Системы изменения степени сжатия двигателя.

Системы изменения степени сжатия двигателя.

Недавно на автосалоне в Париже марка Infiniti (читай, альянс Renault-Nissan) представила двигатель с изменяемой степенью сжатия. Фирменная технология Variable Compression-Turbocharged (VC-T) позволяет варьировать эту самую степень, буквально высасывая все соки из двигателя.

В «идеальной вселенной» правило простое - чем выше степень сжатия топливо-воздушной смеси, тем лучше. Смесь максимально расширяется, поршни движутся как заведенные, следовательно, мощность и КПД мотора максимальны. Другими словами, топливо сжигается чрезвычайно эффективно.

Все было бы замечательно, если б не сама природа топлива. В ходе издевательств его терпению когда-то наступает предел: чем ровнее сгорает смесь - тем лучше, но при высоких нагрузках (высокая степень сжатия, большие обороты) смесь начинает взрываться, а не сгорать. Такое явление называется детонацией, и эта штука весьма разрушительна. Стенки камеры сгорания и сам поршень испытывают серьезные ударные нагрузки и постепенно, но довольно быстро разрушаются. Кроме того, падает эффективность мотора - нормальное рабочее давление на поршень падает.

Таким образом, наиболее выгодный вариант - когда двигатель в любом режиме работает на грани детонации, не допуская этого явления. Инженеры Infiniti составили график, на котором обозначили для себя эффективные режимы работы двигателя в зависимости от нагрузки, величины оборотов и степени сжатия топливо-воздушной смеси. (На самом деле эффективность сгорания топлива можно повышать и другими способами, например, увеличением количества клапанов на цилиндр, настройкой графика их работы, даже выбором места над поршнем, куда направляется впрыск порции топлива. Конечно, мы об этом помним.) Первые два параметра, понятно, зависят как от внешних факторов, так и от тщательного подбора трансмиссии. А третий - степень сжатия - также решено было изменять в пределах от 8:1 до 14:1.


Технически это выглядит как введение в конструкцию кривошипно-шатунного механизма дополнительного элемента - коромысла между шатуном и коленвалом. Коромысло управляется электромотором - рычаг можно сдвигать таким образом, что диапазон хода поршня варьируется в пределах 5 мм. Этого достаточно для существенного изменения степени сжатия.

Достоинств без недостатков не бывает. На первый взгляд, они очевидны: увеличение сложности конструкции, некоторая прибавка в весе... Однако насчет этих минусов грех жаловаться - двигатель получился очень сбалансированным, благодаря чему из конструкции были выведены балансировочные валы. Вероятно также, что двигатель особо чувствителен к марке и качеству топлива. Думается, эта проблема - во всяком случае, в значительной степени - решается программными методами.

Поскольку в названии технологии присутствует слово Turbocharged, очевидно, что такие моторы будут турбированными. Первый из них - двухлитровый 270-сильный встанет под капот кроссовера Infiniti QX50. Уверяют, что двигатель с изменяемой степенью сжатия потребляет на целых 27% меньше топлива, чем обычный мотор аналогичного объема. Цифра крайне внушительная. Надо думать, что и экологичность (количество выбросов вредных веществ) у него на высоте.


Введение

В настоящее время повышение топливной экономичности бензиновых двигателей внутреннего сгорания (ДВС) по-прежнему является актуальной научно-технической задачей. Одним из направлений улучшения экономичности двигателей является регулирование степени сжатия на частичных нагрузках. В таких ДВС реализация переменной степени сжатия требует серьезного вмешательства в конструкцию как самого двигателя, так и силового механизма, что определенным образом сказывается на параметрах рабочего процесса.

В разработке силового механизма уже достигнуты определенные успехи. В последние годы в двигателях с регулируемой степенью сжатия применяются нетрадиционные силовые механизмы, которые характеризуются сложностью, ненадежностью и неэффективностью конструкции. Многие фирмы и исследовательские организации проводят исследования, цель которых – создание силового механизма, обеспечивающего наилучшие эффективные показатели двигателя при регулировании степени сжатия. С сегодняшней точки зрения в автомобильном ДВС перспективным является использование кривошипно-кулисного силового механизма.

В настоящей работе представлены первые результаты работ, направленных на разработку бесшатунного двигателя с кривошипно-кулисным механизмом, обеспечивающим изменение степени сжатия в широких пределах.

Обзор и анализ работ по двигателям с переменной степенью сжатия

Работы по разработке двигателей с переменной степенью сжатия (Ɛх) ведутся в США, Японии, Германии, Австралии, Швейцарии, России и др. странах. К настоящему времени известно большое множество двигателей с различной конструкцией силового механизма, обеспечивающего Ɛх. Так, в двухтактном двигателе со встречно-движущимися поршнями степень сжатия изменяется с помощью дополнительных балансиров с эксцентриками, связанных с коленчатым валом через шатуны.

Работоспособные образцы аксиальных двигателей с Ɛх были созданы в США, России и других странах. В таких двигателях приводным механизмом является косая шайба с переменным углом наклона, который изменяет ход поршня (S) и соответственно степень сжатия. Недостатками этих двигателей являются повышенные потери на трение (до 20%) и низкая надежность, а также большие инерционные нагрузки на силовой вал.

Более интересные и надежные решения изменения степени сжатия посредством регулирования S найдены в конструкциях ДВС с плоским механизмом. В предложенном инженером Н. Pouliot и разработанном фирмами Sandia (США) и ERDA (Австралия) двигателе при изменении хода поршня в пределах S = 25,4 … 108 мм степень сжатия изменяется от 6,3 до 8. Топливная экономичность автомобиля с двигателем Н. Pouliot по ездовым циклам ЕРА для города и шоссейных дорог составляет 20%.

В последние годы концерн DaimlerChrysler совместно с ГНЦ НАМИ разработал двигатель с траверсным механизмом изменения S . Степень сжатия в этом двигателе изменяется от 7,5 до 14, экономия топлива превышает 15%.

Анализ двигателей с Ɛх за счет регулирования S показал следующие недостатки:

Согласно потери на трение в двигателе с S = var на 40% больше, чем в классическом ДВС и это различие резко возрастает с увеличением частоты вращения коленчатого вала;

Существенные потери индикаторной мощности двигателя на привод изменения S;

Уменьшение S при неизменном диаметре поршня ведет к снижению турбулентности в цилиндре вследствие уменьшения скорости во впускных клапанах. В этом случае увеличивается продолжительность сгорания и теплоотдача в стенки, что приводит к росту индикаторного расхода топлива;

С уменьшением S резко возрастают выбросы СН вследствие увеличения поверхности камеры сгорания и падения температуры сгорания.

Анализ ДВС с известными силовыми механизмами свидетельствует, что максимальное значение степени сжатия на частичных режимах не превышает 14 из-за большого темпа роста потерь на трение по мере увеличения Ɛх. Это ограничивает возможность дальнейшего повышения эффективного КПД за счет увеличения степени сжатия свыше 14.

Среди других ДВС бесшатунный двигатель с кривошипно-кулисным силовым механизмом (ККМ)

6, 7 имеет наибольший потенциал по использованию переменной степени сжатия. Отличительной особенностью схемы двигателей с ККМ являются малые потери на трение во всем диапазоне нагрузок и частоты вращения, полная динамическая уравновешенность, компактность и малая удельная масса. Кроме того, в этом ДВС намного проще и эффективнее реализуется переменная степень сжатия, что в целом повышает показатели двигателя.

В АДИ ДонНТУ создан на базе двигателя экспериментальный одноцилиндровый бесшатунный ДВС с Ɛх. Двигатель (рис. 1) представляет собой двухвальный поршневой двигатель с кривошипнокулисным механизмом, в котором усилие от поршня передается на коленчатые валы через шток, механизм изменения степени сжатия и кулису с ползунами, установленными на кривошипных шейках. Коленчатые валы связаны между собой посредством двух одинаковых шестерен.

Рис. 1. Схема бесшатунного двигателя

(механизм изменения степени сжатия не показан):

1 – шток, 2 – кулиса

Результаты экспериментальных исследований показали:

– регулирование Ɛх на частичных нагрузках работающего двигателя в диапазоне от 7 до 19 повышает топливную экономичность более чем на 30 %;

– устройство изменения Ɛх имеет высокую чувствительность и способность быстро реагировать на по явление детонации. Начальная стадия развития детонации происходит в 1…3-х рабочих циклах двигателя, а затем детонация полностью исчезает;

– на привод механизма изменения Ɛх затрачивается незначительная энергия (приблизительно 0,1…0,2 % максимальной мощности двигателя);

– регулирование Ɛх во время работы двигателя не оказывает влияния на кинематику ККМ.

Влияние силового механизма на газораспределение в двигателе

На кафедре автомобилей и двигателей АДИ ДонНТУ были проведены расчетно-теоретические и экспериментальные исследования бесшатунного и

классического ДВС с переменной степенью сжатия.

Одной из задач этих исследований было выявление влияния силового механизма на работу двигателя при регулировании степени сжатия.

Применение в бесшатунном двигателе кривошипно-кулисного механизма приводит к изменению кинематики поршня. В отличие от классического в

бесшатунном двигателе поршень перемещается по косинусоидальному закону. В результате скорость поршня вблизи в.м.т. (рис. 2) снижается, а около н.м.т. увеличивается. Это приводит к изменению фаз газораспределения в бесшатунном двигателе относительно классического ДВС.

Рис. 2. Зависимость скорости поршня от угла

поворота коленчатого вала для двигателей с ККМ (=0) и

КШМ при n = 4500 мин-1

Изменение степени сжатия перемещением цилиндра относительно картера приводит в двухтактном двигателе к изменению высоты открытия впускного,

выпускного и продувочных окон и соответствующих фаз газораспределения.

Как показывают расчеты, кинематика поршня оказывает существенное влияние на фазы газораспределения. Применение ККМ, уменьшая время-сечение

А’ вып выпускного окна в среднем на 11% (рис 3) относительно двигателя с КШМ, усиливает влияние регулирования степени сжатия на процессы газообмена.

Однако характер зависимости время-сечения от степени сжатия остается неизменным. Это позволяет при изменении степени сжатия от 7 до 17 уменьшить величину А’вып более чем на 30 % независимо от силового механизма.

Следует отметить, что снижение А’вып на частичных нагрузках и при малых частотах вращения коленчатого вала является положительным, так как позволяет сократить потери свежего заряда при продувке и улучшить экономичность двигателя.

Рис. 3. Изменение время-сечения выпускного окна от

степени сжатия для двигателей с ККМ и КШМ

Влияние силового механизма на индикаторные и эффективные показатели двигателя

Изменение кинематики поршня в бесшатунном двигателе, оказывает существенное влияние на рабочий процесс. В этом двигателе уменьшение скорости поршня в районе в.м.т. приводит к снижению тепловых потерь в процессе сгорания и увеличению степени последующего расширения.

Результаты экспериментального исследования показали положительное влияние кинематики поршня бесшатунного двигателя на его индикаторные показатели. Так, например, при N e = 0,8 кВт, n = 3000 мин-1

и Ɛх = 7,7 удельный индикаторный расход топлива ниже более чем на 11 % по сравнению с исследуемым классическим двигателем. Очевидно, это связано со снижением прямых потерь смеси в процессе газообмена, а также лучшим протеканием процесса сгорания.

Анализ полученных данных показал, что увеличение степени сжатия в бесшатунном двигателе сопровождается более равномерным повышением индикаторных показателей. При высоких степенях сжатия влияние кинематики поршня на улучшение индикаторных показателей двигателя усиливается.

Повышение топливной экономичности бесшатунного двигателя связано не только с кинематикой поршня, но и с малыми механическими потерями.

Из результатов экспериментальных исследований механических потерь в бесшатунном и классическом двигателях видно, что в бесшатунном двигателе механические потери при одинаковых Ne и Ɛх во всех случаях ниже (рис. 4). Кроме того, с повышением степени сжатия разница в величине механических потерь существенно возрастает.

Рис. 4. Влияние Ɛх на механические потери в

двигателях с ККМ и КШМ: N e = 0,4 кВт, n = 3000 мин-1

Так, при степени сжатия 7,7 механические потери в бесшатунном двигателе ниже, чем в классическом ДВС на 1,5…2 %, а при Ɛх = 17,1 - на 26 %. Это связано с различным характером зависимости среднего давления механических потерь p м для различных ДВС при изменении степени сжатия. В бесшатунном двигателе зависимость p м = f(x) носит почти линейный характер, в то время как в двигателе с КШМ –степенной характер.

Выявленные преимущества бесшатунного двигателя по индикаторным показателям и механическим потерям существенно проявляются на его эффективных показателях.

Полученные опытным путем зависимости индикаторных и эффективных показателей (рис. 5) показывают целесообразность использования кривошипно-кулисного механизма в двигателях с регулированием степени сжатия.

В бесшатунном двигателе в отличие от классического удельный эффективный расход топлива снижается с повышением степени сжатия свыше 14 на всех скоростных и нагрузочных режимах. Это позволяет устанавливать Ɛх в бесшатунном двигателе на максимально возможном уровне - по началу детонации (или самовоспламенению бензомасляной смеси в двухтактном двигателе).

Рис. 5. Зависимость показателей двигателей с КШМ

и ККМ от нагрузки при регулировании

степени сжатия: n = 3000 мин-1

В исследуемом двигателе с КШМ степень сжатия для различных режимов изменялась от 10 до 14 и ограничивалась увеличением величины g e из-за роста механических потерь. Таким образом, в двигателе с ККМ использование Ɛх может повысить топливную экономичность на малых нагрузках более чем на 15% по сравнению с двигателем с КШМ и изменяемой степенью сжатия, а по отношению к классическому двигателю с фиксированной степенью сжатия - на 30…45 %.

Заключение

Представленные результаты показывают, что применение в бензиновом двигателе регулирования степени сжатия на частичных режимах может существенно улучшить его топливную экономичность.

Рассмотрены варианты принципиальных схем силового механизма, связанные с реализацией переменной степени сжатия применительно к автомобильному двигателю. В ДВС с известными силовыми механизмами максимальная переменная степень сжатия не превышает 14 вследствие значительного роста с повышением Ɛх потерь на трение, что ограничивает возможность дальнейшего улучшения эффективного КПД двигателя.

Более высокая топливная экономичность при регулировании степени сжатия достигается в бесшатунном двигателе с кривошипно-кулисным механизмом.

Используя ККМ в бензиновом двухтактном двигателе, удалось снизить механические потери на 26 %, повысить топливную экономичность на 30…45 %. Кроме того, анализ работ свидетельствует о значительном

превосходстве двигателей с ККМ по вибрации и шуму, уравновешенности, компактности и удельной мощности. В таких двигателях конструктивно проще и намного эффективнее реализуется переменная степень сжатия.

Дополнительно к первым результатам, изложенным в настоящей статье, необходимо выполнить большой объем исследовательских и опытно-конструкторских работ по разработке и созданию бесшатунного бензинового двигателя с переменной степенью сжатия.

Список литературы:

1. Tumoney S.G. Variable compression ratio diesel engine // Intersoc Energy Convers. – Eng. Conf. – Boston.

Mass. – 1971. – P. 356 – 363. 2. Welsh H.W., Riley C.T.

The Variable Displacement Engine: An Advanced Concept Power Plant // SAE Paper. – 1971. – № 710830. 3.

Кутенев В.Ф., Зленко М.А., Тер-Мкртичьян Г.Г.

Управление движением поршней - неиспользованный

резерв улучшения мощностных и экономических пока-

зателей дизеля // Автомобильная промышленность. –

1998. – № 11. – С. 25 – 29. 4. Pouliot H.N., Robinson C.W., Delameter W.R. A Variable – Displacement

Spark – Ignition Engine. Final Report // Report No.

SAND 77 – 8299, Sandia Laboratories. – California,

1978. 5. Еремкин В. Экспорт Технологий // Авто Ревю.

– 2000. – № 5. – С. 32. 6. Мищенко Н.И. Нетрадици-

онные малоразмерные двигатели внутреннего сгора-

ния. В 2 т. Т. 1. Теория, разработка и испытание не-

традиционных двигателей внутреннего сгорания. –

Донецк: Лебедь, 1998. – 228 c. 7. Neuer Motor – Typ vor

der Serienreife: Auberge wohnliche Laufrune. Ind // ANZ.

– 1990. – Vol. 112, № 102. – S. 23.

Тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания. Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации. Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках. При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это особенно сильно проявляется при работе на частичных нагрузках. Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом. При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается. В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно. При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени. Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля. Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рисунке.

Рис. Схема двигателя с изменяющейся степенью сжатия:
1 – шатун; 2 – поршень; 3 – эксцентриковый вал; 4 - дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с. при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем. Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей. Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере. Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4. Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Рис. Двигатель с изменяющейся степенью сжатия SAAB:
1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую.

Под нагрузкой, за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением.

Рис. Изменение подачи воздуха в двигатель SAAB при различных режимах:
1 – дроссельная заслонка; 2 – перепускной клапан; 3 – сцепление; а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен», двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма.

В данной конструкции передача движения от шатуна на поршни осуществляется через двойной зубчатый сектор 5. С правой стороны двигателя расположена опорная зубчатая рейка 7, на которую опирается сектор 5. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня цилиндра, который соединен с зубчатой рейкой 4. Рейка 7 соединена с поршнем 6 управляющего гидроцилиндра.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня 6 управляющего цилиндра, связанного с рейкой 7. Смещение рейки управления 7 вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степени сжатия от 7:1 до 20:1 за 0,1 с. В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Рис. Двигатель с изменяемой степенью сжатия VCR:
1 – коленчатый вал; 2 – шатун; 3 – зубчатый опорный ролик; 4 – зубчатая рейка поршня; 5 – зубчатый сектор; 6 – поршень управляющего цилиндра; 7 – опорная зубчатая рейка управления.

Дорогие друзья! До чего только не додумаются люди ради того, чтобы быть свободными в своем выборе. Даже додумались и воплотили в жизнь двигатель с переменной степенью сжатия

Да, именно то, что казалось невозможно изменить после того как прикрутили головку блока. Но нет, оказывается можно, и даже несколькими способами.

В бензиновых двигателях значения степени сжатия в прямую связано с условиями детонации. Оно как правило возникает при нагрузках и зависит от качества бензина.

Двигатели с высоким КПД имеют высокие показатели степени сжатия, как следствие используют топливо с высокооктановым числом, менее подверженное к детонации при максимальных нагрузках.

Для поддержания мощностных характеристик двигателя в бездетонационном режиме логично снижать степень сжатия. Например, при резком разгоне или при движении на подъем, когда цилиндры максимально наполняются топливной смесью, выжимая из него все что он имеет.

Тут бы и немного снизить степень сжатия, чтобы избежать детонацию, не снижая его мощности, которая сильно повышает износ поршневой группы двигателя.

При средних нагрузках, высокий уровень степени сжатия не провоцирует детонацию, степень сжатия высокая, КПД тоже, его мощность остается максимальной, за счет этого естественно повышается его экономичность.

Казалось бы, эту задачу можно решить просто, вдувать топливную смесь под разным давлением в камеру сгорания, по мере надобности.

Но вот незадача, при повышении таким способом степени сжатия, увеличиваются нагрузки на детали двигателя. Решать такие проблемы надо будет увеличением соответствующих деталей, что соответственно скажется на общей массе двигателя. При этом снижается надежность двигателя и соответственно его ресурс.

При переходе на изменяющуюся степень сжатия, процесс наддува можно так организовать, что при снижении степени сжатия, он будет обеспечивать максимально-эффективное давление при любом режиме работы.

При этом нагрузки на детали поршневого отдела двигателя будут не значительно увеличены, что позволит безболезненно форсировать двигатель без значительного увеличения его веса.

Понимая это, изобретатели и призадумались. И выдали. На чертеже ниже представлена самый распространенный вариант изменения степени сжатия.

На средних нагрузках, по средством эксцентрика 3, доп.шатун 4 принимает крайнее правое положение и поднимает диапазон хода поршня 2 в самое верхнее положение. СЖ в таком положении максимальная.

На высоких нагрузках, эксцентрик 3 смещает доп.шатун 4 влево, что смещает шатун 1 с поршнем 2 вниз. При этом зазор над поршнем 2 увеличивается, уменьшая степень сжатия.

Система от SAAB

Первыми воплотили мечту в жизнь инженеры фирмы SAAB и в 2000 году на выставке в Женеве выставили на всеобщее обозрение экспериментальный двигатель с системой Variable Compression.

Этот уникальный двигатель имел мощность в 225 л.с., при объеме 1,6 л., а расход топлива был в вдвое меньшим аналогичного объема. Но самое фантастичное, он мог работать и на бензине, и на спирте, и даже на дизельном топливе.

Изменение рабочего объема двигателя осуществлялось бесшагово. Степень сжатия изменялась при наклоне моноблока (совмещенная головка блока с блоком цилиндров) относительно блока-картера. Отклонение моноблока вверх приводило к уменьшению степени сжатия, отклонение вниз — к увеличению.

Смещение по вертикальной оси на 4 градуса, что позволило иметь сжатия от 8:1 до 14:1. Управление изменением степени сжатия, в зависимости от нагрузки, осуществлялось специальной электронной системой управления по средством гидропривода. При максимальной нагрузке СЖ 8:1, при минимальной 14:1.

Так же в нем применялся механический наддув воздуха, он подключался только при наименьших значениях степени сжатия.

Но не смотря на такие удивительные результаты, двигатель не пошел в серию, и работы по доводке на сегодняшний день свернуты по неизвестной нам причине.

VCR (Variable Compression Ratio)

Французы фирмы MCE-5 Development, для автоконцерна Пежо разработали принципиально новый двигатель VCR, с совершенно оригинальной кинематической схемой кривошипно-шатунного механизма.

МСЕ-5 Development, сделала для концерна «Пежо», тоже двигатель с переменной степенью сжатия VCR. Но в этом решении они применили оригинальную кинематику .

В нем передача движения от шатуна на поршень идет через зуб.сектор 5. Справа опорная зуб.рейка 7, на неё опирается сектор 5, так происходит возвратно-поступательное движение поршня, он соединен с рейкой 4. Рейка 7 соеденина с поршнем 6.

Сигнал поступает с блока управления, и в зависимости от режима работы двигателя, изменяется положение поршня 6, связанного с рейкой 7. Смещается рейка управления 7 вверх или вниз. Она изменяет положение НМТ и ВМТ поршня двигателя, и соответственно СЖ от 7:1 до 20:1. Если нужно, можно изменять положение каждого цилиндра отдельно.

Зубчатая рейка жестко скреплена с управляющим поршнем. В пространство над поршнем подается масло. Давлением масла и регулируется степень сжатия в основном рабочем цилиндре.

Соединительный рычаг 1, шестерня синхронизации 2, стойка поршня 3, рабочий поршень 4, выпускной клапан 5, головка блока цилиндров 6, впускной клапан 7, поршень управления 8, блок цилиндров 9, стойка поршня управления 10, зубчатый сектор 11.
В данное время двигатель дорабатывается и вполне возможно появится в серии.

Еще есть одна разработка от Lotus Cars, это двухтактный двигатель Omnivore (всеядный). Назвали его так, потому что разработчики заявляют, что он тоже может работать на любом топливе.

Конструктивно он представляется так. Вверху цилиндра расположена шайба, управляемая эксцентриковым механизмом. Чем примечательна эта конструкция, она позволяет достигать СЖ до 40:1. Клапанов в этом двигателе нет, потому как двухтактный.

Минус такого двигателя в том, что он весьма прожорлив и не экологичен. На автомобилях в наше время почти не устанавливаются.

На этом пока тема систем с изменяющейся степенью сжатия закрывается. Ждем новых изобретений.

До скорой встречи на страницах блога. Подписывайтесь!

Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания , который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия - отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.
Конструкция запатентована Nissan (патент США № 6,505,582 от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага - концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, - говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, - По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов - такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.


Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков