Вес сцепной (локомотива). Сколько весит поезд? Трехдизельный тепловоз ЧМЭ3

Вес сцепной (локомотива). Сколько весит поезд? Трехдизельный тепловоз ЧМЭ3

1. Характеристика и краткое описание локомотива

Массовое производство тепловозов серии ТЭ3 началось в 1956 году и продолжалось до 1973 года. Постройка тепловозов серии ТЭ3 была организована на базе широкой кооперации Коломенского, Харьковского и Ворошиловского (Луганского) локомотивостроительных заводов, а также Харьковского завода тепловозного электрооборудования («Электротяжмаш»)

Кузов каждой секции тепловоза серии ТЭ3 состоит из главной рамы, через которую передается тяговое и тормозное усилия и каркаса вагонного типа, несущего боковые и побоковые стенки и крышу. На концах рамы каждой секции установлены автосцепки типа СА-3 с фрикционными аппаратами. Главная рама опирается на две трехосные тележки через восемь боковых опор. Центральные шкворни рамы вертикальных нагрузок не передают и служат только для восприятия горизонтальных сил. В средней части главной рамы размещена дизель-генераторная установка, имеющая свою поддизельную раму.

Боковые опоры располагались по окружности диаметром 2730 мм, центр которой совпадал с геометрической осью центрального шкворня. Каждая опора состоит из пяты, выполненной в виде грибка, выпуклая часть которого обращена вниз и опирается на шаровое гнездо подпятника. Гнезда размещаются на верхней плите, под которой находятся два цилиндрических ролика. Ролики опираются на нижнюю плиту, укрепленную на верхней части рамы тележки. Поверхности нижней и верхней плиты, по которым при повороте тележки относительно кузова могут перекатываться ролики, сделаны наклонными. Поэтому при повороте тележки возникают силы, стремящиеся возвратить тележку в положение, при котором ее продольная ось совпадала бы с продольной осью кузова. Боковые опоры кузова, располагающиеся ближе к середине секции, жестко прикреплены к раме, а концевые соединяются с рамой кузова шарнирами, а между собой связаны поперечной балансирной тягой. Считается, что такая конструкция создает как бы трехточечную опору кузова на каждую тележку.

Рамы тележек сварной конструкции состоят из двух боковин, связанных двумя концевыми балками и двумя межрамными креплениями. Устойчивость тележек достигалась за счет передачи вертикальных нагрузок от кузова через 4 опоры. Листовые рессоры, на хомуты которых опирались рамы тележек, были подвешены к надбуксовым балансирам. Рессоры состоят из 18 листов. Внешние концы балансиров крайних осей тележки связаны с рамой тележки при помощи цилиндрических пружин. Общий статический прогиб рессорной системы составлял 57 мм.

В каждой буксе находятся 2 подшипника с цилиндрическими роликами. Колесные пары с диаметром колес по кругу катания при новых бандажах 1050 мм имеют зубчатые колеса, насаженные на удлиненную ступицу. Каждый тяговый электродвигатель опирается на ось колесной пары через моторно-осевой подшипник и подвешен к раме тележки на пружинной подвеске (опорно-осевое подвешивание). Тяговый редуктор - односторонний, прямозубый, жесткий. Его передаточная способность равнялась 75: 17 = 4 ,41.

На каждой тележке установлены два тормозных цилиндра, обеспечивающие при помощи рычажной передачи одностороннее нажатие тормозных колодок на все колеса.

В каждой секции тепловоза находится десятицилиндровый двухтактный бескомпрессорный дизель 2Д100 с вертикально расположенными встречно движущимися поршнями, непосредственным впрыском топлива и прямо-точной щелевой продувкой. Блок дизеля - стальной цельносварной. Верхний и нижний коленчатые валы имеют по 12 коренных и 10 шатунных шеек. Валы связаны упругой вертикальной передачей с двумя парами конических зубчатых колес. Поршни дизеля - составные. Диаметр цилиндров 207 мм, ход каждого поршня - 254 мм. Топливная система состоит из общего коллектора, 20 отдельных секций топливных насосов высокого давления и 20 форсунок.

Регулятор частоты вращения вала дизеля - центробежного типа с гидравлическим сервомотором.

При частоте вращения валов 800 об/мин дизели развивают мощность 2000 л. с. Расход топлива при этой мощности составляет 175 +5 г/(э.л.с.∙ч). Масса сухого дизеля вместе с установленными на нем агрегатами и рамой дизель-генератора равнялась 19000 кг.

Охлаждение дизеля - водяное. С каждой стороны секции тепловоза установлено 18 масляных и 12 водяных секций. Секции холодильника охлаждаются воздухом, прогоняемым вентилятором; при частоте вращения валов дизеля 850 об/мин вентилятор вращается с частотой 1020 об/мин (зимний период) или 1380 об/мин (летний режим) в в зависимости от того, на какой ступени редуктора он работает. Температура воды и масла регулировалась периодическим включением и выключением вентилятора и ли открыванием верхних и боковых жалюзи. Управление ими осуществляется электропневматическими устройствами с пульта управления.

Вал дизеля через пластинчатую муфту соединен с валом тягового генератора МПТ-99/47. Он представляет собой самовентилирующуюся восьмиполюсную машину с добавочными полюсами и компенсационной обмоткой. Генератор имеет независимое возбуждение, для чего на каждой секции тепловоза установлен специальный возбудитель. Номинальная мощность тягового генератора равняется 1350 кВт (напряжение 550 В, ток 2455 А), максимальное напряжение 7600 кг.

На тепловозе установлены тяговые электродвигатели ЭДТ-200А с с четырьмя главными и и четырьмя добавочными полюсами. Обмотка якоря петлевая с уравнительными соединениями, якорные подшипники - роликовые. Номинальная мощность тягового электродвигателя - 206 кВт (напряжение 275 В, ток 815 А), максимальная частота вращения якоря - 2200об/мин, масса тягового двигателя - 3200 кг.

Электродвигатели попарно соединены последовательно и тремя параллельными цепями подключены к тяговому генератору.

На тепловозе установлен трехцилиндровый двухступенчатый поршневой компрессор КТ-6; производительность его при частоте вращения вала 850 об/мин - 5,3-5,7м 3 /мин воздуха.

Для обогрева водяной, масляной и топливной систем предусмотрен котел-подогреватель, работающий на жидком топливе.

На каждой секции тепловоза установлена кислотная аккумуляторная батарея 32ТН-450 (32 элемента общей емкостью 450 А∙ч) нпряжением 64 В. От этой батареи получет электроэнергию тяговый генератор в период пуска дизеля.

Тепловоз ТЭ3 имеет запас топлива 2×5440 кг, масла 2×1400 кг, воды - 2×800 л, песка

2×400 кг. Служебная масса тепловоза равняется 2×126т. Длительная сила тяги при скорости 20 км/ч составляет 2×20200кгс,конструкционная скорость - 100 км/ч. При этой скорости тепловоз развивает силу тяги 2×2600 кгс (мощность 2×950 л. с.).

2. Анализ и подготовка продольного профиля пути для выполнения тяговых расчетов

Для выполнения тяговых расчетов производят анализ продольного профиля железнодорожного участка пути.

В результате анализа должны быть предварительно выбраны подъемы: расчетный i р и скоростной i с.

2.1 Выбор расчетного и скоростного подъемов

Расчетным подъемом i р называется один из наиболее крутых и затяжных подъемов на заданном участке, на котором поезд может достигнуть равномерной скорости, равной по величине расчетной скорости заданной серии локомотива.

Скоростным подъемом i с называется один из самых крутых подъемов, преодоление которого возможно за счет использования кинетической энергии поезда.

Профиль пути № 9

Правилами тяговых расчетов установлены следующие обозначения элементов пути: подъемы обозначаются знаком «плюс», спуски - знаком «минус», горизонтальные участки («площадки») - «нуль».

Таким образом, принимаем в качестве расчетного подъема i р = +10‰ на том основании, что он наиболее крутой, наибольшей протяженности.

Подъем i с = +9‰ принимаем в качестве скоростного на том основании, что он наиболее крутой (после i = +10‰ ).

2.2.Спрямление продольного профиля пути

Спрямление профиля состоит в замене нескольких, рядом лежащих, близких по крутизне, элементов действительного профиля одним суммарным (спрямлённым), что позволяет существенно уменьшить объём тяговых расчётов. Кроме того, в тяговых расчётах движение поезда рассматривается как движение материальной точки, т.е. не учитывается его длина, следовательно, при движении поезда по коротким элементам профиля, когда он одновременно находится на нескольких элементах профиля, нет смысла учитывать самостоятельное влияние этих элементов, а целесообразно объединять их в один спрямленный. Этим в ряде случаев достигается уменьшение погрешности тяговых расчётов.

Спрямлению подлежат рядом лежащие элементы профиля, имеющие одинаковый знак, близкие по значению уклоны (разница не более 3-4 ‰) и небольшую длину. Площадки (0 ‰) могут быть спрямлены с уклоном любого знака.

Крутизна спрямленного элемента

i с ′ = [ ‰],

где i и S - крутизна и длина каждого из спрямляемых элементов.

Проверка возможности спрямления каждого элемента:

S i ≤ 2000/|i c - i j |,

где i j и S j - крутизна и длина проверяемого j - го элемента.

i 2,3 = ≈ +2,6 ‰

1400 ≤ 2000/|2,6-3|; 1400

900 ≤ 2000/|2,6-2|; 900

i 5,6 = ≈ -4,3 ‰

2000 ≤ 2000/|-4,3+4|; 2000

400 ≤ 2000/|-4,3-(-6)|; 400

i 11,12 = ≈ +2,4 ‰

900 ≤ 2000/|2,4-3|; 900

1100 ≤ 2000/|2,4-2|; 1100

i 18,19,20,21 = ≈ +3,7 ‰

1200 ≤ 2000/|3,7-4|; 1200

1000 ≤ 2000/|3,7-5|; 1000

800 ≤ 2000/|3,7-3|; 800

700 ≤ 2000/|3,7-2|; 700

Расчёт спрямления заданного профиля пути

Таблица 1.

№ заданных элементов

Заданный профиль пути

Спрямленный профиль пути

№ спрямленных элементов

Проверка

3. Расчет веса и массы поезда

3.1 Расчет веса и массы состава

Вес состава определяется исходя из условия равномерного движения поезда по расчетному подъему с расчетной скоростью тепловоза:

Q = [кН],где

F кр - расчетная сила тяги тепловоза, Н;

Р - вес локомотива, кН;

w′ 0 - основное удельное сопротивление движению тепловоза в режиме тяги, Н/кН;

w″ 0 - основное удельное сопротивление движению вагонов, Н/кН;

i p - крутизна расчетного подъема, ‰.

Основное удельное сопротивление движению тепловозов в режиме тяги при расчетной скорости определяется по формуле:

w′ 0 = 1,9 + 0,01ν р + 0,0003 ν р 2 .

Основное удельное сопротивление движению состава из разнотипных вагонов определяется по формуле:

w″ 0 = αw″ 04 + βw″ 06 + γw″ 08 , где

α, β, γ - процентное содержание однотипных вагонов в составе;

w″ 04 , w″ 06 , w″ 08 - основное удельное сопротивление движению четырех-, шести- и восьмиосных вагонов соответственно, Н/кН:

w″ 04 = 0,7 + ; q 04 = .

w″ 06 = 0,7 + ; q 06 = .

w″ 08 = 0,7 + ; q 08 = .

α = 75% = 0,75 - 4хосные; q 4 = 88т;

β = 10% = 0,1 - 6тиосные; q 6 = 116т;

γ = 15% = 0,15 - 8миосные; q 8 = 160т.

Расчётные параметры тепловоза ТЭ3

w 0 " = 1,9+0,01*20,5+0,0003*(20,5) 2 ≈ 2,23 Н/кН.

q 04 = = 22 т; q 06 = = 19,3 т; q 08 = = 20 т.

w″ 0 = 0,75*0,98+0,1*1,3+0,15*1,1 = 1,03 Н/кН;

Q = ≈ 16906 кН.

Масса состава по предварительному расчету:

m с = т, где

g - ускорение свободного падения, м/с 2 .

m с = = 1690,6 т.

3.2 Проверка веса поезда по длине приемо-отправочных путей

Длина поезда l п не должна превышать полезную длину приемо-отправочных путей станции l поп:

l п ≤ l поп, где

l п - длина поезда,м;

l поп - полезная длина приемо-отправочных путей станции (l поп = 850м), м.

Длина поезда определяется из выражения:

l п = l с + l л +10, где

l с - длина состава, м;

l л - длина тепловоза, м;

10 - запас длины на неточность установки поезда, м.

Длина состава:

l с = n 4 l 4 + n 6 l 6 + n 8 l 8 , где

n 4 ,n 6 , n 8 - количество однотипных вагонов в составе;

l 4 ,l 6 ,l 8 - длина однотипных вагонов, м.

Количество однотипных вагонов в составе:

n 8 = · , где

q 4 , q 6 , q 8 - масса одного вагона из каждой группы однотипных вагонов, т.

n 4 = ≈ 15 ваг;

n 6 = ≈ 2 ваг;

n 8 = ≈ 2 ваг;

l с = 15*14+2*17+2*20 = 284 м;

l п = 284 + 17 + 10 = 311 м.

Условие l п ≤ l поп выполняется (311 ≤ 850).

3.3 Проверка веса состава на преодоление скоростного подъема

Основная задача проверки состоит в том, чтобы определить, сможет ли поезд преодолеть выбранный в качестве «скоростного» подъем с учетом использования кинетической энергии, накопленной на предшествующих элементах профиля.

Аналитическая проверка выполняется по формуле:

где ν н i ,ν к i - начальная и конечные скорости интервала, км/ч;

(f к - w к) i - средняя удельная результирующая сила, действующая на поезд в пределах интервала скорости от ν н i до ν к i , Н/кН.

Если полученное расстояние больше или равно длине скоростного подъема S с

то поезд преодолеет подъем.

ν c р = 50,25 км/ч; F кср = 81000 Н.

w 0 "* = 1,9 + 0,01ν ср + 0,0003 ν ср 2 = 1,9+0,01*50,25+0,0003*(50,25) 2 ≈ 3,16 Н/кН;

w 04 "* = 0,7 + = Н/кН;

w 06 "* = 0,7 + = Н/кН;

w 08 "* = 0,7 + = Н/кН;

w″ 0 = αw″ 04 * + βw″ 06 * + γw″ 08 * = 0,75*1,35+0,1*1,7+0,15*1,35 ≈ 1,39 Н/кН;

(f к - w к) = || ≈ 6,06 Н/кН;

ν н = 80 км/ч;

ν к = ν р = 20,5 км/ч.

S > S с (4115 > 500 м) - верно.

3.4 Проверка веса поезда на трогание с места

Вес состава проверяют на возможность трогания с места на остановочных пунктах по формуле:

Q тр = - Р [кН],

где F ктр - сила тяги локомотива при трогании с места, Н;

w тр - удельное сопротивление состава при трогании с места, Н/кН;

i тр - крутизна элемента пути, на котором производится трогание с места, ‰.

Удельное сопротивление состава при трогании с места определяется по формуле:

w тр = w тр4 + w тр6 + w тр8 Н/кН,

где w тр4 , w тр6 ,w тр8 - удельное сопротивление при трогании с места соответственно 4-осных, 6-осных, 8-осных вагонов, Н/кН.

w тр = Н/кН.

где q 0 - масса, приходящаяся на одну колесную пару для данной группы вагонов, т.

Вес состава Q тр, полученный по условиям трогания с места, должен быть не менее веса состава Q, определенного по расчетному подъему, т. е. Q тр ≥ Q.

w тр4 = ≈ 0,97 Н/кН;

w тр6 = ≈ 1,06 Н/кН;

w тр8 = ≈ 1,04 Н/кН;

w тр = 0,75*0,97+0,1*1,06+0,15*1,04 ≈ 0,99 Н/кН;

Q тр = - 1270 ≈ 292669 кН.

Условие Q тр ≥ Q выполняется (292669 > 16906).

4. Расчет удельных равнодействующих сил

Для построения диаграммы удельных равнодействующих сил предварительно составляется таблица для четырех возможных режимов движения поезда по прямому горизонтальному участку:

Для режима тяги к - 0 = 1 ();

Для режима холостого хода 0х = 2 ();

Для режима служебного торможения 0,5 + 0х = 3 ();

Для режима полного служебного торможения 0,8 + 0х = 4 ().

Расчетный коэффициент трения тормозных колодок φ кр определяется по формуле:

Удельный тормозной коэффициент поезда определяется по формуле:

b m = 1000·φ кр ·υ р,

где υ р - расчетный тормозной коэффициент поезда.

Для грузового движения в расчетах можно принять нормативное значение, равное υ р = 0,33.

При движении в режиме холостого хода для звеньевого пути

w′ х = 2,4 + 0,011·ν + 0,00035·ν 2 .

4. W′ 0 = w′ 0 *Р = 2,23*1270 2832,1 Н;

6. W″ 0 = w″ 0 *Q = 1,03*16906 = 17413,2 Н;

7. W 0 = W′ 0 + W″ 0 = 2832+17413 = 20245 Н;

9. f k -w 0 = F k - W 0 /Q+P;

11. W x = w′ х *Р;

12. W 0x = W x + W″ 0 ;

13. w 0 x = W 0 x /Р+Q.

Расчетная таблица удельных равнодействующих сил

Таблица 2.

Режим тяги

Холостой ход

Торможение

f k -w 0 , Н/кН

По данным таблицы 2 строим диаграмму удельных равнодействующих сил поезда:

а) для режима тяги (по графам 1 и 9) f к - w 0 = f 1 (v);

б) для режима холостого хода (по графам1 и 13) w 0х = f 2 (v

в) для режима служебного торможения (по графам 1 и 16) 0,5b m + w 0х = f 3 (v).

Масштабы для графических расчетов

Таблица 3.

Величины

Грузовые и пассажирские поезда

Тормозные расчеты

Сила,1Н/кН - мм

Скорость, 1км/ч - мм

Путь,1 км - мм

Постоянная ∆,мм

Время, 1 мин - мм

5. Определение наибольших допустимых скоростей движения на уклонах профиля

Максимально допустимые значения скоростей движения поезда на уклонах профиля v max = f(- i ) определяются по имеющимся тормозным средствам с учетом обеспечения остановки поезда в пределах тормозного пути.

Полный расчетный тормозной путь S m равен сумме пути подготовки тормозов к действию S n действительного тормозного пути S д :

S m = S n + S д [м].

Расчетные тормозные пути принимаем равными:

а) S m = 1000 м - для спусков крутизной до 6 ‰ включительно;

б) S m = 1200 м - для спусков круче 6‰.

Порядок расчета следующий.

По данным таблицы 2 вычерчивается графическая зависимость удельных замедляющих сил при полном служебном торможении 0,8b m + w ox = f(v) в масштабах, приведенных в таблице 3. Рядом справа строятся кривые изменения скорости v = f(S) методом МПС для трех уклонов 0 ‰, -6 ‰, -12 ‰.

Для каждого из выбранных уклонов определяется подготовительный путь, м

S n = 0,278 · v н · t n ,

где v н - скорость в начале торможения (v н = 100 км/ч);

t n - время подготовки тормозов к действию, с:

t n = 7 - - для составов длиной 200 осей и менее;

t n = 10 - - для составов длиной от 200 до 300 осей;

t n = 12 - - для составов длиной более 300 осей.

Число осей: N = 15*4+2*6+2*8 = 88 осей.

При уклоне 0 ‰: t n = 7 - = 7 с;

S n = 0,278 · 100 · 7 = 194,6 м;

При уклоне -6 ‰ t n = 7 + = 9 с;

S n = 0,278· 100 · 9 = 250 м;

При уклоне -12 ‰ t n = 7 + = 11 с;

S n = 0,278· 100 · 11 = 306 м.

По полученным данным строятся зависимости v max = f(- i ) для S m = 1000 м и S m = 1200 м, условно располагаемые на первом квадрате, Вертикальная линия, проведенная при i = -6 ‰, определяет области использования полученных зависимостей: до i = -6 ‰ включительно следует пользоваться кривой, построенной для S m = 1000 м, а для спусков круче для S m = 1200 м.

Результаты решения тормозной задачи необходимо учитывать при построении кривой скорости движения поезда v = f(S) с тем, чтобы нигде не превышать скорости, допустимой по тормозам, т. е. чтобы поезд мог быть всегда остановлен на расстоянии, не превышающем длины полного тормозного пути.

6. Построение диаграммы скорости и времени хода поезда

Построение зависимостей ν = f 1 (S) и t = f 2 (S) производятся на отдельном листе миллиметровой бумаги по методу МПС.

Все построения выполнять на спрямленном пути.

Интервалы скорости, в которых действующие силы на поезд считаются постоянными, принимать не более 10 км/ч.

В конце каждого элемента профиля подбирать интервал изменения скорости так, чтобы граница элемента, граница интервала скорости и зависимость ν = f 1 (S) пересекались в одной точке.

При построении диаграммы ν = f 1 (S) необходимо стремится к достижению поездом максимально допустимых скоростей движения. Это условие выполняется при соответствующем чередовании режимов тяги, холостого хода и регулировочного торможения.

При движении на спусках скорость не должна превосходить допускаемую по тормозам в зависимости от крутизны спуска.

Скорость поезда перед остановкой должна быть равна 40-50 км/ч на расстоянии 500-700 м от оси станции.

Момент начала торможения при остановке на станции определяем точкой пересечения зависимостей ν(S) для режимов холостого хода и служебного торможения. Последняя строится встречно, начиная от нулевой скорости на оси станции.

Для выполнения зависимости t = f 2 (S) используется зависимость ν = f 1 (S) . Ее непрерывный рост рекомендуется ограничивать при достижении уровня, соответствующего 10 мин.

7. Определение средних технической и участковой скоростей движения

Средняя техническая скорость представляет собой среднюю скорость движения поезда по перегону и учитывает время занятия перегона с учетом времени на разгоны и замедления при остановках.

где - общая длина пути (участка А-В), км;

Время хода поезда по участку А-В, ч.

Для четного направления (В-А):

где - время хода поезда по участку В-А, ч.

Средняя участковая скорость - средняя скорость движения поездов по участку с учетом времени стоянок на промежуточных станциях:

Для нечетного и четного направлений:

где - коэффициент участковой скорости, который зависит от технической оснащенности участка ( = 0,8).

Для нечетного направления движения поездов (А-В):

26,9 мин = 0,45 ч

Для четного направления движения поездов (В-А):

Время хода поезда для четного направления рассчитываем способом равномерных скоростей.

Способ равномерных скоростей относится к числу приближенных и основывается на следующих основных допущениях:

Поезд по каждому элементу профиля движется с постоянной (равномерной) скоростью независимо от длины элемента профиля;

При переходе с одного элемента профиля на другой скорость поезда изменяется мгновенно.

Общее время движения поезда:

где n - число элементов профиля на заданном участке;

Время хода поезда по i-му элементу профиля, мин;

Время поправки на один разгон, принимается равным 2 мин;

Время поправки на одно торможение при полной остановке поезда, принимается равным 1 мин.

Время хода поезда по i-му элементу профиля:

где - длина i-го элемента профиля, км;

Равномерная скорость движения на i-м элементе профиля, определяется по кривой км/ч.

На спусках, где скорость на практике регулируется тормозными средствами, за равномерную скорость можно принять максимально допустимую скорость движения грузового поезда на этом участке (определяется по решению тормозной задачи).

Расчет общего времени движения поезда в четном направлении (от станции В до станции А) приведен в таблице 4.

Расчет времени хода поезда на участке В - А

Таблица 4.

Крутизна элемента, ‰

Длина элемента, км

Равномерная скорость, км/ч

Время, мин

2 + 23,38 + 1 = 26,38 мин ≈ 0,44ч

8. Расчет расхода топлива тепловозом

Расход топлива тепловозом на данном участке пути определяем на основании предварительно построенных диаграмм скорости и времени и имеющихся для каждой серии тепловозов экспериментальных данных об удельном расходе топлива при том или ином режиме работы дизеля, т.е.

где - позиция контроллера машиниста.

Суммарный расход топлива за поездку определяется по формуле:

где - расход топлива в режиме тяги за интервал времени ;

Расход топлива тепловозом в режиме холостого хода.

Расчеты удобно свести в табл. 5.

Для каждого интервала времени определяется средняя скорость движения поезда:

По средней скорости из расходной характеристики тепловоза определяется расход топлива за минуту на наибольшей позиции контроллера.

Расход топлива на холостом ходу = 0,84 кг/мин.

Расход топлива тепловозом на тягу поезда

Таблица 5.

Номер элемента пути

Для сравнения расхода топлива различными тепловозами используют удельный расход топлива на измеритель выполненной перевозочной работы 10 4 т-км брутто:

[кг/10 4 т-км брутто]

где е — удельный расход топлива, кг/10 4 т-км брутто;

Е - расход топлива на тягу поезда, кг;

Длина заданного участка, км.

[кг/10 4 т-км брутто]

Для сравнения различных видов и сортов топлива, имеющих разную теплоту сгорания, пользуются так называемым условным топливом

где - удельный расход условного топлива, кг/10 4 т-км брутто;

Э = 1,43 - тепловой эквивалент дизельного топлива.

[кг/10 4 т-км брутто]

9. Расчет потребности эксплуатируемого парка локомотивов для обслуживания поездов

Потребность локомотивного парка определяется объемом перевозочной работы, условиями и организацией движения поездов.

В зависимости от исходных данных расчет потребности локомотивов ведется двумя методами: аналитическим и графическим.

Аналитический метод расчета применяют как при перспективном, так и при оперативном планировании численности эксплуатируемого парка локомотивов, графический - только при оперативном.

Расчетный парк локомотивов по сети железных дорог является основой для планирования поставок новых электровозов и тепловозов и перспективного развития локомотивного хозяйства.

Из-за значительных колебаний размеров движения грузовых поездов на участке обращения расчет числа локомотивов ведется только для постоянно (ежесуточно) обращающихся поездов ("ядро" графика).

Для составления расписания движения поездов ядра графика (таблица 6) определяется интервал времени последовательного отправления поездов со станций в течение суток

где - число пар грузовых поездов ядра графика.

Расписание движения поездов на участке составляем в табличной форме: со станции А основного депо с начала суток первым отправляется поезд №1001 в 0 ч 30 мин, через интервал времени последовательно отправляются поезда нечетного направления №1003, №1005 и т.д.

Аналогично в 0 ч 15 мин отправляется поезд №1002 четного направления, и за ним через поезда №1004, №1006 и т.д. Прибавляя ко времени отправления поезда время его хода по участку или , заполняем столбцы прибытия поездов на станции А и В; последовательность расположения поездов обусловлена временем их прибытия с начала суток.

L = 180 км; t нч = L/ = 180/41,6 = 4,3ч = 4ч18мин.

L = 180 км; t ч = L/ = 180/42,56 = 4,2ч = 4ч12мин.

Из расписания движения поездов на участке А-В в хронологическом порядке, начиная с нуля часов суток, заполнены графы 2, 3, 5, 6, 9, 11, 12 ведомости оборота тепловозов (таблица 7).

Затем заполнены графы 8 и 14, куда занесены время следования тепловоза с поездом в нечетном (А-В) и четном (В-А) направлениях.

С учетом заданных норм минимального времени нахождения на станциях А основного депо и В оборотного депо в графах 4 и 10 произведена «увязка локомотивов» с прибывающими и отправляющимися поездами.

Расписание движения поездов ядра графика на участке А-В

Таблица 6.

Станция основного депо А

Станция оборотного депо В

Прибытие

Отправление

Прибытие

Отправление

№ поезда

Время

№ поезда

Время

№ поезда

Время

№ поезда

Время

Ведомость оборота локомотивов на участке А-В

Таблица 7.

Очередность

обслуживания поездов

№ поезда прибывшего на станцию А

Время прибытия на станцию А,

локомотивов на станции основного

Время отправления со станции А, ч-мин

№ поезда

Простой на станции А, ч-мин

Время следования от станции А до станции В, ч-мин

Время прибытия на станцию В, ч-мин

Оборот локомотивов на станции оборотного

Время отправления со станции В, ч- мин

№ поезда

Простой на станции В, ч-мин

Время следова

ния от станции В до станции А, ч-мин

График оборота локомотивов на участке А -В

Таблица 8.

Локомотиво-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Линиями связи в графах 4 и 10 ведомости отмечен порядок обслуживания поездов.

Графы ведомости оборота 7 и 13 заполнены путем сопоставления времени прибытия и отправления поездов по станциям оборота (гр. 3-5 и 9-11).

В графе 1 ведомости оборота указана последовательность обслуживания поездов по станции А основного депо. График оборота получился двухгрупповым.

После заполнения всей ведомости оборота данные по каждой строке граф 7, 8, 13, 14 просуммированы. Их общая сумма ∑Т дает время, необходимое для обслуживания одним тепловозом всех 16 пар поездов графика.

∑Т = 2484+3096+2916+3024 = 11520мин = 192 часа

Эксплуатируемый парк локомотивов для обслуживания поездов «ядра» графика движения определяется делением величины ∑Т на число часов в сутках, т.е.

Локомотивов.

Оборот локомотива определяется по формуле:

Коэффициент потребностей локомотивов:

Среднесуточный пробег:

Среднесуточная производительность:

ткм/брутто

Число локомотивов эксплуатационного парка при заданных размерах движения также можно определить по графику оборота. График оборота локомотивов представляет собой единый план работы всех подразделений локомотивного хозяйства: ремонтных и эксплуатационного цехов депо, пунктов технического обслуживания и экипировочных устройств. По графику оборота определяется суточный план выдачи конкретных поездных локомотивов к составам, развернутый план работы локомотивов на планируемый период, время явки сменных локомотивных бригад по основному депо и целый ряд других показателей, определяющих эксплуатационную деятельность депо.

Методика построения графика оборота локомотивов заключается в следующем: одним локомотивом последовательно обслуживаются все поезда «ядра» графика. Линии времени движения локомотива с поездом проецируются в принятом масштабе на горизонтальную линию, равную 24ч суток. Над этой горизонтальной линий проставляется номер поезда, а минуты отправления и прибытия поезда по пунктам оборота локомотива указываются в начале и в конце этой линии. Число суток работы локомотива по обслуживанию всех поездов «ядра» расписания, выраженное количеством горизонтальных строк графика, определяет эксплуатационный парк локомотивов для обслуживания этого количества пар поездов в течение одних суток.

Введение

1. Характеристика и краткое описание локомотива 2ЭТ10В

2. Подготовка продольного профиля пути для выполнения тяговых расчётов

3. Определение веса поезда с учётом ограничений по условиям эксплуатации

4. расчёт удельных равнодействующих сил поезда

5. Определение наибольших допустимых скоростей движения на спусках

6. Определение удельного расхода топлива на участке

7. Определение времени хода поезда на участке А-В

8. Составление ведомости и построение графика оборота локомотивов

9. Расчёт эксплуатируемого парка локомотивов

Заключение

Список использованной литературы

ЗАКЛЮЧЕНИЕ

Состав массой 1690,6 тонны, состоящий из 15 четырехосных, 2 шестиосных и 2 восьмиосных вагонов преодолевает скоростной подъём +9 ‰ . Условия проведенных проверок (по длине приемо-отправочных путей, по весу поезда при трогании с места, по преодоление скоростного подъема) выполняются полностью.

Расчет тормозной задачи определил максимально допустимые скорости движения поезда на уклонах, обеспечивающие остановку в пределах тормозного пути.

На основе рассчитанных данных был построены зависимости и .

Определено, что расход топлива тепловозом на заданном участке составляет 128,78 кг.

Для обслуживания участка пути необходимая потребность эксплуатируемого парка составляет 8 локомотивов, при ядре графика 12.

Составлено расписание движения поездов и ведомость оборота локомотива на участке А - В.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Правила тяговых расчетов для поездной работы. - М.: Транспорт, 1985 г.

2. Раков В.А. Локомотивы и моторвагонный подвижной состав железных дорог. - М.: Транспорт, 1990 г.

3. Кузьмич В.Д., Сашко Н.И., Петрущенко О.Е. Тепловозная тяга: Методические указания к курсовому проектированию. - М.: МИИТ, 2003г.

СЦЕПНОЙ ВЕС ЛОКОМОТИВА

часть общего веса локомотива, передающаяся на его движущие осн. Только эта часть веса используется для создания между движущими колесами и рельсами силы трения, позволяющей превратить работу машины в силу тяги для передвижения поезда; остальная часть веса локомотива, падающая на поддерживающие оси, не способствует увеличению силы тяги, в силу чего стремятся возможно полнее использовать вес локомотива в качестве сцепного, передавая на поддерживающие оси лишь минимальную часть его. Полный вес и С. в. л. основных серий паровозов СССР (вес в тоннах) составляют:

  • - часть веса, приходящегося на ведущие оси автомобиля, колёсного трактора, локомотива и т. д., передающаяся на путь. С. в, определяет максимально возможное тяговое усилие между колёсами и дорогой...

    Большой энциклопедический политехнический словарь

  • - наибольшая скорость движения локомотива, устанавливаемая в зависимости от его конструкции, исходя из: 1) прочности частей движущего механизма...

    Технический железнодорожный словарь

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - "...2.8. Ремонт - комплекс операций по восстановлению исправности, работоспособности и ресурса локомотива*..." Источник: Распоряжение ОАО "РЖД" от 02.07...

    Официальная терминология

  • - "...Осевая формула локомотива - условное обозначение типа локомотива в виде формулы с указанием вида, числа и расположения его осей..." Источник: " СНиП 2.05.07-91*...

    Официальная терминология

  • - ...

    Орфографический словарь русского языка

  • - ...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - СЦЕПНО́Й, -ая, -ое. 1. см. сцепить. 2. Такой, к-рый сцепляется, к-рый можно сцепить. Сцепное устройство...

    Толковый словарь Ожегова

  • - СЦЕПНО́Й, сцепная, сцепное. прил., по знач. связанное с работой чего-нибудь в сцепе, в связи с другим. Сцепная мощность трактора. Сцепные оси паровоза. Сцепной вес. || Сцепляющийся, соединяемый путем сцепки...

    Толковый словарь Ушакова

  • - ...
  • - ...

    Орфографический словарь-справочник

  • - сцепн"...
  • - т"ягово-сцепн"...

    Русский орфографический словарь

  • - ...

    Формы слова

"СЦЕПНОЙ ВЕС ЛОКОМОТИВА" в книгах

Глава 5 «Еще до стартового свистка мы знали результаты всех матчей московского «Локомотива»

Из книги Короли договорняков автора Перумал Вилсон Радж

Глава 5 «Еще до стартового свистка мы знали результаты всех матчей московского «Локомотива» Юрий СёминЯ вышел из тюрьмы в мае 2006-го. За несколько недель до освобождения заключенных переводят в другой блок, где разрешается смотреть телевизор и читать свежие газеты. В

ГЛАВА 1. МАШИНИСТ ПЕРВОКЛАССНОГО «ЛОКОМОТИВА»

Из книги Юрий Сёмин. Народный тренер России автора Алешин Павел Николаевич

ГЛАВА 1. МАШИНИСТ ПЕРВОКЛАССНОГО «ЛОКОМОТИВА» В спорте, как известно, все решают голы, очки, секунды. Казалось бы, чего проще: у кого больше званий, медалей, кубков, грамот, тот и может чувствовать себя в ореоле славы, всеобщего поклонения, объектом всенародной любви. Может

Михаил Колягин, машинист локомотива СТАРЫЙ МАШИНИСТ Очерк

Из книги Южный Урал, № 31 автора Куликов Леонид Иванович

Михаил Колягин, машинист локомотива СТАРЫЙ МАШИНИСТ Очерк Паровоз ставили на консервацию, в запас. Давно закончен ремонт, густо смазаны солидолом некрашеные детали, но Иван Иванович не торопился с докладом об окончании работы. Он ходил вокруг паровоза, придирчиво

Презумпция общенационального экономического локомотива

Из книги В поисках четвертого Рима. Российские дебаты о переносе столицы автора Россман Вадим

Презумпция общенационального экономического локомотива Некоторые политики и журналисты также имплицитно исходят из какого-то особого нормативного понятия столицы. Предполагается, что функция, или одна из важнейших функций столицы, состоит в роли катализатора

Страны с профицитом как козлы отпущения: «теория локомотива»

Из книги Европе не нужен евро автора Саррацин Тило

Страны с профицитом как козлы отпущения: «теория локомотива» В 1977 г. меня направили на 6 месяцев в Международный валютный фонд в Вашингтон8. Большей частью там я проводил время в Европейском департаменте в отделе Северной Европы и интенсивно занимался довольно новыми в

Из «Локомотива» – в ЦДКА, к тренеру Сергею Бухтееву

Из книги Я - из ЦДКА! автора Николаев Валентин Александрович

Из «Локомотива» – в ЦДКА, к тренеру Сергею Бухтееву 31 октября 1939 года я стал красноармейцем. Службу начал в 1-м полку связи МВО, расквартированном в Сокольниках.К своему удивлению, встретил там многих известных спортсменов, так же как и я проходивших срочную службу.

Глава 29 У Палыча, или «Главный машинист» столичного «Локомотива»

Из книги Чего не видит зритель. Футбольный лекарь №1 в диалогах, историях и рецептах автора Карапетян Гагик

Глава 29 У Палыча, или «Главный машинист» столичного «Локомотива» – Ну что, Савелий Евсеевич! Вот и добрались мы в наших беседах до тренера, с кем вы бок о бок работаете сегодня. Итак, давайте поговорим о Юрии Павловиче Семине – многолетнем – хоть и с перерывами –

Из книги Красно-синий – самый сильный! автора Целых Денис

«Без «Локомотива» неинтересно бороться за золото» Итак, в Лиге чемпионов ЦСКА стартовал достаточно убедительно. Но параллельно надо было решать задачи в чемпионате России. В сентябре армейцы проводили матчи с двумя самыми своими принципиальными соперниками –

2.1.Определение расчетного веса (массы) состава грузового поезда.

Вес состава грузового поезда является одним из важнейших качественных показателей работы железных дорог. Правильный выбор веса состава грузового поезда позволяет снизить себестоимость и повысить экономичность перевозок, наиболее полно использовать мощ­ность локомотивов без снижения надежности их работы в эксплуата­ции. Превышение весовых норм поездов может вызвать порчи локо­мотивов в пути следования и, соответственно, привести к нарушению графика движения поездов.

Расчетный вес состава грузового поезда Q р определяется исходя из условий полного использования мощности заданной серии локомотива при равномерном движении по расчетному подъему с расчетной скорос­тью, кН:

где F кр – расчетная сила тяги локомотива (с учетом числа секций) при расчетной скорости v р , Н;

Р – расчетный вес локомотива (с учетом числа секций), кН;

–основное удельное сопротивление движению локомотива в режиме тяги при расчетной скорости, Н/кН;

–основное удельное сопротивление движению грузового со­става (вагонов) при расчетной скорости, Н/кН (расчетные формулы приведены в табл. 4);

i р – крутизна расчетного подъема, ‰

Расчетная масса состава грузового поезда, т

где g – ускорение свободного падения, м/с (g = 9,81 м/с)

Для дальнейших расчетов выберем две серии электровозов и одну серию тепловоза. Расчетные параметры грузовых локомотивов приведены в табл. 3

Таблица 3 - Расчетные параметры грузовых локомотивов

Серия локомотива

Расчетная скорость, V p , км/ч

Расчетная сила тяги, F кр  10 3 , Н

Касательная мощность при V p , N к, кВт

Расчетный вес P , кH

Сила тяги при v = 0, F кр  10 3 , Н

Конст­рукцион­ная скорость V к , км/ч

Длина локо­мотива l л , м

Таблица 4 - Расчетные формулы для определения основного удельного сопротивления движению подвижного состава на звеньевом пути

Тип подвижного состава

Расчетная формула

(w – [Н/кН]; q 0 – [т]; v – [км/ч])

Тепловозы и электровозы:

Режим тяги

Режим холостого хода

Вагоны груженые:

Четырехосные на подшипниках скольжения

Четырехосные на роликовых подшипниках

Шестиосные*

Восьмиосные*

Состав поезда

*- шести- и восьмиосные вагоны имеют буксы только с роликовыми подшипниками.

В табл. 5 приведены характеристики составов грузовых поездов согласно выбранным локомотивам

Таблица 5 - Характеристика состава грузового поезда

Серия локомотива

Процент вагонов по весу состава

Масса вагонов брутто, т

4-х-осных на ПС

4-х- осных на ПК

Согласно табл. 4 определим основное удельного сопротивления движению подвижного состава для тепловоза 2ТЭ116.

Исходные данные:

1. Род службы локомотива - пассажирский

2. Тип передачи локомотива - электрическая

3. Годовой пассажиропоток, млн. чел. - 2

4. Число пар поездов в сутки (число пар в сутки) - 8

5. Длина участка обращения локомотива, км - 550

6. Расчетный подъём (), ‰ - 9

7. Расчётная скорость - 50


Введение

1. Выбор основных параметров силовой установки и вспомогательного оборудования локомотива

1.1 Определяем вес локомотива

1.2 Определяем массу состава пассажирского поезда

1.3 Определяем вес состава пассажирского поезда

1.4 Определяем касательную силу тяги

1.5 Определяем касательную мощность локомотива

1.6 Определяем эффективную мощность силовых установок локомотива

2. Описание конструкции локомотива

2.1 Общие сведения

2.2 Техническая характеристика тепловоза

2.3 Тяговые характеристики

2.4 Компоновка оборудования на тепловозе

2.5 Дизель 11Д45А

2.5.1 Технические данные дизеля

2.5.2 Краткое описание устройства дизеля

2.5.3 Система воздухоснабжения дизеля

2.5.4 Топливная система

2.5.5 Масляная система

2.5.6 Водяная система

2.6 Колесные пары и буксы

Заключение

Список используемой литературы


Уточняем вес состава:

1.11 Определяем удельную силу тяги и удельную массу локомотива

1.12 Определяем коэффициент тяги локомотива:

2. Описание конструкции локомотива.

2.1 Общие сведения

2.2 Техническая характеристика тепловоза

2.3 Тяговые характеристики

2.4 Компоновка оборудования на тепловозе

2.5 Дизель 11Д45А

2.5 1 Технические данные дизеля

2.5 2 Краткое описание устройства дизеля

2.5.3. Система воздухоснабжения дизеля

2.5.4. Топливная система

2.5 5 Масляная система

2.5.6. Водяная система

2.6 Колесные пары и буксы

4. Заключение.

5. Список используемой литературы:

Введение


В России в начале XX века мощность лучших паровозов (серии Щ, Э) достигала 600-1000 кВт (против 30-40 кВт у первых паровозов Стефенсона и Черепановых). Однако техническое несовершенство паровозов ещё тогда заставило специалистов задуматься о создании более экономичных локомотивах.

7 ноября 1924 года первый в мире магистральный тепловоз с электрической передачей вышел на линию Октябрьской железной дороги и совершил рейс до Обухова и обратно. Тепловоз получил наименование , был оборудован дизелем мощностью 736 кВт, двумя генераторами и трубчатыми холодильниками. При параллельном соединении тяговых электродвигателей, электрическая схема позволила осуществлять последовательное и параллельное соединение генераторов.

Широкое внедрение тепловозной тяги началось после окончания Великой Отечественной войны. В истории отечественного тепловозостроения выдающую роль сыграли коллектив Харьковского тепловозостроительного завода имени Малышева и Харьковского завода " ЭЛЕКТРОТЯЖМАШ", которые в годы восстановления и реконструкции железных дорог создали и в короткие сроки поставили на серийное производство тепловозы ТЭ1, ТЭ2, ТЭ3 и ТЭ10. Также ими был освоен выпуск более мощных и экономичных по тому времени двухтактных дизелей 2Д100 и 10Д100, генераторов, тяговых электродвигателей, электрической и вспомогательной аппаратуры.

Начавшаяся с середины 50-годов широкомасштабная электрификация железных дорог СССР, при которой на электрическую тягу переводились целые направления, обусловила рост весовых норм и скоростей движения поездов. Чтобы не сдерживать этот рост, потребовалось применение более совершенных видов тяги и на не электрифицированных участках. Стране стали нужны в больших количествах мощные, экономичные и приспособленные для массового производства локомотивы с автономными источниками энергии. К таким локомотивам, прежде всего, относились магистральные тепловозы с электрической передачей. До 1956 г. отечественной промышленностью уже был освоен выпуск тепловозов серий ТЭ1 и ТЭ2, было изготовлено также несколько более мощных тепловозов ТЭЗ. Массовое производство тепловозов этой серии началось в 1956 г. и продолжалось до 1973 г.

В пассажирском тепловозе ТЭП60, созданном в 1960 г. Коломенским тепловозостроительным заводом, воплощены многие достижения отечественного и зарубежного тепловозостроения.

Дизель и экипажная часть спроектирована Коломенским заводом, а электрооборудование Харьковским заводом "Электротяжмаш". Оба предприятия, используя опыт эксплуатации тепловозов, непрерывно совершенствуют их конструкцию, работают над повышением качества и надежности важнейших узлов и деталей, улучшая технологию их изготовления, и тем самым способствуют увеличению межремонтных пробегов тепловозов и снижению эксплутационных затрат.

Характерно, что все изменения конструкции узлов и деталей дизеля, на котором осуществлено наибольшее количество такого рода мероприятий, были проведении без нарушения основного принципа взаимозаменяемости. Их можно также осуществить на всех ранее изготовленных дизелях, руководствуя соответствующими инструктивными указаниями завода.

Следует отметить, что работы по совершенствованию тепловоза ТЭП60 проведены заводами в содружестве с работниками локомотивных депо, Главным управлением локомотивного хозяйства, Всесоюзным научно-исследовательским институтом железнодорожного транспорта (ЦНИИ) и Всесоюзным научно-исследовательским тепловозным институтом (ВНИТИ).

1. Выбор основных параметров силовой установки и вспомогательного оборудования локомотива


1.1 Определяем вес локомотива



Масса локомотива (принимается предварительно, исходя из предложения об использовании, например, односекционного локомотива),

Ускорение свободного падения


1.2 Определяем массу состава пассажирского поезда



Годовой пассажиропоток ;

Масса пассажирского вагона;

Число пар пассажирских поездов в сутки;

- количество пассажиров в вагоне.


1.3 Определяем вес состава пассажирского поезда



1.4 Определяем касательную силу тяги


Касательная сила тяги определяется из условия равномерного движения поезда с расчётной скоростью на расчётном подъёме когда имеет место равенство сил полного сопротивления движению поезда и касательной силы тяги локомотива :



И - вес локомотива и вагонов, .

Для принципиальных расчетов в курсовой работе значение и заменяем определенной величиной , находящейся в пределах для пассажирских поездов.



1.5 Определяем касательную мощность локомотива


Расчетная скорость локомотива


1.6 Определяем эффективную мощность силовых установок локомотива



- коэффициент полезного действия тягового генератора;

Коэффициент полезного действия выпрямительной установки;

- коэффициент полезного действия тяговых электродвигателей;

- коэффициент полезного действия зубчатой передачи;

- коэффициент отбора мощности от силовой установки на вспомогательные нужды локомотива.

На основе полученных данных выбираем тепловоз ТЭП60

Уточняем число секций локомотива:


где


(3000л. с) - мощность одной секции ТЭП60

Уточняем вес состава:



Н - расчётная сила тяги одной секции локомотива ТЭП60 (при)

Сцепной вес одной секции ТЭП60 (-сцепная масса тепловоза)

И - основные удельные сопротивления движению локомотива и вагонов, ;

Уточнённое значение состава,

Определяем коэффициент, учитывающий расход мощности на привод вспомогательных агрегатов тепловоза:


где


Суммарный расход мощности на вспомогательное оборудование.

Определяем коэффициент полезного использования мощности дизеля для тяги:


где


Касательная мощность продолжительного режима тепловоза ТЭП60.

Определяем коэффициент полезного действия при номинальном режиме работы дизеля:



- удельный расход топлива;

Теплота сгорания топлива.

Определяем удельную силу тяги и удельную массу локомотива:



Определяем коэффициент тяги локомотива:



2. Описание конструкции локомотива


2.1 Общие сведения


Односекционный тепловоз ТЭП60 с электрической передачей предназначен для обслуживания пассажирских поездов на железных дорогах. Силовая установка тепловоза, состоящая из дизеля 11Д45А мощностью 3000 л. с. и главного генератора ГП-311В, расположена посередине локомотива на поддизельной раме.

Дизель тепловоза двухтактный,16-ти цилиндровый с V - образным расположением цилиндров, с двухступенчатым воздухоснабжением и промежуточным охлаждением воздуха после турбонагнетателей.

Главный генератор ГП-311В постоянного тока с независимым возбуждением и охлаждением. Поддизельная рама укреплена на раме тепловоза на резинометаллических амортизаторах, которые воспринимают массу силовой установки и некоторых вспомогательных устройств. От вала дизеля приводится в движение ряд вспомогательных установок: со стороны генератора - тормозной компрессор, двухмашинный агрегат, состоящий из вспомогательного генератора и возбудителя главного генератора, подвозбудитель ВС-652 и вентилятор для охлаждения генератора и электродвигателей передней тележки. Все эти агрегаты, за исключением тормозного компрессора, приводятся в действие от раздаточного редуктора.

Со стороны турбокомпрессоров от дизеля приводятся в движение вентилятор охлаждения электродвигателей задней тележки и через мультипликатор насосы гидравлического привода вентиляторов холодильника дизеля. Воздух для охлаждения электромашин засасывает снаружи кузова и по воздухопроводам подается к месту назначения.

Необходимый для работы дизеля воздух проходит через маслопленочные фильтры, расположенные над турбокомпрессорами. При неблагоприятных метеорологических условиях забор воздуха для охлаждения дизеля возможен и из кузова.

Устройство для охлаждения воздуха для дизеля состоит из холодильника, которые имеют два независимых контура циркуляции. В первом контуре охлаждается вода дизеля, во втором - вода, охлаждающая масло дизеля в теплообменнике и воздух в охладителе надувочного воздуха дизеля. Вентиляторы холодильника приводятся в движение от гидромоторов, которые работают под давлением масла, создаваемым гидронасосами. Режим работы гидромоторов регулируются терморегуляторами, автоматически поддерживающими заданный диапазон температур воды и масла.

По обеим сторонам шахты холодильника расположены водомасляный теплообменник, тормозные резервуары, масляные фильтры грубой и тонкой очистки, масляные и топливные насосы.

Со стороны генератора расположена высоковольтная камера, стенка которой, обращенная к кабине машиниста, имеет двустворчатые двери, застекленные органическим стеклом. Доступ внутрь камеры возможен только через дверки и отъемные листы, расположенные на двух других сторонах камеры.

Силовые привода заключены в алюминиевые трубы, которые уложены под полом. Слева высоковольтной камеры, около передней кабины, установлен котел-подогреватель для подогрева системы перед пуском дизеля. У задней стенки высоковольтной камеры расположен санузел.

На тепловозе применен сварной несущей кузов, состоящий из главной рамы, боковых стенок, крышки и двух кабин. Каркас кузова выполнен из сварных гнутых легковесных профилей и обшит стальными тонколистовыми и алюминиевыми листами.

В машинном отделении полы выполнены из съемных прессованных ребристых алюминиевых плит, через которые осматриваются и ремонтируются агрегаты, расположенные под полом. Боковые стенки и крыша кузова теплошумоизолированы и обшиты внутри тонко листовой сталью.

Кабины машиниста отдельны от машинного отделения теплошумоизолированными стенами, посередине которых навешены герметичные двери с окнами, имеющими двойные стекла. Пульт машиниста имеет наклонное табло с контрольно-измерительными приборами.

Для машиниста и его помощника сиденья могут регулироваться по высоте и в продольном направлении. Под столом помощника машиниста установлены для отопления два водяных калорифера с принудительной подачей воздуха. В зимнее время специальный вентилятор, засасывает воздух из кабины, прогоняет через калориферы и подогретым, возвращает под сиденья, для обдува окон и обогрева кабины.

Кузов тепловоза установлен на две трехосные сбалансированные бесчелюстные тележки, на каждую из которых он опирается при помощи двух главных опор маятникового типа, снабженных резиновыми конусами, и четырех боковых пружин опор, расположенных по две с каждой стороны тележки. Между кузовом и тележкой предусмотрена упругая связь посредствам пружинных растяжек, удерживающих маятниковые опоры в вертикальном положении с определенными начальными возвращающими силами. При отклонении тележек от среднего положения эти силы увеличиваются и стремятся вернуть ее в среднее положение.

Рессорное подвешивание тележек включает две ступени. В нижнюю ступень входят цилиндрические пружины с балансирами и листовые рессоры, в верхнюю - цилиндрические пружины и резиновые амортизаторы на главных маятниковых опорах. Статическая осадка рессорного подвешивания без учета резиновой амортизации равна 94,3 мм.

Тяговые электродвигатели выполнены с опорно-рамным подвешиванием; их масса не воспринимается осями, так как они укреплены на раме тележки и принадлежат к подрессорному строению тепловоза. Вращающий момент передаётся от электродвигателя через полую ось, которая покоится в подшипниках электродвигателей, а затем через упругие шарнирные приводы - каждой колесной паре.

Конструкция буксового узла в комбинации с опорно-рамным подвешиванием ТЭД, мягкое рессорное подвешивание с широким применением резиновой амортизации - основные качества тележки пассажирского локомотива.

На тепловозе используется шесть ТЭД, постоянно и параллельно соединенных с генератором. Такое соединение электродвигателей обеспечивает оптимальное использование сцепной массы и в случае неисправности одного из них способствует меньшему снижению силы тяги тепловоза.

На тепловозе применяется система автоматического регулирования мощности дизель-генератора с использованием объединённого регулятора частоты вращения (РЧО). Эта система сводится к соединению в единую конструкцию двух исполнительных агрегатов: один регулирует подачу топлива в дизель, другой - изменяет возбуждение генератора.

Новая схема регулирования снизила габариты и мощность, потребляемую магнитным усилителем, улучшила его характеристику и обеспечила высокую стабильность рабочих параметров системы регулирования.

Тепловоз оборудован электропневматическим тормозом, радиостанцией, противопожарной установкой с автоматической системой извещения и автоматической локомотивной сигнализацией с автостопом.


2.2 Техническая характеристика тепловоза


Тип тепловоза и передача пассажирский сэлектрической передачей постоянного тока.

Осевая характеристика 30-30.

Наибольшая касательная мощность, л. с2330 (3000).

Конструкционная скорость, км/ч160.

Длительная сила тяги при скорости 50 км/ч, кгс.12500.

Служебная масса тепловоза с 2/3 запаса топлива и песка, т126±3%.

Нагрузка на рельс от колесной пары, т с.21,0±3%.

Управлением тепловозомиз любой кабины.

Тип экипажной части тележечный.

Число тележек 2.

Диаметр колеса по кругу катания, мм1050.

Буксы бесчелюстные, поводковые на подшипниках качения.

Тип ударно-тяговых устройств автосцепка СА-3.

Минимальный радиус проходимых кривых, м125.

Запас топлива, кг:

расчетный 5000,

наибольший 6400.

Запас воды, кг 1580,

Количество масла, кг:

в дизеле с системами 880,

в гидростатическом приводе 80,

Запас песка, кг 600,

Основные габариты, мм:

Наибольшая высота от головки рельса 4780

Наибольшая ширина по выступающим частям 3316

Расстояние между осями автосцепок 19250

База тепловоза 15000

Расстояние между серединами шкворней тележек10200

Наименьшее расстояние от головки рельса до кожуха зубчатой передачи 140

ГабаритIT (ГОСТ 9238-73)

Условное обозначение 11Д45А.

Число цилиндров 16.

Номинальная мощность, э. л. с3000.

Номинальная частота вращения коленчатого вала, об/мин750.

Система смазки и ее охлаждение.

Тип циркуляционная под давлением.

Масляный насосшестеренчатый.

Производительность масляного насоса, не менее 90.

Тип холодильника водомасляный теплообменник.

Поверхность теплообменника, :

по маслу44.

по воде35,5.

Фильтр масляный грубой очистки сетчатый

То же тонкой очистки (на дизеле) центробежный

Фильтр масляный тонкой очистки бумажный

Система охлаждения дизеля тип водяная, принудительная.

Водяной насос центробежный.

Максимальная производительность насоса 100


2.3 Тяговые характеристики


Тяговая характеристика (зависимость касательной силы тяги от скорости движения) тепловоза ТЭП60 при работе на 15 позиции контроллера машиниста представлена на рис.1. Там же нанесены кривые сопротивления движению тепловоза с составами массой 1000, 800 650 т на площадке (i = 0) и подъёме I = 9%. Точки пересечения этих кривых с тяговой характеристикой позволяют определить равновесные скорости движения пассажирских поездов, которые могут быть получены при использовании тепловоза ТЭП60.

Рис.1. Кривые касательной силы тяги и сопротивления движению тепловоза ТЭП6О: 1 - кривая сопротивления движению на подъеме (i=9‰ при массе состава Q=1000 т; 2 - i=9‰, Q= 800 т; 3 - i=9‰, Q=650 т; 4 - i=0‰ Q=1000 т; 5 - i=0‰, Q= 800 т; 6 - i=0%0, Q=650 т


Тяговые характеристики тепловоза ТЭП60 на различных позициях контроллера машиниста представлены

На рис.7. Наличие у тяговой характеристики трёх участков определяется работой тяговых электродвигателей на полном поле (ПП), первой (ОП1) и второй (ОП2) ступенях ослабления возбуждения. Максимальная касательная сила тяги ограничивается максимально допустимым током тяговых электродвигателей и тягового генератора.

Зависимость к. п. д. тепловоза от скорости движения, соответствующая тяговой характеристике (см. рис.2),

Коэффициент полезного использования мощности, равный отношению касательной мощности тепловоза к полной мощности дизеля, составляет: при длительном режиме работы - 0,737; максимальный - 0,778; гарантируемый техническими условиями - не менее

Рис.2. Тяговые характеристики тепловоза ТЭП60 при работе на различных позициях контроллера машиниста


Все представленные характеристики построены для условий, при которых реализуется полная мощность дизеля.


2.4 Компоновка оборудования на тепловозе


Оборудование тепловоза в основном размещено внутри кузова, что позволяет защитить его от вредных атмосферных воздействий, и облегчает контроль за его работай в пути следования. Внутренний объем кузова разделяется на кабины машиниста, дизельное (машинное) отделение и тамбуры.

Кабины машиниста отделены от дизельного помещения и тамбуров теплозвукоизолирующими стенами. В каждой кабине с правой стороны (по движению поезда) расположен пульт управления 41 с органами управления и измерительными приборами, необходимыми машинисту при ведении поезда. С левой стороны установлен стол 39 помощника машиниста, под которым располагается отопительно-вентиляционная установка с вентилятором, приводимым во вращение от электродвигателя. Для отопления используется два калорифера, в которые подается нагретая вода из системы охлаждения дизеля. Над столом располагается небольшой щиток с аппаратами управления, которыми пользуются помощник машиниста. Кроме того, в кабине установлено оборудование для создания требуемых условий работы локомотивных бригады: стеклоочиститель и, солнцезащитные щитки и др. Для машиниста и помощника предусмотрены мягкие регулируемые по высоте сиденья. Рядом с ними установлены два жёстких откидных сиденья.

На наружной стороне кабины расположены два красных и два белых буферных фонаря, номерные знаки, тифон, свисток, а также концевые краны и соединительные рукава электропневматического тормоза. Над окнами кабины установлен прожектор 17, к которому имеется доступ изнутри кабины через специальный люк для смены лампы и регулировки освещения. На наружной стороне кабины №2 (задней) установлены две разотки межтепловозного соединения.

В центральной части дизельного помещения установлен дизель-генератор. Дизель 8 и приводимый от него тяговый генератор 47 крепится к поддизельной раме, которая опирается на раму кузова через резинометаллические амортизаторы. На корпусе генератора установлен раздаточный редуктор 46, от которого приводится во вращения валы: двухмашинного агрегата 44 (возбудитель и вспомогательный генератор), синхронного подвозбудитель 45, вентилятора 11 тягового генератора и вентилятора 12 тяговых электродвигателей передней тележки. Все эти агрегаты также установлены на корпусе тягового генератора. При номинальной частоте вращения коленчатого вала дизеля 750 об/мин частота вращения вала дизеля, от которого приводится раздаточный редуктор, частота равна 1500 об/мин, двухмашинного агрегата 1820 об/мин, синхронного подвозбудитель 4080 об/мин, вентиляторных колес 2170 об/мин.

Тормозной компрессор 13 приводится от вала тягового генератора с частотой вращения, равной частоте вращения коленчатого вала дизеля.

Основная часть электрических аппаратов расположена в высоковольтной камере 42. На левой стене кузова около высоковольтной камеры установлены: вентилятор 14 дизельного помещения с приводом от электродвигателя, пищевой холодильник 15 с электропитанием и газовый огнетушитель 16. Под полом расположены два топливоподкачивающих насоса 38 с приводом от электродвигателей.

В противоположной части кузова размещено охлаждающее устройство с центральными проходами, состоящие из двух шахт. В крышевой части шахт расположены вентиляторы 4, приводимые во вращение гидроматорами 3. Гидроматоры связаны трубопроводом с двумя гидронасосами 48, вмонтированными в редуктор, который приводится во вращение от коленчатого вала дизеля. Масло гидропривода очищается в фильтре - бака 6 и фильтре тонкой очистки 32, размещенных на передней стенке первой (ближней к дизелю) шахты охлаждающего устройства. Нагретая вода, поступающая в охлаждающее устройство, проходит через радиаторные секции 53, где охлаждается воздухом. Расположение радиаторных секций в шахтах охлаждающего устройства - однорядное, вдоль обеих стенок кузова.

На крышке кузова над вентиляторными колесами и в боковых стенках кузова перед водяными радиаторами секции установлены жалюзи 31 створчатой конструкции. Привод жалюзи электропневматический с автоматическим управлением в зависимости от температуры воды и масла дизеля. Предусмотрено дистанционное (с пультом управления) ручное управление. На случай отказа дистанционного управления имеется непосредственно ручной привод. В крышевой части кузова между шахтами установлен водяной бак 5, а под ним фильтр тонкой 29 и грубой 30 очистки масла, маслопрокачивающий насос 52 с приводом от электродвигателя, водомасляный теплообменник 50 и четыре главных воздушных резервуара 51.

У переднего торца дизеля расположен вентилятор 33 тяговых электродвигателей задней тележки, вентиляторное колесо, которое приводится во вращение от выходного вала дизеля через угловой редуктор. Непосредственно на дизеле установлены: фильтр тонкой очистки топлива 36, центробежные масляные фильтры 10 и регулятор дизеля 9. На левой стенки кузова размешены фильтр грубой очистки топлива 35, дистанционный топливомер 37, под полом топливоподогреватель 34. Кузов тепловоза опирается на две трехосные тележки, между которыми расположен топливный бак 22. В нишах топливного бака с двух сторон тепловоза размещена аккумуляторная батарея. Полы в дизельном помещении выполнены из ребристых алюминиевых плит, которые можно легко снять для просмотра и ремонта агрегатов, установленных под полом.



Рис.3. Компоновка оборудования тепловоза ТЭП60: 1 - ящик для шланга и генератора противопожарной установки; 2 - резервуар противопожарной установки; 3 - гидромотор; 4 - вентилятор; 5 - водяной бак; 6 - фильтр-бак гидропривода; 7 - выхлопные патрубки; 8 - дизель; 9 - регулятор дизеля; 10 - центробежный масляный фильтр; 11 - вентилятор тягового генератора; 12 - вентилятор тяговых электродвигателей передней тележки; 13 - тормозной компрессор; 14 - вентилятор дизельного помещения; 15 - холодильник для пищи; 16 - газовый огнетушитель; 17 - прожектор; 18 - главные опоры кузова; 19 - крепёжные лапы электродвигателя; 20 - тяговый электродвигатель; 21 - крепёжный кронштейн; 22 - топливный бак; 23 - буксовый балансир; 24 - пружины; 25 - рессорные балансиры; 26 - боковые опоры кузова; 27 - букса; 28 - тормозной цилиндр; 29 - фильтры тонкой очистки масла дизеля; 30 - фильтр грубой очистки масла дизеля; 31 - жалюзи; 32 - фильтр тонкой очистки масла гидропривода; 33 - вентилятор тяговых электродвигателей задней тележки; 34 - топливоподогреватель; 35 - фильтр грубой очистки топлива; 36 - фильтр тонкой очистки топлива; 37 - топливомер; 38 - топливоподкачивающий насос; 39 - стол помощника машиниста; 40 - ручной тормоз; 41 - пульт управления; 42 - высоковольтная камера; 43 - санузел; 44 - двухмашинный агрегат; 45 - подвозбудитель; 46 - раздаточный редуктор; 47 - тяговый генератор; 48 - гидронасосы; 49 - ручной огнетушитель; 50 - водомасляный теплообменник; 51 - главные воздушные резервуары; 52 - маслопрокачивающий насос; 53 - радиаторные секции.

2.5 Дизель 11Д45А


Дизель тепловоза ТЭП60 является модификацией семейства среднеоборотных двухтактных дизелей типа Д40 (дн23/30), находящиеся в серийном производстве с 1959г. За это время они нашли широкое применение в различных отраслях народного хозяйства и за рубежом. Этому способствовали такие характерные способности дизелей этого типа, как небольшой вес и малые габаритные размеры, удобство обслуживания и ремонта, высокая износостойкость основных дизелей и узлов,

    Выбор основных параметров силовой установки и вспомогательного оборудования локомотива. Описание конструкции локомотива. Технические данные тепловоза 2ТЭ116. Особенности конструкции, компоновка и основная техническая характеристика дизеля 1А-5Д49.

    Работа масляного насоса и масляного фильтра. Устройство и работа системы смазки. Схема системы смазки масляного насоса, полнопоточного фильтра очистки масла, центробежного масляного фильтра. Водомасляный теплообменник и система вентиляции картера.

    Схема САР угловой скорости двигателя внутреннего сгорания (дизеля). Численные значения запасов устойчивости по амплитуде и по фазе. Графики функциональных зависимостей. Графическая зависимость времени переходного процесса по управляющему воздействию.

    Технико-экономические показатели дизелей. Использование дизелей на всех грузовых автомобилях, автобусах и на значительной части легковых автомобилей. Дизельное топливо. Схема и приборы системы питания. Смесеобразование. Система подачи и очистки воздуха.

    ЮУрГУ Кафедра ДВС Тема реферата: «Система пуска тракторного дизеля». Выполнил: Гринёв Евгений. Группа АТ-141 Проверил: Для пуска любого двигателя внутреннего сгорания необходимо его коленчатый вал привести во вращение от постороннего источника энергии.При этом частота вращения вала должна быть...

    Сведения о конструкции экипажной части тепловоза. Расположение приборов, аппаратов и ламп на пульте управления и панели сигнальных ламп. Сборка буксовых узлов на оси колесной пары. Установка пружинной подвески тяговых электродвигателей и рамы тележки.

    Ознакомление с устройством, расположением и креплением системы питания дизелей. Топливные баки. Топливные фильтры. Топливоподкачивающие насосы. Воздухоочиститель. Впускные трубопроводы. Выпускные трубопроводы. Топливные насосы высокого давления.

    Характеристика электрической передачи мощности заданного локомотива. Расчёт основных параметров передачи мощности тепловоза в длительном режиме, тяговой характеристики тепловоза и его КПД, силы тяги локомотива, ограниченной сцеплением колеса с рельсами.

    Топливо для дизелей, конструкция и работа системы питания дизеля топливом и воздухом, система выпуска отработавших газов, топливный насос высокого давления, форсунки. Топливо для газовых двигателей, конструкция и работа систем питания газовых двигателей.

    Список контрольных вопросов для экзамена по дисциплине «ЭКСПЛУАТАЦИЯ СЭУ» Раздел №1 Характеристики и режимы работы дизеля Винтовая характеристика. Тяжелый и легкий винт.

    Назначение, устройства автоматической системы регулирования температуры охлаждающей жидкости. Устройство, принцип действия и техническое обслуживание. Оборудование, инструменты, приспособления, приборы. Техника безопасности и уборка рабочего места.

    Описание и анализ устройства и взаимодействия деталей ГРМ двигателя ЯМЗ-236. Особенности работы пускового подогревателя двигателя автомобиля ГАЗ-66. Изучение конструктивных особенностей системы смазки двигателей ЗМЗ-24, ЗМЗ-66, ЗИЛ-130, ЯМЗ-236, КамАЗ.

    Основные технические характеристики тепловоза 2ТЭ10Л. Расчет касательной мощности, силы тяги по сцеплению. Определение предварительного и окончательного расчетного значения предаточного числа осевого редуктора, диаметра зубчатого колеса и шестерни.

    Полнопоточный фильтр очистки масла. Увеличение сопротивления фильтра. Сухое фрикционное двухдисковое сцепление с периферийным расположением нажимных пружин. Привод управления сцеплением и тормозным краном. Ходовая часть рама и тягово-сцепное устройство.

    Обоснование основных размеров D и S и числа цилиндров и дизеля. Расчет процесса наполнения, сгорания, сжатия и расширения. Расчет систем наддува и процесса газообмена. Индикаторные и эффективные показатели дизеля. Выбор числа и типа турбокомпрессора.

    Методы очистки воздушных фильтров. Технология сборки систем дизеля, регулировка, испытание и приемка после ремонта. Основные правила безопасности эксплуатации сосудов, работающих под давлением. Работы, выполняемые при техническом обслуживании и ремонте.

    Смазочная система с разбрызгиванием масла и принудительная. Системы с мокрым, сухим и комбинированным картером, схемы соответствующих смазочных систем и их элементы: клапан, фильтр, корпус. Масляные фильтры и виды моторных масел, их свойства и значение.

    Обеспечение работоспособности двигателей. Принципиальная схема смазочной системы. Масляный насос, радиатор, фильтр. Классификация автомобильных масел. Рекомендации по подбору масел по вязкости. Сухое и жидкостное трение. Схема работы центрифуги.

    Форс-мажорные обстоятельства в ходе морских перевозок. Режим работы неисправного дизеля при снижении скорости вращения коленчатого вала. Расчет экономического хода и режима нагрузки главных двигателей внутреннего сгорания при возникновении неисправностей.

    Схемы конструкций автомобильных двигателей с различным типом охлаждения, смесеобразования и воспламенения смеси. Двигатели легковых автомобилей малого класса повышенной проходимости, особо малого, среднего и большого классов; дизель грузового автомобиля.

Подробности Категория: Просмотров: 1594

ВЕС СЦЕПНОЙ локомотива, вес, падающий на те оси локомотива, к которым прилагаются вращающие их силы. Локомотив может двигаться лишь тогда, когда вращающие силы F≤ϕQ, где ϕ - коэффициент трения между колесом и рельсом, a Q - вес, приходящийся на движущие колеса. Коэффициент трения называется также коэффициентом сцепления, поэтому и вес Q, определяющий значение наибольшей возможной силы тяги, получил название веса сцепления, или, проще, сцепного веса. Из формулы видно, что, чем больше значение необходимой силы тяги локомотива, тем больше должен быть сцепной вес. В товарных локомотивах, развивающих большую силу тяги при малой скорости, используется по возможности максимум веса, и отношение Вес сцепной к общему весу колеблется в пределах 75-100%. В пассажирских локомотивах, работающих при более высоких скоростях, но с меньшей силой тяги, нет надобности использовать для сцепления максимум веса, и поэтому отношение в них веса сцепного к общему принимается от 50 до 75%. В абсолютных величинах вес сцепной товарных локомотивов в Америке равен 120-150 т, достигая в исключительных случаях 250 т, в Европе не превосходит 80-100 т. Вес сцепной пассажирских локомотивов: в Америке 90-120 т, в Европе 50-75 т.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков