всего это проверка и, при необходимости, регулировка зазора до требуемой величины, удаление нагара. Нагар удалять лучше металлической щеткой, от пескоструйной обработки разрушается керамика центрального электрода, и вы рискуете получить копию с фото № 7.

Назначение свечи зажигания

Одним из важнейших элементов систем зажигания двигателей внутрен-него сгорания являются свечи. Предназначены они для воспламенения горючей смеси в цилинд-рах при помощи искрового разряда.

Искровой разряд, создаваемый системой зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.

Различаются свечи по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными, если их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.

Искровой разряд у большинства свечей образуется непосредственно в искро-вом зазоре между электродами.

При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химиче-ски агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.

В процессе работы из-за неполноты сгорания в пристеночной зоне на рабо-чих деталях свечи образуется нагар. Чтобы избавиться от него свечи должны самоочищать-ся, автоматически поддерживая необходимую рабочую температуру в темпера-турных пределах, обеспечивающих удаление нагара и исключающих возмож-ность калильного зажигания.

Свечи должны обеспечивать свою работоспособность в условиях с повышенными электри-ческими. механическими и химическими нагрузками. Непрерывный рост мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.

От совершенства конструкции, качества изготовления и правильности подбо-ра свечи к двигателю сильно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.

В свою очередь, работоспособность свечи зависит от ее соответствия двига-телю по конструкции, основным размерам, величине искрового зазора и тепло-вой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.

Принцип действия свечи зажигания

Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электри-ческий ток.

Явление пробоя газа высоким напряжением обусловлено тем, что случайные электроны, появление которых вызвано проникающим ионизирующим излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода.

При столкновении с молекулами газа про-исходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал.

Это явление называется пробоем, первой фазой существова-ния искры.

После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается.

Первона-чально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образу-ется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.

Протекание сильного тока приводит к появлению электрической дуги, и температура в канале разряда при определенных условиях может достиг-нуть величины до 6000 К.

Скорость расширения проводящего канала стабили-зируется. а затем уменьшается до нормальной скорости распространения пла-мени.

При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К.

По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.

Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается.

Если напряжение оказывается недостаточ-ным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.

В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.

Если скорость расширения плазмы разряда превышает скорость распро-странения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.

Основные характеристики и определения свечи зажигания

Верхний температурный предел те-пловой характеристики - величи-на, равная рабочей температуре свечи, при которой возникает ка-лильное зажигание.

«Горячая» или «холодная» свечи - при прочих равных условиях имею-щие соответственно большую или меньшую рабочую температуру.

Детонация - аномальный процесс сгорания, имеющий взрывной ха-рактер с резким местным повыше-нием температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.

Искрообразование - возникновение искрового разряда в искровом за-зоре свечи в период от пробоя до угасания.

Искровая свеча зажигания (свеча зажигания, свеча) - электриче-ский ввод в комбинации с искро-вым разрядником, предназначен-ный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазо-ре между электродами.

Искровой зазор - промежуток между изолированным центральным элек-тродом и боковым электродом -массы».

Искровой разряд (электрическая искра, искра) - нестационарный электрический разряд в газе, воз-никающий в электрическом поле.

Калильное зажигание - воспламене-ние горючей смеси, вызванное от-дельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Калильное число свечи - условная величина, численно равная средне-му индикаторному давлению в ци-линдре двигателя испытательной установки, при котором появляется калильное зажигание.

Контактная часть свечи - элементы со стороны высоковольтного про-вода: головка изолятора, контакт-ная головка и контактная гайка.

Нагар - образовавшиеся на поверхно-сти рабочей части свечи продукты неполного сгорания.

Нижний температурный предел те-пловой характеристики - величи-на, равная температуре рабочей части свечи, при которой нагар вы-горает.

Работоспособность свечи - обеспече-ние бесперебойного новообразова-ния и герметичности в условиях, пре-дусмотренных нормативно-техниче-ской документацией и стандартами.

Рабочая камера свечи - полость, образуемая внутренней поверхно-стью корпуса и наружной поверхно-стью теплового конуса изолятора, сообщающаяся с камерой сгора-ния двигателя.

Рабочая температура свечи - тем-пература рабочей части свечи на данном режиме работы двигателя.

Рабочая часть свечи - элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.

Тепловой конус изолятора (юбка изолятора) - часть изолятора, расположенная в рабочей каме-ре свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.

Тепловая характеристика свечи - зависимость рабочей температу-ры свечи от режимов работы дви-гателя.

Цоколь свечи - часть корпуса с резь-бой, предназначенная для уста-новки свечи в двигателе и для связи электрической цепи высоко-го напряжения системы зажигания с «массой».

Шунтирование системы зажига-ния - короткое замыкание высоко-вольтной цепи системы зажигания на «массу» при утечке тока по нага-ру на поверхности теплового кону-са изолятора и (или) по токопро-водящему мостику в искровом зазоре.

Электропроводный (токопроводя-щий) мостик - нагар, частично или полностью заполняющий искровой зазор, обладающий проводи-мостью и создающий электриче-скую цепь, замыкающую изолиро-ванный

Условия работы свечи зажигания

Современные поршневые двигатели внутреннего сгорания работают по четы-рехтактному или двухтактному рабочему циклу.

Автомобильные двигатели, за ред-ким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осу-ществляемому за один оборот коленчатого вала и два хода поршня.

В процессе работы двигателя на свечи воздействуют переменные электриче-ские, тепловые, механические и химические нагрузки с частотой, пропорцио-нальной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.

Тепловые нагрузки.

Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Темпера-тура под капотом автомобиля может достигать 150°С.

На многих автомобилях, и тем более мотоциклах, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к поврежде-нию изолятора.

Из-за неравномерности нагрева температура 8 различных сечениях свечи мо-жет отличаться на сотни градусов, что приводит к тепловым напряжениям и дефор-мациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.

Механические нагрузки.

Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

Химические нагрузки.

При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материа-лов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900°С.

Электрические нагрузки.

При искрообразовании, длительность которого может составлять до 3мс, изолятор свечи оказывается под воздействием им-пульса высокого напряжения, максимальное значение которого зависит от дав-ления и температуры в камере сгорания и величины искрового зазора. В неко-торых случаях напряжение может достигать 20-25 кВ (амплитудное значение).

Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напря-жение поверхностного перекрытия изолятора.

В дуговой фазе разряда протекание сильного тока приводит к появлению го-рячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000К, что выше температуры плавления любого материала электро-дов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.

Отклонения от нормального процесса сгорания

Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастани-ем температуры и давления в цилиндре двигателя. В результате искрового зажи-гания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.

При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям мож-но отнести следующие.

Пропуски воспламенения.

Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

Калильное зажигание.

Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

Преждевременное воспламе-нение может быть вызвано тлеющими частицами нагара.

При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажига-ния. Это приводит к росту скорости нарастания давления и температуры, увели-чивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоря-ющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.

При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.

Детонация.

Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхно-стей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени.

Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электро-ды могут оплавиться и даже полностью выгореть.

Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двига-теля, увеличение расхода топлива и иногда появление черного дыма из выпуск-ной трубы.

Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке.

Наиболее вероятен выход на этот режим при движении автомобиля на подьеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточ-ном в данных условиях октановом числе топлива возникает детонация, сопровож-даемая звонким металлическим стуком.

Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.

Безусловным является требование использовать только топливо, соответст-вующее двигателю по октановому числу.

Дизелинг.

В некоторых случаях возникает крайне неравномерная неуправляе-мая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспла-менения горючей смеси при сжатии, подобно тому, как это происходит в дизелях. В русской технической литературе «дизелинг» является сравнительно новым тер-мином, взятым из английского языка (dieseling).

На двигателях, преимущественно карбюраторных, где не исключена воз-можность подачи топлива в цилиндр при выключенном зажигании, дизе-линг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравно-мерно. Это может продолжаться несколько секунд, иногда дольше, затем двига-тель самопроизвольно останавливается. Объяснять это явление калильным за-жиганием от перегретой свечи было бы неправильно, она тут ни при чем.

Причина дизелинга - в особенностях конструкции камеры сгорания и в каче-стве топлива (то есть дизелинг наступает при низкой стойкости топлива к само-воспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламене-ния горючей смеси. Калильное зажигание возникает при температуре электро-дов и изолятора 850-900°С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя темпе-ратура этих деталей не превышает 350°С. Свеча в этих условиях не причина, а скорее «жертва», так как из-за неполноты сгорания усиливается процесс обра-зования нагара.

Качество топлива и моторного масла

Для обеспечения нормальной работы свечей автомобильные бензины долж-ны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.

Детонационная стойкость топлива зависит от его химического состава и структу-ры углеводородов, полученных при переработке нефти. Способность сопротив-ляться появлению детонации зависит от молекулярной массы - чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.

Промышленное производство бензина включает первичную и вторичную перера-ботку нефти с последующим смешением различных компонентов для получения необходимых свойств.

При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке неф-ти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологи-ческой обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензи-на увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторич-ной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной мархи, производимые на разных предпри-ятиях, в связи с разницей в технологии, имеют несколько различные составы.

Для повышения октанового числа в бензин добавляют антидетонаторы - хи-мические соединения, подавляющие детонацию. Для удаления из камеры сгора-ния продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители - химические вещества, способствую-щие удалению продуктов сгорания. Тем не менее, условия работы свечи при ис-пользовании антидетонаторов существенно ухудшаются.

Полностью удалить продукты сгорания не удается, и на электродах и тепло-вом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или пол-ный отказ 8 искрообразовании.

Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15% метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются раз-личные железосодержащие антидетонаторы и традиционный антидетонатор на ос-нове тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.

К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.

Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз, ФК-4 или АПК вызывает отложение токо-проводящего нагара красного цвета на свечах. Этот нагар практически невоз-можно удалить, он приводит к полному и необратимому их отказу.

Коррозионное воздействие бензина определяется содержанием кислот, щело-чей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способст-вуют образованию нагара, однако полностью избавиться от них непросто, особен-но при переработке сернистой нефти.

Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, мою-щие и т. д. При сгорании масла, попавшего в камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.

Образование нагара и самоочищение

Нагар на свече - это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторно-го масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замы-кание во вторичной цепи системы зажигания.

И в том, и в другом случае происхо-дит частичное или полное прекращение искрообразования.

Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важней-ших требований к свече - способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.

Удаление нагара, если в продуктах сгорания нет несгораемых веществ, проис-ходит при температуре 300-350°С - это нижний температурный предел работо-способности свечи.

Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания.

То же самое требуется для предотвращения утечек тока и соот-ветственно для снижения потерь энергии зажигания.

Тепловая характеристика

Тепловая характеристика свечи - это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.

Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора.

Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать

1,

Около 100 лет назад, компанией Bosch была представлена свеча зажигания . Спустя непродолжительное время их начали повсеместно применять по всему миру , для поджигания смеси топлива и воздуха в двигателях .

Они работают в жесточайших условия , постоянно подвергаясь воздействию высокой температуры (прим . 1000 градусов ) и высокому напряжению (до 40 тыс . вольт ).

и принцип работы свечей зажигания

Свечи зажигания устроены просто , по сути они состоят из проводника в центре , металлического корпуса к которому приварен боковой электрод, и изолятора . Несмотря на простоту своего устройства , они играют одну из важнейших ролей в работе двигателя автомобиля . Их обязанность заключается в поджигание горючей смеси, в любых условиях и при любой нагрузки на них.

В момент , когда поршень в такте сжатия приходит в верхнюю мертвую точку , выбрасывается электрическая искра, воспламеняющие смесь из воздуха и горючего . Искра возникает между центральным и боковым электродами . Для ее возникновения , необходимо напряжения не менее 20 тыс . вольт . За его получения отвечает система зажигания , она преобразовывает 12 вольт получаемые с аккумулятора автомобиля , в 25 —35 тысяч вольт необходимые для нормальной работы свечи . Момент , когда должно подастся высокое напряжения определяется датчиком положения коленчатого вала .

Существует три основных типа свечей зажигания которые сегодня широко применяются. Отличающихся они друг от друга особенностями конструкции и металлом из которого изготавливаются.

Основные типы свечей зажигания:

  • Двухэлектродные;
  • Многоэлектродные;
  • Свечи из драгоценных металлов.

Рассмотрим поподробней первые два типа.

Двухэлектродные и многоэлектродные свечи зажигания

Классической свечей зажигания считается двухэлектродная . Из названия может стать понятно , что данная свеча имеет два электрода один центральный , второй боковой . Между которыми возникает искра .

Многоэлектродная это усовершенствованная классическая свеча . Она имеет так же один центральный электрод , а вот боковых электродов уже несколько может быть два , три и более . За счет увеличения их числа работа свечи стабилизируется и ее срок эксплуатации увеличивается . Работа двигателя при этом становится более ровной . Свечи данного типа также позволяют развивать ему большую мощность , а его экологические параметры становятся лучше .

Холодные и горячие свечи зажигания

Свечи зажигания различаются не только по типу , а также по своим характеристикам и подбираются индивидуально в зависимости от конструкции двигателя . По характеристикам они делятся на три различные группы холодные , средние и горячие .
Что бы понять , что это означает и зачем они нужны , нужно разобраться что такое «калильное число » и «калильное зажигание ».

  • Калильным числом называют величину , показывающею время , через которое свеча достигает калильного зажигания . Чем выше у нее калильное число , тем меньше она будет нагреваться .
  • Калильным зажиганием называют негативный эффект , когда воспламенение горючей смеси в двигателе происходит не от свечи зажигания , а от нагревшихся элементов двигателя , чаще всего это бывает сама свеча зажигания . Этот эффект возникает если в автомобиле установлена свеча с неподходящим калильным числом .

Условия работы свечей зажигание в летнее и зимнее время отличаются , поэтому в идеале лучше иметь в комплекте свечей для разного времени года .

Например , в жаркую погоду , при езде на большой скорости свеча с низким калильным числом , быстро приведет к калильному заживанию . Что приводит к потере мощности . В этой ситуации свечу необходимо заменить на более «холодную »
В обратной ситуации если при низкой температуре например в пробке , происходит ослабление искры . В холодную погоду возникнут проблемы с запуском двигателя . В случае возникновения этой проблемы необходимо поставить более «горячею » свечу .

На выбор также влияет и размер двигателя , что он больше тем «холоднее » должна быть свеча .
Группы свечей по калильному числу (Российская маркировка ):

  • В «горячею » группу входят свечи имущих калильное число от 11 до 14 .
  • В «среднею » группу входят свечи имеющих калильное число от 17 до 19 .
  • В «холодную » группу входят свечи имеющих калильное число от 20 до 26 .

В дизельных двигателях очень часто используется калильное зажигание , то есть самовоспламенение , от накаленной свечи , что облегчает запуск двигателя при низких температурах .

Форкамерная свеча зажигания

Не так давно на рынке появился еще один тип свечей, так называем форкамерные или иначе плазменные. Производители таких свечей обещают значительное увеличение мощности двигателя, почти вечную работу и много других плюсов и преимуществ над другими свечами. Но как показывает практика большая часть этих обещания не сбываются, мощность двигателя по сравнению с классическими свечами не возрастает. В некоторых случаях на малых оборотах двигатель начинает «троить», а при высоких свечи могут начать плавятся. Единственным плюсом на деле оказывается количество вредных веществ в выхлопных газах, оно действительно снижается.

Данная технология возможно будет иметь большое будущие, но на сегодняшний день она еще достаточно «сырая». Если вы не любитель экспериментов со своим автомобилем, и ван нужна его стабильная работа без сюрпризов, то лучше сразу отказаться от их приобретения.

Неисправности свечей зажигания , признаки и причины

Без рабочих свечей зажигания становится невозможным нормальная эксплуатация автомобиля .
Рассмотрим признаки неисправности свечей , которые требующие срочного вмешательства водителя :

  • В разы увеличивается расход топлива ;
  • Происходит падение мощности и набора оборотов в работе силового агрегата ;
  • Тяжелый запуск двигателя ;
  • Возрастает концентрация CO в выхлопных газах ;
  • Ощущается подёргивания автомобиля во время движения ;
  • Не приятный шум доносящийся из двигателя на холостом ходу .

Причины же таких явлений как привило просты :

  • Свеча просто выработала свой ресурс ;
  • Оплавление электродов или их коррозия ;

  • Не правильно подобрана свеча ;
  • Загрязнение (отложения , нагар , масло или топливо на электродах );
  • Повреждение или загрязнение изолятора .

В случае возникновения подобных неисправностей , следует срочно принять меры . В противном случае может произойти детонация двигателя , что полностью выведет его из строя .

Когда менять свечи зажигания на авто

Неисправные свечи зажигания могут привести к тяжелы последствиям , таким как повреждения топливной системы и двигателя , а это грозит куда более крупными затратами . От их своевременной замены зависит сохранность силового агрегата автомобиля .

Когда же всё —таки менять свечи зажигания ? Постараемся разобраться в этом вопросе . Такие признаки как:

  • Признаки износа самой свечи , они заметны невооруженным глазом . Это оплавления , сколы и коррозия .
  • Подтраивание при езде ;
  • Проблемы с запуском ;
  • Падение мощности и тяги двигателя ;
  • Увеличившие расхода топлива;
  • Регулярное образования нагара на свечах (каждые 20 —30 километров ).

Могут свидетельствовать о необходимости замены свечей.
В среднем свечи следует менять каждые 25 —30 тысяч пробега автомобиля .

Нагар на свечах , анализ работы свечей зажигания

Свечи устанавливаются в головке блока цилиндров, их электроды постоянно находятся в камере сгорания где температура может достигать трех тысяч градусов. Не смотря на свои небольшие размеры, при работе двигателя они постоянно находятся под воздействием высоких температур и электрического тока высокого напряжения. Подвергаются колоссальным перепадам давления, вибрации, воздействию разнообразных химических веществ находящихся в топливе.

Существуют следующие причины образования нагара на электродах свечей зажигания :

  • Свеча неправильно подобраны по калильному числу (слишком холодная );
  • Проблемы в регулировки карбюратора (смесь поступает слишком переобогащенная );
  • Неправильно отрегулировано зажигание (ранее );
  • Прошиты высоковольтные провода или изолятор ;
  • Установлен неправильный зазор между центральным и боковым электродами .

  • Вследствие образования нагара на свече:
  • Снижается мощность двигателя и ухудшается его запуск ,
  • Возрастает расход топливо ,
  • Происходит дестабилизация работы на холостом ходу ,
  • Увеличивается выброс выхлопных газов .

Свеча зажигания подвергается большому числу негативных воздействий и успешно работает при таких нагрузках.

Правила ухода за свечами зажигания

Нормальным цветом свечи считается от светло —серого до светло —коричневого . Их необходимо периодически очищать и производить проверку зазор а между электродами . На автомобиле находящимся в постоянной эксплуатации это необходимо делать каждые 10 тысяч километров . Если автомобиль в год проходит меньше 20 тысяч километров , то очистку и проверку зазора необходимо проводить два раза в году , рекомендуется это делать в конце весны и осени .
Во время очистки свечей не рекомендуется пользоваться острыми предметами , так как это может привести к повреждению и образованию царапин на изоляторе . Хорошо подходит для очистки, щетка из тонкой металлической проволоки .
Идеальным способом по очистки свечей считается:

  • Вымыть свечи в бензине ;
  • Просушить ;
  • На легком огне прокипятить в 20 процентной уксусной кислоте 20 —30 минут ;
  • После этого с помощью капроновой щенки очистить и вымыт их в воде .

Внимание ! Этот метод необходимо использовать на открытом воздухе или в помещение имеющем очень хорошую вентиляцию , так как во время кипячение выделяются едкие пары уксуса .

Как выбрать правильные и самые лучшие свечи зажигания

При выборе свечи зажигания в первую очередь следует отталкиваться от размеров и калильного числа . С размерами сложностей не у кого возникнуть не должно . Калильное число же подбирается в зависимости от времени года и эксплуатации автомобиля .
Так , например , для любителей быстрой езды калильное число должно быть выше , чтобы предотвратить перегрев, и следовательно , эффект калильного зажигания . При спокойной езде свечи берутся с меньшим калильным числом .
В идеале, лучше всего изучить инструкцию автомобиля , в ней указывается какие свечи подходят для данного типа двигателя .

На сегодняшний день лучшими свечами зажигания по праву считаются свечи из драгоценных металлов (платина , серебро , иридиум и т .д .). За эти свечи конечно придется заплатить внушающею сумму , но преимущества , которые они дают не менее внушительны :

  • Огромны срок эксплуатации ;
  • Хорошо самоочищаются ;
  • Значительное повышение экологических показателей ;
  • Увеличение мощности ;
  • Экономия (как бы это парадоксально не звучало , при их цене ).

Такие свечи снижают расход топлива , при регулярной эксплуатации автомобиля способны окупится всего за пару месяцев .


При выборе свечей из двухэлектродного и многоэлектродного выбора однозначно лучше сделать в пользу вторых , их параметры выше первых , а ценой не так уж и сильно они отличаются . Если же вы все таки решились купить свечи из драгоценного металла , то тут лучше не экономить , и взять качественные свечи от известного производителя , ведь как известно «скупой платит дважды ».

Свеча зажигания – устройство, предназначенное для воспламенения топливной смеси, поступающей в камеры сгорания двигателя, в конце такта сжатия.

Принцип действия

Электрический ток высокого напряжения (до 40.000 В) подаётся по высоковольтным проводам от катушки зажигания, через распределитель зажигания, к свече зажигания. Между центральным электродом свечи (плюс) и её боковым электродом (минус) возникает искровой разряд. От этой воспламеняется топливная смесь, находящаяся в камере сгорания двигателя в конце такта сжатия.


Виды свечей зажигания

Свечи зажигания бывают искровые, дуговые, накаливания. Нас будут интересовать искровые, применяющиеся в бензиновых двигателях внутреннего сгорания.

Расшифровка маркировки свечей зажигания отечественного производства

В качестве примера возьмём широко распространённую свечу А17ДВРМ.

А – резьба М 14 1,25

17 – калильное число

Д – длина резьбовой части 19 мм (с плоской посадочной поверхностью)

В – выступание теплового конуса изолятора свечи за торец резьбовой части корпуса

Р – встроенный помехоподавительный резистор

М – биметаллический центральный электрод

Также могут быть указаны – дата изготовления, производитель, страна изготовления.

Маркировка свечей зажигания импортного производства не имеет единой системы расшифровки. Что она означает для тех или иных свечей можно посмотреть на сайтах их производителей.

Устройство свечи зажигания

Контактный наконечник. Служит для крепления высоковольтного провода на свече.

Изолятор. Выполнен из высокопрочной алюминиево-оксидной керамики, выдерживающей температуру до 1000 0 и электрический ток напряжением до 60.000 В. Необходим для электрической изоляции внутренних деталей свечи (центрального электрода и т. д.) от ее корпуса. То есть разделения «плюса» и «минуса». Имеет несколько кольцевых канавок в верхней части и покрытие из специальной глазури, служащих для предотвращения утечки тока. Часть изолятора со стороны камеры сгорания, выполненная в виде конуса называется тепловым конусом и может как выступать за пределы резьбовой части корпуса (горячая свеча), так и быть утопленным в него (холодная свеча).

Корпус свечи. Изготовлен из стали. Служит для вворачивания свечи в головку блока двигателя и отведения тепла от изолятора и электрода. Помимо этого он является проводником «массы» автомобиля к боковому электроду свечи.

Центральный электрод. Наконечник центрального электрода изготавливают из жаростойкого железо-никелевого сплава с сердечником из меди и других редкоземельных металлов (т. н. биметаллический электрод). Он проводит электрический ток для создания искры и является наиболее горячей частью свечи.

Боковой электрод. Изготавливается из жаропрочной стали с примесью марганца и никеля. На некоторых свечах может быть несколько боковых электродов для улучшения искрообразования. Так же существуют биметаллические боковые электроды (например, железо с медью) имеющие лучшую теплопроводность и увеличенный ресурс. Боковой электрод предназначен для обеспечения образования искры на свече зажигания между ним и центральным электродом. Выполняет роль «массы» (минуса).

Помехоподавительный резистор. Изготовлен из керамики. Служит для подавления радиопомех. Соединение резистора с центральным электродом герметизировано специальным герметиком. Имеется не на всех свечах зажигания. Например А17ДВ его нет, А17ДВР есть.

Уплотнительное кольцо. Выполнено из металла. Служит для уплотнения соединения свечи с посадочным гнездом в головке блока. Присутствует на свечах с плоской контактной поверхностью. На свечах с конусной контактной поверхностью его нет. На модели показана свеча с плоской посадочной поверхностью и уплотнительным кольцом.

Зазор между электродами свечи зажигания

Двигатель легкового автомобиля эффективно работает только при определенном зазоре между электродами свечей зажигания. Зазор в свечах зажигания должен соответствовать требованиям заводской инструкции по эксплуатации автомобиля. При меньшем зазоре искра между электродами получается короткой и слабой, сгорание топливной смеси ухудшается. При большем зазоре увеличивается напряжение, необходимое для пробивания воздушного промежутка между электродами свечи, и искры вообще может не быть или она будет, но очень слабая.

Измеряется зазор при помощи круглого щупа необходимого диаметра. Не рекомендуется применение плоского щупа, так как измерение зазора будет неточным. Объясняется это тем, что при работе свечи происходит перенос металла с одного электрода на другой. На одном электроде, со временем, образуется ямка, на другом бугорок. Поэтому для измерения зазоров подходят только круглые щупы.

Зазор между электродами свечи зажигания регулируют только подгибанием бокового электрода.

С наступлением зимы, для снижения пробивного напряжения нормальный зазор можно уменьшить на 0,1 – 0,2 мм. При прокрутке двигателя стартером в мороз, двигатель быстрее будет схватывать.

Калильное число

Тепловая характеристика свечи зажигания (способность противостоять нагреву) называется калильным числом. Для каждого типа двигателя требуется свеча зажигания с определенным калильным числом. Свечи делятся на холодные (с высоким калильным числом) и горячие (с низким калильным числом).

Калильное число определяется материалом изолятора и длиной его нижней части (у горячих свечей он более длинный). Отечественные свечи имеют показатели калильного числа от 11 до 23, зарубежные индивидуально у каждого производителя.

При неправильно подобранных свечах зажигания возможно калильное зажигание, когда топливная смесь в цилиндрах поджигается преждевременно не электрической искрой, возникающей между ее электродами, а от раскаленного корпуса свечи. Двигатель в этом случае звенит под нагрузкой (детонация, «пальцы стучат») как при неверно выставленном угле опережения зажигания, а также продолжает некоторое время работать при выключении зажигания. Необходимо заменить свечи на более холодные.

И, наоборот, наличие постоянно возникающих черных отложений () на электродах свечей, при заведомо исправном двигателе, говорит о том, что свечи зажигания холодные и их следует заменить на более горячие.

Правильно подобранные свечи должны иметь светло-коричневый цвет в нижней части, так как температурный режим такой свечи 600-800 0 . В этом случае свеча самоочищается, масло, попавшее на нее, выгорает, нагар не образуется. Если температура ниже 600 0 (например, при постоянном движении в городе), то свеча очень быстро покрывается нагаром, если выше 800 0 (при движении на мощностных режимах) возникает калильное зажигание. Поэтому стоит подбирать свечи для своего двигателя согласно рекомендациям его завода-производителя.

Проверка свечей зажигания

Выкрутите свечи и осмотрите их центральные электроды. Если они черные — топливная смесь переобогащается, если они светлые (светло-серые) — топливная смесь обеднена.

Дефектные свечи меняем. Подробнее об этом на странице «Неисправности свечей зажигания» .Применяемость свечей зажигания для разных двигателей можно посмотреть на странице «Применяемость свечей зажигания для двигателей автомобилей ВАЗ»

В процессе работы двигателя на свечи воздействуют электрические, тепловые, механические и химические нагрузки. Разберемся, как работают свечи зажигания автомобиля.

Какие нагрузки испытывают свечи?

Тепловые нагрузки. Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов на впуске до двух-трех тысяч при сгорании. Температура под капотом автомобиля может достигать 150 °С. Из-за неравномерности нагрева температура в различных сечениях свечи может отличаться на сотни градусов, что приводит к тепловым напряжениям и деформациям. Это усугубляется тем, что изолятор и металлические детали отличаются по величине коэффициента термического расширения.

Механические нагрузки. Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

Химические нагрузки. При сгорании образуется целый "букет" химически активных веществ, способных вызвать окисление даже весьма стойких материалов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900 °С.

Электрические нагрузки. При искрообразовании, длительность которого может составлять до 3 мс, изолятор свечи оказывается под воздействием импульса высокого напряжения. В некоторых случаях напряжение может достигать 20-25 кВ. Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора.

Отклонения от нормального процесса сгорания

При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям относят следующие:


Пропуски воспламенения. Могут возникнуть из-за обедненной горючей смеси , пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

Калильное зажигание. Различают преждевременное , сопровождающее появлением искры и запаздывающее - вызванное перегретыми участками поверхностей выпускного клапана, поршня или свечи. При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажигания. Это приводит к росту температуры, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоряющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет падать.

При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец и прокладки головки блока цилиндров. У свечи могут сгореть электроды или оплавиться изолятор.

Детонация - возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте, в результате сжатия еще не сгоревшей горючей смеси. Детонация распространяется со скоростью 1500-2500 м/с, что превышает скорость звука и вызывает локальный перегрев цилиндра, поршня, клапанов и свечи. На изоляторе свечи могут образоваться сколы и трещины, электроды могут оплавиться и полностью выгореть.

Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двигателя, увеличение расхода топлива и появление черного дыма .


Особенностью детонации является задержка по времени от момента наступления необходимых условий до ее возникновения. В связи с этим детонация наиболее вероятна при относительно небольших оборотах двигателя и полной нагрузке, например при движении автомобиля на подъеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения мотора уменьшаются. При недостаточном октановом числе топлива возникает детонация, сопровождаемая звонким металлическим стуком.

Дизелинг. В некоторых случаях возникает неуправляемая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения мотора. Это явление возникает из-за самовоспламенения горючей смеси при сжатии, подобно тому, как это происходит в дизелях.

На двигателях, где не исключена возможность подачи топлива в цилиндр при выключенном зажигании, дизелинг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравномерно. Это может продолжаться несколько секунд, затем двигатель самопроизвольно останавливается.

Причина дизелинга - в особенностях конструкции камеры сгорания и в качестве топлива. Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламенения горючей смеси.


Нагар на свече - это твердая углеродистая масса, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторного масла. Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из требований к свече - способность самоочищаться от нагара.

Удаление нагара, если в продуктах сгорания нет несгораемых веществ, происходит при температуре 300-350°С - это нижний предел работоспособности свечи. Эффективность самоочищения от нагара зависит от того, как быстро изолятор нагреется до этой температуры после пуска двигателя.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков