Камеры сгорания с непрерывной детонацией. Центр ИДГ

Камеры сгорания с непрерывной детонацией. Центр ИДГ

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.



На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.

В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.

В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Издание "Военно-промышленный Курьер" сообщает великолепную новость из области прорывных ракетных технологий. Детонационный ракетный двигатель испытан в России, сообщил в пятницу вице-премьер Дмитрий Рогозин на своей странице в Facebook.

«Прошли успешные испытания так называемых детонационных ракетных двигателей, разработанных в рамках программы Фонда перспективных исследований», - цитирует вице-премьера Интерфакс-АВН.

Считается, что детонационный ракетный двигатель - один из путей реализации концепции так называемого моторного гиперзвука, то есть создания гиперзвуковых летательных аппаратов, способных за счет собственного двигателя достигать скорости в 4 - 6 Махов (Мах - скорость звука).

Портал russia-reborn.ru приводит интервью одного из ведущих профильных двигателистов России по поводу детонационных ракетных двигателей.

Интервью с Петром Левочкиным, главным конструктором "НПО Энергомаш им. академика В.П. Глушко".

Создаются двигатели для гиперзвуковых ракет будущего
Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука
Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.

Петр Левочкин: Это сложный вопрос. Мы только приоткрыли дверь в область детонационного горения. Еще очень много неизученного осталось за скобками нашего исследования. Сегодня совместно с РКК "Энергия" мы пытаемся определить, как может в перспективе выглядеть двигатель в целом с детонационной камерой применительно к разгонным блокам.

На каких двигателях человек полетит к дальним планетам?

Петр Левочкин: По-моему мнению, еще долго мы будем летать на традиционных ЖРД занимаясь их совершенствованием. Хотя безусловно развиваются и другие типы ракетных двигателей, например, электроракетные (они значительно эффективнее ЖРД - удельный импульс у них в 10 раз выше). Увы, сегодняшние двигатели и средства выведения не позволяют говорить о реальности массовых межпланетных, а уж тем более межгалактических перелетов. Здесь пока все на уровне фантастики: фотонные двигатели, телепортация, левитация, гравитационные волны. Хотя, с другой стороны, всего сто с небольшим лет назад сочинения Жюля Верна воспринимались как чистая фантастика. Возможно, революционного прорыва в той сфере, где мы работаем, ждать осталось совсем недолго. В том числе и в области практического создания ракет, использующих энергию взрыва.

Досье "RG":
"Научно-производственное объединение Энергомаш" основано Валентином Петровичем Глушко в 1929 году. Сейчас носит его имя. Здесь разрабатывают и выпускают жидкостные ракетные двигатели для I, в отдельных случаях II ступеней ракет-носителей. В НПО разработано более 60 различных жидкостных реактивных двигателей. На двигателях "Энергомаша" был запущен первый спутник, состоялся полет первого человека в космос, запущен первый самоходный аппарат "Луноход-1". Сегодня на двигателях, разработанных и произведенных в НПО "Энергомаш", взлетает более девяноста процентов ракет-носителей в России.

Детонационными называются двигатели в штатном режиме которых используются детонационное сгорание топлива. Сам двигатель может быть (теоретически) любым, - двс, реактивным, да хоть паровым. Теоретически. Однако, до настоящего времени все известные коммерчески приемлемые двигатели таких режимов сгорания топлива, в простонародье именуемого "взрывом", не использовали в силу их... м-м-м.... коммерческой неприемлемости..

Источник:

Что дает применение детонационного сгорания в двигателях? Сильно упрощая и обобщая, примерно следующее:

Преимущества

1.Замена обычного горения детонационным за счет особенностей газодинамики фронта ударной волны, увеличивает теоретическую предельно достижимую полноту сгорания смеси, что позволяет повысить КПД двигателя, и снизить расход, примерно на 5-20%. Это актуально для всех типов двигателей, как ДВС, так и реактивных.

2. Скорость сгорания порции топливной смеси увеличивается примерно в 10-100 раз, значит теоретически можно для ДВС увеличить литровую мощность (или удельную тягу на килограмм массы для реактивных двигателей) примерно в такое же количество раз. Этот фактор актуален тоже для всех типов двигателей.

3. Фактор актуальный только для реактивных двигателей всех типов: так как процессы горения идут в камере сгорания на сверхзвуковых скоростях, а температуры и давления в камере сгорания возрастают в разы, то появляется отличная теоретическая возможность многократно увеличить и скорость истечения реактивной струи из сопла. Что в свою очередь ведет к пропорциональному росту тяги, удельного импульса, экономичности, и/или снижению массы двигателя и требуемого топлива.

Все эти три фактора очень важны, но носят не революционный, а так сказать эволюционный характер. Революционным является четвертый и пятый фактор, и относится он только к реактивным двигателям:

4. Только применение детонационных технологий позволяет создать прямоточный (а значит, - на атмосферном окислителе!) универсальный реактивный двигатель приемлемой массы, размеров и тяги, для практического и широкомасштабной освоения диапазона до-, сверх-, и гиперзвуковых скоростей 0-20Мах.

5.Только детонационные технологии позволяют выжать из химических ракетных двигателей (на паре топливо-окислитель) скоростные параметры требуемые для их широкого применения в межпланетных перелетах.

П.4 и 5. теоретически открывают нам а) дешевую дорогу в ближний космос, и б)дорогу к пилотируемым пускам к ближайшим планетам, без необходимости делать монструозные сверхтяжелые ракетоносители массой over3500tonnes.

Недостатки детонационных двигателей вытекают из их достоинств:

Источник:

1. Скорость горения настолько высока, что чаще всего эти двигатели удается заставить работают лишь циклически: впуск-горение-выпуск. Что как минимум втрое снижает максимально достижимую литровую мощность и/или тягу, иногда лишая смысла саму затею.

2. Температуры, давления, и скорости их нарастания в камере сгорания детонационных двигателей таковы, что исключают прямое применение большинства известных нам материалов. Все они слишком слабы для построения простого, дешевого и эффективного двигателя. Требуется либо целое семейство принципиально новых материалов, либо применение пока неотработанных конструкторских ухищрений. Материалов у нас нет, а усложнение конструкции опять таки часто лишает смысла всю затею.

Однако есть область в которой без детонационных двигателей не обойтись. Это экономически оправданнй атмосферный гиперзвук с диапазоном скоростей 2-20 Max. Поэтому битва идет по трем направлениям:

1. Создание схемы двигателя с непрерывной детонацией в камере сгорания. Что требует суперкомпьютеров и нетривиальных теоретических подходов для расчета их гемодинамики. В этой области проклятые ватники как всегда вырвались вперед, и впервые в мире теоретически показали, что непрерывная делегация вообще возможна. Изобретение, открытие, патент, - все дела. И приступили к изготовлению практической конструкции из ржавых труб и керосина.

2. Создание конструктивных решений делающих возможными применение классических материалов. Проклятие ватники с пьяными медведями и тут первыми придумали и сделали лабораторный многокамерный двигатель, который уже работает сколь угодно долго. Тяга как у двигателя Су27, а вес такой, что его в руках держит 1 (один!) дедушка. Но так как водка была паленая, то двигатель получился пока пульсирующий. Зато, сволочь работает настолько чисто, что его можно включать даже на кухне (где ватники его собственно и запилили в промежутках между водкой и балалайкой)

3. Создание суперматериалов для будущих двигателей. Эта область наиболее тугая и наиболее секретная. Об прорывах в ней информации я не имею.

Исходя из вышеозвученного рассмотрим перспективы детонационного, поршневого ДВС. Как известно, нарастание давления в камере сгорания классических размеров, при детонации в ДВС происходит быстрее скорости звука. Оставаясь в том же конструктиве, не существует способа заставить механический поршень, да ещё со значительными связанными массами, двигаться в цилиндре с примерно такими же скоростями. ГРМ классической компоновки тоже не может работать на таких скоростях. Поэтому прямая переделка классического ДВС на детонационный с практической точки зрения безсмысленна. Нужно заново разработать двигатель. Но как только мы этим начинаем заниматься, то оказывается что поршень в этой конструкции просто лишняя деталь. Поэтому ИМХО, поршневой детонационный ДВС это анахронизм.

Детонационный двигатель более простой и дешевле в изготовлении, на порядок мощнее и экономичнее обычного реактивного двигателя, по сравнению с ним обладает более высоким КПД.

Описание:

Детонационный двигатель (импульсный, пульсирующий двигатель) идет на смену обычного реактивного двигателя . Чтобы понять сущность детонационного двигателя надо разобрать обычный реактивный двигатель .

Обычный реактивный двигатель устроен следующим образом.

В камере сгорания происходит сгорание топлива и окислителя, в качестве которого выступает кислород из воздуха. При этом давление в камере сгорания постоянно. Процесс горения резко повышает температуру, создает неизменный пламенный фронт и постоянную реактивную тягу, истекающую из сопла. Фронт обычного пламени распространяется в газовой среде со скоростью 60-100 м/сек. За счет этого и происходит движение летательного аппарата . Однако современные реактивные двигатели достигли определенного предела КПД, мощности и других характеристик, повышение которых практически невозможно либо крайне затруднительно.

В детонационном (импульсном или пульсирующем) двигателе горение происходит путем детонации. Детонация - это процесс горения, но которое происходит в сотни раз быстрее, чем при обычном сжигании топлива. При детонационном горении образуется детонационная ударная волна, несущая со сверхзвуковой скоростью. Она составляет порядка 2500 м/сек. Давление в результате детонационного горения стремительно возрастает, а объем камеры сгорания остается неизменным. Продукты горения вырываются с огромной скоростью через сопло. Частота пульсаций детонационной волны достигает несколько тысяч в секунду. В детонационной волне нет стабилизации фронта пламени, на каждую пульсацию обновляется топливная смесь и волна запускается вновь.

Давление в детонационном двигателе создается за счет самой детонации, что исключает подачу топливной смеси и окислителя при высоком давлении. В обычном реактивном двигателе, чтобы создать давление тяги в 200 атм., необходимо подавать топливную смесь под давлением в 500 атм. В то время как в детонационном двигателя – давление подачи топливной смеси – 10 атм.

Камера сгорания детонационного двигателя конструктивно имеет кольцевую форму с форсунками, размещёнными по её радиусу для подачи топлива . Волна детонации пробегает по окружности вновь и вновь, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло.

Преимущества:

– детонационный двигатель более простой в изготовлении. Отсутствует необходимость в использовании турбонасосных агрегатов,

на порядок мощнее и экономичнее обычного реактивного двигателя,

– имеет более высокий КПД,

дешевле в изготовлении,

– нет необходимости создавать высокое давление подачи топливной смеси и окислителя, высокое давление создается за счет самой детонации,

детонационный двигатель превосходит обычный реактивный двигатель в 10 раз по мощности, снимаемой с единицы объема, что приводит к уменьшению конструкции детонационного двигателя,

– детонационное горение в 100 раз быстрее, чем обычное горение топлива.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.


Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.


Первый запуск опытного изделия "Ифрит"

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков