Судовой двигатель бурмейстер вайн. Выловленное из моря

Судовой двигатель бурмейстер вайн. Выловленное из моря

Выбор типа главной передачи и главного двигателя будем производит в комплексе. Подбор вариантов главного двигателя будем производить на основе расчетной эффективной мощности. Рассмотрим 3 дизеля:

Характеристики принимаемых ДВС.

Цилиндровая

мощность, кВт

Число ци-

Эффективная

мощность, кВт

Удельный

расход топли-

ва, г/кВтч

оборотов,

«МАН-Бурмейстер

и Вайн S50MC-C»

«МАН-Бурмейстер

«МАН-Бурмейстер

Требуемая мощность одного ГД=кВт

Из таблицы видно, что наименьший удельный расход топлива у «МАН-Бурмейстер и Вайн S60MC», он является малооборотным, что допускает его работу на винт без использования понижающей передачи. Эти показатели увеличивают экономичность двигателя и упрощают процесс эксплуатации.

Подводя итог, принимаем в качестве варианта СЭУ, устанавливаемого на проектируемое судно, СДУ. В качестве главного двигателя и типа передачи принимаем МОД «МАН-Бурмейстер и Вайн» S60MC с прямой передачей и ВФШ. Для обеспечения требуемой мощности необходимо установить два таких двигателя.

Основные характеристики двигателя «МАН-Бурмейстер и Вайн» S60MC

Выбор количества валопроводов и типа движителя

Количество валопроводов выбираем из задания на курсовой проект в соответствии с количеством движителей. Проектируемое судно должно иметь два движителя. В качестве главных используются МОД с прямой передачей, поэтому принимаю решение установить две одновальные СДУ. Такая схема обеспечивает высокую живучесть и маневренные качества. При выборе типа движителя рассматривают преимущества и недостатки каждого из типов, целесообразность его применения на данном судне, первоначальную стоимость судна и эксплуатационные затраты. Установка с ВФШ проще и дешевле, удобнее в обслуживании, наиболее ремонтопригодна, по сравнению с ВРШ. Так же у ВРШ несколько меньший (на 1- 3 %), чем у ВФШ к.п.д. из-за большого диаметра ступицы, в которой размещается механизм поворота. Это определило широкое распространение установок с ВФШ на судах транспортного морского флота с установившимися режимами плавания: нефтеналивных, сухогрузных судах, лесовозах, углерудовозах, транспортных рефрижераторах, судах рыбопромыслового флота.

Применение винта регулируемого шага дает возможность быстрого перехода с переднего на задний ход улучшает маневренные качества судна.

Из выше сказанного следует, что для данного судна целесообразным будет применение ВФШ.

Конструкцию распылителя форсунки судовых дизелей Бурмейстер и Вайн (рис. 6.4.5., а) с незначительными изменениями применяли до тех пор, пока не была создана принципиально новая форсунка с другим распылителем (рис. 6.4.5., б).

В конструкции, показанной на рис. 6.4.5., а, сопло 10 запрессовано в корпус 11 (соплодержатель), который притирается к нижнему торцу направляющей 8 иглы 7. Верхний торец направляющей притерт к корпусу 1 форсунки. Массивной гайкой 9 соплодержатель 11, направляющая 8 и нижняя часть корпуса 1 скреплены в единый герметичный узел. Штифты 5 обеспечивают совпадение участков каналов охлаждения 12 топливопровода 6. Сопло 10 закреплено в корпусе 11 горячей посадкой, чем обеспечивается надежная фиксация сопла, отверстия которого должны иметь строго заданное направление (число форсунок две или три при центральном положении выпускного клапана). Три или четыре распыливающих отверстия сопла имеют диаметр 0,95 -1,05 мм. Для увеличения срока службы элементов игла - упор верхняя часть иглы 7 сделана в виде утолщённой головки, а упор 4 - в виде втулки увеличенного диаметра. Упор запрессован в тело корпуса 1. Подъём иглы h и = 1 мм. Развитая головка иглы позволила увеличить диаметр штока 3, передающего игле усилие затяга форсуночной пружины 2 (Р зп), что повысило надёжность узла пружина - шток.

Форсунки Бурмейстер и Вайн охлаждаются, как правило, дизельным топливом автономной системы.

Рис. 6.4.5

В последние годы все высокомощные судовые малооборотные дизели Бурмейстер и Вайн, а также перспективные дизели МАН - Бурмейстер и Вайн оборудуют новыми форсунками унифицированной конструкцией (см. рис. 6.4.5., 6).

Принципиальным отличием в данном случае является то, что форсунка неохлаждаемая. Нормальная работа форсунки при высоких температурах подогрева тяжелого топлива (105-120 °С) обеспечивается благодаря его центральному подводу по каналу 14. При этом получаются симметричное температурное поле и равные градиенты температур по поперечному сечению распылителя, а следовательно, равные рабочие зазоры в сопряженных парах (во всех прочих конструкциях форсунок, где горячее топливо и охладитель подаются по разным сторонам ее корпуса, создается несимметричное температурное поле).

Распылитель состоит из сопла 10, направляющей 8, иглы 7 и запорного клапана 17 внутри иглы. Направление односторонних сопловых отверстий обеспечивается фиксацией сопла штифтом 5, (корпус 1 форсунки фиксируется своим штифтом в месте крепления, не показанном на чертеже). Игла 7, имеющая вверху форму стакана, воспринимает усилие затяга пружины 2 через ползун 13, в вырезы которого входит головка проставки 15 с центральным каналом 14. Внутри стакана иглы размещены пружина 16 запорного клапана 17 и узел сопряжения топливного канала в проставке 15 и в клапане 17. Нижний заплечик проставки 15 ограничивает подъем клапана (h к = 3,5 мм), а верхний - подъем иглы (h и = 1,75 мм).

Форсунка обеспечивает циркуляцию нагретого топлива при неработающем двигателе (во время подготовки к пуску и при вынужденных остановках в море), а также в период между смежными впрысками, когда ролик толкателя плунжера обкатывает цилиндрическую часть шайбы.

При стоянке двигателя, когда ТНВД находится в положении нулевой подачи (полости наполнения и нагнетания соединены), топливоподкачивающий насос при давлении 0,6 МПа подает топливо в нагнетательный топливопровод и канал 14 форсунки. "Гак как пружина 16 запорного клапана 17 имеет затяг 1 МПа, то клапан не поднимается, и топливо проходит через небольшое отверстие 18 в стакан иглы и далее вверх на слив. Таким образом, при стоянке любой продолжительности вся система нагнетания будет заполнена топливом рабочей вязкости. Это исключительно важно для надежной работы топливной аппаратуры.

При работе двигателя в период активного хода плунжера давление нагнетания практически мгновенно поднимает запорный клапан 17, и перепускное отверстие 18 перекрывается. Топливо проходит к дифференциальной площадке иглы 7 и поднимает иглу.

В конце активного хода плунжера вся система нагнетания быстро разгружается через рабочую полость насоса, так как нагнетательного клапана в нем нет. Когда давление топлива падает ниже давления затяга Р ап. пружина 2 сажает иглу 7, а при давлении ниже 1 МПа пружина 16 опускает на место запорный клапан 17. Ролик толкателя плунжера на длительное время выходит на верх шайбы, и система нагнетания вновь прокачивается топливом до следующего активного хода плунжера.

В рассмотренной особенности новой форсунки большое достоинство топливной аппаратуры, так как в любых условиях эксплуатации она постоянно находится в рабочем температурном режиме, что чрезвычайно важно для гарантии надежности.

Практика показала, что во время вынужденных остановок судов в море, при длительных стоянках в готовности, а также при продолжительных режимах малых ходов и маневров тяжелое топливо остывает по всей линии нагнетания, вязкость его повышается. В таких случаях после пуска двигателя или при резких набросах нагрузки давление впрыскивания может сильно возрасти, а гидравлические усилия в линии нагнетания достичь опасного уровня. В результате возможны образование трещин в корпусах ТНВД и стенках нагнетательных топливопроводов, прорыв мест соединений их с насосом и форсункой (особенно когда эти места резьбовые).

Для топливной аппаратуры с охлаждаемыми форсунками существует несколько решений, направленных на поддержание температурного режима системы нагнетания в упомянутых условиях: отключение охлаждения форсунок, подача пара в каналы охлаждения, установка вдоль всего (или части) нагнетательного топливопровода паровых «спутников» и т.д. Однако все эти решения по эффективности действия значительно уступают форсунке с симметричным температурным полем.

Положительным фактором в пользу неохлаждаемых форсунок является и то, что исключается необходимость применять специальную систему охлаждения (два насоса, цистерна, трубопроводы, контрольно-измерительные приборы и приборы автоматики).

Есть, однако, и недостатки. Конструкция форсунки сложная, многодетальная. Одних мест притирки - девять, причем для притирки требуются специальные оправки. В топливной аппаратуре фактически отсутствует нагнетательный клапан, так как запорный клапан 17 его функций не выполняет: в случае зависания иглы форсунки топливо из системы нагнетания выталкивается давлением газов в цилиндре вскоре после окончания активного хода плунжера. Опыт показывает, что цилиндр при этом самовыключается.

СОДЕРЖАНИЕ
Раздел I. Малооборотные двигатели,тенденции развития, характеристики.....7
1. Системы газообмена 2-х тактных двигателей
2. Газотурбинный наддув 2-х тактных двигателей
3. Воздухоснабжение двигателей при пуске и на маневрах, помпаж ГТК
4. Оптимизация тепловой энергии
5. Использование энергии выхлопных газов в силовых газовых турбинах
Раздел II. Модельный ряд МС двигателей
«МАН - Бурмейстер и Вайн»...........16
6. Особенности конструкции двигателей
7. Топливовпрыскивающая аппаратура.
Раздел III. Техническое обслуживание дизелей - повышение эффективности их эксплуатации и предотвращение отказов..............25
8. Системы технического обслуживания.
9. Превентивное техническое обслуживание.
10. Техническое обслуживание по состоянию.
11. Основы диагностирования технического состояния,
12. Современные методы организации технического обслуживания судовых дизелей
13. Сводная таблица повреждений судовых дизелей.
Раздел IV. Выдержки из инструкции по эксплуатации и техническому обслуживанию двигателей MAN&BW - МС 50-98...33
Проверки во время стоянки. Регулярные проверки остановленного дизеля при нормальной эксплуатации. Пуск, управление и прибытие в порт.
Неисправности при пуске. Проверки в период пуска.....39
Нагружение.....45
Проверки при нагружении
Работа .....47
Неисправности при пуске. Неисправности при работе
Проверки при работе. Остановка.
Пожар в ресивере продувочного воздуха и воспламенение в картере......54
Помпаж турбонагнетателя ......59
Аварийная работа с отключенными цилиндрами или турбонагнетателями.......60
Вывод цилиндров из эксплуатации. Пуск после вывода цилиндров из эксплуатации. Работа двигателя с одним отключенным цилиндром.
Длительная работа с ТН, выведенным из эксплуатации. Вывод цилиндров из эксплуатации
Наблюдения при работе двигателя.....69
Оценка параметров двигателя в эксплуатации. Рабочий диапазон. Нагрузочная диаграмма. Пределы для работы с перегрузкой.
Характеристика винта
Эксплуатационные наблюдения ....71
Оценка записей.
Параметры, относящиеся к среднему индикаторному давлению (Pmi). Параметры, относящиеся к эффективной мощности (Ре). Повышенный уровень температуры выпускных газов - диагностика неисправностей.
Механические дефекты, способствующие снижению давления сжатия. Диагностика охладителей воздуха.
Удельный расход топлива .....78
Коррекция рабочих параметров .....80
Примеры расчетов:
Максимальная температура выпускных газов.
Оценка эффективной мощности двигателя без
индикаторных диаграмм. Индекс топливного насоса.
Частота вращения турбонагнетателя.
Нагрузочная диаграмма только для движения судна.
Нагрузочная диаграмма для движения судна и привода валогенератора.
Замер показателей, определяющих
термодинамическое состояние двигателя .....86
Поправка на окружающие условия ИСО:
Максимальное давление сгорания, Температура выпускных газов, Давление сжатия. Давление надувочного воздуха. Примеры замеров
Состояние цилиндра ....92
Функционирование поршневых колец. Осмотр через продувочные окна. Наблюдения.
Переборка цилиндра .....95
Сроки между переборками поршней. Первичный осмотр и снятие колец.
Замер износа колец. Осмотр цилиндровой втулки.
Замеры износа цилиндровой втулки
Юбка поршня, головка поршня и охлаждающая жидкость.
Кольцевые канавки поршня Восстановление рабочих
поверхностей втулки, колец и юбки.
Зазор в замках колец (новые кольца).
Установка поршневых колец. Зазор поршневых колец.
Смазка цилиндра и монтаж.
Обкатка втулок и колец
Факторы, влияющие на износ цилиндровой втулки .....101
Смазка цилиндра .......104
Цилиндровые масла. Величина подачи цилиндрового масла. Расчет дозировки при спецификационной мощности. Расчет дозировки при частичных нагрузках.
Осмотр состояния ЦПГ через продувочные окна,
осмотр поршневых колец ......108
Дозировка цилиндрового масла при обкатке. Расходы масла при спецификационной мощности.
Шейки / Подшипники .....110
Общие требования. Антифрикционные металлы. Покрытия. Шероховатость поверхности. Искровая эрозия. Геометрия поверхности. Шейки ремонтного раздела.
Проверка без вскрытия. Ревизия со вскрытием и переборка.
Виды повреждений .....112
Причины наволакивания. Трещины, причины трещин. Ремонт переходных участков (канавок) для масла.
Скорость износа подшипников. Ремонт подшипников на месте. Ремонт шеек. Крейцкопфные подшипники. Рамовые и мотылевые подшипники. Узел упорного подшипника и подшипники распределительного вала. Проверка новых подшипников перед монтажом
Центровка рамовых подшипников ......123
Измерение раскепов. Проверка раскепов. Кривая раскепов. Причины изгиба коленчатых валов. Измерения по струне. Центровка валопровода. Перезатяжка фундаментных болтов и болтов концевых клиньев. Перезатяжка анкерных связей.
Программа проверок и обслуживания двигателей МС .....137
Крышка цилиндра. Поршень со штоком и сальником. Проверка поршня и колец. Лубрикаторы. Втулка цилиндра и охлаждающая рубашка. Осмотр и обмер втулки. Крейцкопф с шатуном. Смазка подшипников. Проверка поступательно движущихся частей. Проверка зазора в мотылевом подшипнике. Коленчатый вал, упорный подшипник и валоповоротный механизм. Проверка раскепов коленчатого вала. Демпфер продольных колебаний. Цепной привод. Проверка цепного привода, регулировка демпфера натяжного устройства. Осмотр рабочих поверхностей кулаков ТНВД. Проверка зазора в подшипнике распределительного вала.
Регулирование положения распределительного вала из-за износа цепи.
Система продувочного воздуха двигателя......181
Работа с вспомогательными воздуходувками.
Охладитель надувочного воздуха, Очистка воздухоохладителя
Сухая очистка турбины ТН.
Система пускового воздуха и выхлопа .....194
Главный пусковой клапан, воздухораспределитель. Пусковой клапан. Выпускной клапан, аварийная работа с открытым выпускным клапаном. Проверка регулировки кулака выпускного клапана.
Топливные насосы высокого давления. Проверка, регулировка оперережения. Форсунки. Проверка, переборка распылителей. Испытание на стенде.
Топливо, топливная система .....223
Топлива, их характеристики. Стандарты на топлива. ТНВД, регулировки. Топливная система, топливообработка.
Циркуляционное масло и система смазки ......235
Система циркуляционного масла, Неисправности системы. Уход за циркуляционным маслом. Чистота масляной системы.
Очистка системы. Подготовка циркуляционного масла. Процесс сепарации. Старение масла. Циркуляционное масло: анализы и характерные свойства. Смазка распределительного вала. Объединенная система смазки. Смазка турбонагнетателя.
Вода, системы охлаждения ......251
Система забортной охлаждающей воды. Система охлаждения цилиндров. Центральная система охлаждения. Подогрев во время стоянки. Неисправности системы охлаждения цилиндров. Водоподготовка. Уменьшение эксплуатационных неисправностей. Проверка системы и воды в эксплуатации. Очистка и ингибирование. Рекомендуемые ингибиторы коррозии.

Сказку Страна Оз можно почитать по адресу www.tyt-skazki.ru/load/strana_oz/8

Сводная таблица повреждений судовых ДВС:(6 примеров, а Всего 25 )

Дефект, повреждение Характерные признаки Причины
1. Деформация фундаментной рамы, образование трещин. Увеличение отрицательных раскепов коленчатого вала, перегрев рамовых подшипников Деформация корпуса судна при неправильной загрузке судна, при сильном волнении, посадке судна на грунт.
2. Трещины в верхней плоскости блока цилиндров. Появление в месте образования трещины воды или налетов соли.

Чрезмерная или неравномерная затяжка шпилек крепления крышки рабочего цилиндра, анкерных связей; чрезмерно высокое давление в цилиндре; отсутствие необходимого радиального зазора между опорным фланцем втулки цилиндра и гнездом блока

3. Трещины в плоскости разъема блока с фунд. рамой.
--

Плохая пригонка или коррозионное разъедание опорной поверхности блока; сильная или неравномерная затяжка соединительных шпилек; гидравлический удар в рабочем цилиндре.

4. Трещины в блоке в районе нижнего уплотн. пояса втулки рабочего цилиндра. Подвижка элементов остова.

Плотная запрессовка втулки без соблюдения необходимого теплового зазор в поясах уплотнения; слишком большой диаметр резиновых уплотнительных колец; деформация втулки, вызванная ее перегревом (особенно в 2-х так-тных двигателях в районе выхл. окон), заклинивание поршня в цилиндре.

5. Разрыв шпилек, скрепляющих элементы остова --
Перетяг или неравномерный затяг, гидр, удар в цилиндре/Деформация остова, ослабление затяга шпилек, их вытяжка.
6. Трещины в огневом днище крышек раб. цилиндров.
Выбрасывание воды или пара через открытые индикаторные краны при проворачивании двигателя перед пуском; Появление воды на раб. поверхности втулки после остановки двигателя; белая окраска выпускных газов, понижение их температуры; повышение давления вспышки - «стрельба» предохранительного клапана; повышение темп, выходящей из крышки воды

Ухудшение охлаждения в полостях охлаждения и перегрев крышки вследствие отложений накипи, ила, шлама и перегрузки двигателя; быстрая нагрузка непрогретого двигателя, гид-i равлический удар в цилиндре; обрыв тарелки клапана; малые радиусы скругления у кромок гнезд клапанов (трещины располагаются на перемычках между гнездами форсунки и ра-i бочих клапанов).

Тип документа: Книга | PDF .

Популярность: 1.60 %

Страниц: 263 .

Размер файла: 25 Mb .

Язык: Русский, Английский .

Год издания: 2008 .


Цель книги - оказание практической помощи при изучении конструкции и эксплуатации главных судовых МОД модели МС с диаметрами цилиндра 50-98 см., выпускаемых фирмой «MAN Diesel» и ее лицензиатами. Фирма «MAN B&W» наряду с фирмой «Вяртсиля», занимает ведущее положение е в области судового дизелестроения.

Раздел I. МОД, этапы развития, хар-ки.
Раздел II. Двигатели «MAN - B&W» семейства MC.
Раздел III. ТО МОД - методы повышения эффективности эксплуатации и ресурса.
Раздел IV. Официальные инструкции по эксплуатации и ТО двигателей MAN B&W МС

Раздел I. Малооборотные двигатели, тенденции развития, характеристики

Высокая надежность, большой моторесурс, простота конструкции и высокая экономичность (см Рис. 1.1) являются отличительными чертами малооборотных двигателей. Этим, а также возможностью обеспечить высокие агрегатные мощности (80000 кВт) определяется их преимущественное
К классу малооборотных двигателей относятся мощные двухтактные дизели с числом оборотов до 300 в минуту. Двигатели 2-х тактные, так как использование 2-х тактного цикла в сравнении с 4-х тактным позволяет при равенстве размеров цилиндров и оборотов получить в 1,4 -1,8 раза большую мощность. Диаметр цилиндров находится в диапазоне 260 - 980 мм, отношение хода поршня к диаметру цилиндра в двигателях ранних моделей лежало в пределах 1,5-2,0. Однако стремление повысить мощность путем увеличения объема цилиндра, не увеличивая его диаметр, а также обеспечить лучшие условия для развития факелов топлива и, соответственно, создать лучшие условия лля смесеобразования в камере сгорания за счет увеличения ее высоты, привело к росту отношения 3D. Тенденцию к увеличению S/D можно проследить на примере двигателей Зульцер RTA: 1981 г. -ТГА S/D=2,9; 1984 г. - RTA М S/D= 3,45; 1991 г. - RTA Т S/D=3,75; 1995 г. - RTA48 Т S/D= 4,17.

Цилиндровая мощность современных малооборотных двигателей в зависимости от размесив цилиндров и уровня форсировки лежит в пределах 945-5720 кВт при Ре= 18-18,6 бар (Зульцер чТА), 400-6950 кВт при Ре = 18-19 бар (MAH ME и МС). Частота вращения лежит в пределах 70 - 127 " мин. и лишь в двигателях с размерами цилиндров менее 50 см. п= 129-250 1\мин.

Важно отметить, что в 50-60 годы стоимость топлив была низкой и находилась на уровне 23-30 $/тонну, и поэтому задача достижения максимальной экономичности двигателя и пропуль-оивного комплекса в целом не являлась превалирующей. Этим можно объяснить, что выбор час--эты вращения двигателя, а, следовательно, и гребного вала, определялся двигателестроителями без учета кпд гребного винта. В восьмидесятые годы стоимость топлив выросла в 10 и более:аз. и задачи повышения экономичности работы всего пропульсивного комплекса встали на первое место. Известно, что кпд гребного винта растет с уменьшением скорости вращения, кстати, уменьшение скорости вращения двигателя способствует и снижению удельного расхода топлива. Это обстоятельство при создании современных дизелей, несомненно, учитывается и, если у дви--ателей ранних поколений частота вращения не спускалась ниже 100 1\мин, то в новом поколении двигателей диапазон оборотов лежит в пределах 50-190. Снижение мощности при уменьшении оборотов компенсируется увеличением объема цилиндров за счет роста S/D и дальнейшей форсировкой рабочего процесса по наддуву. Среднее эффективное давление увеличилось до 19,6-20 бар. В настоящее время малооборотные двигатели производят три фирмы: МАН & Бурмейстер и Вайн, Вяртсиля - Зульцер, Митсубиши (MHI).

1. Системы газообмена двухтактных двигателей.

В двухтактных дизелях в отличие от четырехтактных отсутствуют такты наполнения воздухом (всасывания) и очистки от продуктов сгорания (выталкивания поршнем). Поэтому процессы очистки цилиндров от продуктов сгорания и наполнение воздухом в них осуществлялось принудительно под давлением 1,12-1,15 ата. Для сжатия воздуха использовались поршневые продувочные насосы.

Внедрение газотурбинного наддува в 2-х тактных двигателях в сравнении с 4-х тактными двигателями заняло значительно больше времени. По этой причине среднее эффективное давление оставалось на уровне 5-6 бар. и для увеличения цилиндровой и агрегатной мощностей конструкторам приходилось прибегать к увеличению диаметра цилиндров и хода поршня. Были построены двигатели с D=980-1080 мм. и ходом поршня S= 2400-2660 мм. Однако этот путь вел к увеличению габаритов и весовых характеристик двигателей и дальнейшее его применение было нерациональным. Причины затруднений при внедрении газотурбинного наддува заключались в том, что в 2-х тактный цикл для реализации продувки цилиндров требовал на 20-30% больше воздуха, температура выпускных газов, представляющая собою смесь продуктов сгорания и продувочного воздуха, была существенно ниже и энергия газов была недостаточна для привода ГТК.

Лишь в 1954г. были построены первые 2-х тактные двигатели с газотурбинным наддувом, при этом, в помощь турбонаддувочному агрегату фирмы МАН и Зульцер стали использовать подпоршне-вые полости - см. Рис. 1.2. Как видно из этого Рис.унка воздух из турбокомпрессора через воздухоохладитель 2 поступает в первый отсек ресивера 3 и оттуда при поднимающемся вверх поршнем через невозвратные пластинчатые клапаны 4 во второй отсек 5, и в подпоршневое пространство 6.

При опускании поршня воздух в полости 2 дополнительно сжимается от 1,8 до 2,0-2,2 бар и при открытии поршнем продувочных окон поступает в цилиндр.
В рассматриваемом варианте подпоршневые полости создают лишь кратковременный импульс давления в начальной стадии продувки, тем самым, исключая заброс газов из цилиндра в ресивер и одновременно повышая импульс давления газов, поступающих на газовую турбину, что способствует увеличению ее мощности. Давление в отсеке 5 постепенно падает и дальнейшая продувка, и зарядка цилиндра происходят при давлении, создаваемым надувочным агрегатом. В этот период, чтобы исключить потерю заряда воздуха, золотник дозарядки перекрывает выхлопной канал.
Фирма МАН для решения этих задач прибегала к более сложным решениям использования под-поршневых полостей, ряд ППП включалась последовательно с ГТК и ряд параллельно.

Существенно, что дальнейшее развитие газотурбинного наддува, увеличение производительности и КПД ГТК, рост давлений наддува и располагаемой энергии выхлопных газов позволило в двигателях с контурными схемами газообмена отказаться от подпоршневых полостей, так как продувка и зарядка цилиндров воздухом полностью обеспечивалась ГТК.

Двигатели Бурмейстер и Вайн с прямоточно-клапанной схемой газообмена с самого начала не нуждались в подпоршневых полостях, так как необходимая для ГТК энергия газов легко обеспечивалась за счет более раннего открытия выхлопного клапана. Но при пуске двигателя и работе на маневрах, когда ГТК практически еще не работает, до сих пор приходится прибегать к электроприводным центробежным насосам.
Схемы газообмена 2-х тактных дизелей в зависимости от направления движения потоков воздуха внутри цилиндра подразделяются на два основных типа - контурные и прямоточные.

Контурные схемы. Контурные схемы газообмена благодаря своей простоте были широко распространены в судовых малооборотных дизелях, выпускавшихся до 80-х годов фирмами МАН, Зульцер, Фиат, Русский Дизель и др. Типичная для контурной схемы организация газообмена заключается в том, что поступающий через продувочные окна поток продувочного воздуха и вытесняемые им выпускные газы в своем движении описывают контур цилиндра.

Сначала воздух по одной стороне цилиндра поднимается вверх, у крышки поворачивается на 180° и опускается к выпускным окнам. Так организован газообмен в односторонней щелевой (петлевой) схеме фирмы МАН (А) или в близкой к ней схеме фирмы Зульцер (В) (Рис. 1.3). Здесь для прохода воздуха и газов служат окна, выфрезерованные во втулке на одной стороне илпиндра. верхний ряд - выпускные (2), нижний - продувочные. Моментами их открытия и закрытия управляет поршень. Первыми открываются выпускные, в период свободного выпуска пел дейстзием герегала давления
(Р - Р„а_) продукты сгорания повидает цлгл*^. Затем открываются продувочные окна, и продувочный воздух устремляется вве(к, вытесняя продукты сгорания из цилиндра через открытые выпускные окна. В своем движении воздух огмсьвает петлю, поэтому такой тип продувки называют петлевой. Существенным недосташж подобного газообмена в двигателях МАН KZ является наличие заброса газов из цилиндра в ростиер в начале продувки, когда только открываются продувочные:
В двигателях Зульцер продувочные окна занимают большую часть окружности цилиндра, поэтому петлевой характер тока воздуха менее выражен, наблюдается большее перемешивание воздуха с вытесняемыми им продуктами сгорания (уг= 0,1 и фа= 1,62). Перемешиванию способствует и интенсивное поступление воздуха в цилиндр в начале продувки из-за создаваемого в этот моменбт подпоршневым насосом большого перепада давления, необходимого во избежание заброса газов в ресивер в начале продувки. Подпоршневой насос в двигателях серии RD к моменту открытия продувочных окон поднимает давление перед ними с 0,17 МПа (давление наддува) до 0,21 МПа. В конце газообмена, поднимающийся вверх поршень первыми закрывает продувочные окна, но остаются открытыми выпускные и через них теряется часть поступившего в цилиндр воздушного заряда. Эта потеря нежелательна и фирма стала устанавливать в канале за выпускными окнами вращающиеся заслонки 3 (Рис. 1.3. В). Задача которых состояла в том, чтобы после закрытия поршнем продувочных окон каналы выпускных окон перекрывались заслонками. В двигателях МАН подобные заслонки также устанавливались, но, в отличие от Зульцера с индивидуальным приводом заслонок, заслонки МАН имели общий привод и в связи с частой его поломкой, происходившей при заклинивании хотя бы одной заслонки, от установки заслонок в последующих модификациях двигателей фирма отказалась. При этом пришлось отказаться от короткого поршня и заменить его на поршень с длинной юбкой. В противном случае при подъеме поршня вверх продувочный воздух через открывающиеся им окна уходил бы в выпускную систему. Такое решение, с одной стороны, было вынужденным, так как было сопряжено с потерей некоторой части воздушного заряда. С другой стороны, улучшалась продувка цилиндров и, главное, воздух уносил с собой часть тепла, отбираемого от стенок цилиндра, особенно в зоне расположения выхлопных окон. Потеря воздуха компенсировалась увеличением производительности ГТК. Фирма Зульцер, форсируя двигатели, перешла на более эффективный наддув при постоянном давлении. Это позволило увеличить количество поступающего в цилиндры воздуха и согласиться с потерей его некоторой части в конце газообмена. В новых моделях двигателей RND, RLA, RLB по аналогии с двигателями МАН также убрала заслонки и удлинила юбки поршней.

Прямоточные схемы. Характерным для прямоточной схемы газообмена является наличие прямого тока воздуха вдоль оси цилиндра, преимущественно с послойным вытеснением продуктов сгорания. Это обусловливает низкие значения коэффициента остаточных газов у, = 0,05 - 0,07.

В переходе от контурных схем газообмена к прямоточным решающую роль сыграли следующие недостатки контурных схем:

♦ больший расход воздуха на продувку, увеличивающийся с ростом наддува и плотности воздуха;
♦ несимметричное распределение температур у втулки цилиндра и поршня, а отсюда и неравномерная их деформация - в зоне выпускных окон температура выше, чем в зоне продувочных;
худшее качество очистки верхней части цилиндра, особенно при увеличении его высоты в связи с увеличением отношения S\D.

С ростом наддува и необходимостью более раннего отбора газов на газовую турбину, что пришлось делать путем увеличения высоты выпускных окон, фирмы столкнулись с увеличением уровня и неравномерности температурных полей втулок и головок поршней, а это приводило к учащающимся задирам в ЦПГ и появлению трещин в перемычках между выпускными окнами. Это ограничивало возможность увеличения энергии газов, отбираемых на ГТК, и, соответственно, увеличения их производительности и давления надувочного воздуха.

Фирма Зульцер убедилась в этом на примере последних двигателей с контурными схемами газообмена RND, RND-M, RLA и RLB, производство их прекратила и в новых двигателях RTA с более высоким уровнем форсировки по наддуву перешла на прямоточно-клапанные схемы газообмена - 1983 г.
Переходу способствовало также желание увеличить отношение хода поршня к диаметру цилиндра, при контурных схемах это было невозможно, так как ухудшало качество продувки и очистки цилиндров.

Отказ от контурных схем и переход на прямоточно-клапанную схему газообмена осуществила и фирма МАН. Фирма Бурмейстер и Вайн, традиционно придерживавшаяся прямоточных схем газообмена, испытывала финансовые трудности и фирма МАН, основываясь на этом, приобрела контрольный пакет акций, прекратила выпуск своих дизелей и, вложив дополнительное финансирование в разработку нового модельного ряда МС, в 1981 г. приступила к его производству.

В прямоточной схеме продувочные окна расположены в нижней части втулки равномерно во всей окружности цилиндра, что обеспечивает большие проходные сечения и малое сопротивление окон, а также равномерное распределение воздуха по сечению цилиндра.
Тангенциальное направление окон 2 в плане способствует закручиванию потоков воздуха в цилиндре, которое сохраняется до момента впрыскивания топлива. Частицы топлива захватываются вихрями и разносятся по пространству камеры сгорания, что существенно улучшает смесеобразование. Выпуск газов из цилиндра происходит через клапан 1 в крышке, привод его осуществляется от распределительного вала посредством механической или гидравлической передачи.

Фазы открытия и закрытия клапана определяются профилем кулачка распределительного вала, в двигателях с электронным управлением в целях их оптимизации применительно к конкретному режиму работы двигателя могут автоматически изменяться.

Преимущества прямоточных схем:

♦ лучшая очистка цилиндров и меньшие потери воздуха на продувку;
♦ наличие управляемого выпуска, благодаря чему имеется возможность варьирования энергией газов, направляемых на газовую турбину;
♦ симметричное распределение температур и тепловых деформаций элементов ЦПГ.

Прямоточно-шелевую схему газообмена имеют тепловозные и судовые двигатели Д100, а также ранее выпускавшиеся двигатели Доксфорд. Для них характерной особенностью является расположение продувочных и выпускных окон по концам цилиндра. Продувочные окна управляются верхним поршнем, а выпускные - нижним.

В составе отечественного флота имеется большое количество теплоходов с дизелями зарубежного производства .

Ведущими зарубежными фирмами, производящими судовые дизели, являются: «Бурмейстер и Вайн» (Дания), «Зульцер» (Швейцария), МАН (ФРГ), «Доксофорд» (Великобритания), «Сторк» (Нидерланды), «Гетаверкен» (Швеция), «Фиат» (Италия), «Пилстик» (Франция) и их лицензиаты. Дизели, построенные зарубежными фирмами, имеют свои обозначения.

В марках дизелей фирмы «Бурмейстер и Вайн» буквы обозначают: М - четырехтактный, V - двухтактный (второе V в конце марки V-образный), Т - крейцкопфный, F - судовой (реверсивный и главный нереверсивный серии MTBF), В - с газотурбинным наддувом, Н - вспомогательный. Число цилиндров указано перед буквами, диаметр цилиндров - за числом цилиндров, ход поршня - после букв. В крейц-копфных дизелях с наддувом модификация указана в середине буквенного обозначения цифрой 2 или 3.

Для дизелей, построенных фирмой «Бурмейстер и Вайн» после 1967 г., введены новые обозначения: первая цифра - число цилиндров, следующая за ней первая цифра - тип двигателя (К - двухтактный крейцкопфный); вторые цифры - диаметр цилиндров; следующая буква - обозначение модели (например, Е или F); последняя буква - назначение дизеля (например, F - судовой реверсивный для прямой передачи).

В дизелях фирмы «Зульцер» буквы обозначают: В - четырехтактный, Z - двухтактный, S - крейцкопфный, Т - тронковый, D - реверсивный, Н - вспомогательный, А - с наддувом, R - с управляемым выпуском, V - V-образный, G - с редукторной передачей, М -тронковый с коротким ходом поршня. Число цилиндров указано перед буквами, диаметр цилиндра - после букв. Некоторые дизели этой фирмы имеют сокращенное буквенное обозначение: у серии Z и ZV не проставляют буквы М, Н, А, а у серии RD - буквы S и А.
Обозначения в дизелях фирмы МАН: V - четырехтактный (второе V - V-образный), Z - двухтактный, К - крейцкопфный, G - тронковый, А - двухтактный без наддува или четырехтактный с низкой степенью наддува, С, D и Е - двухтактные с низкой, средней и высокой степенями наддува, L - четырехтактный с охлаждением наддувочного воздуха, Т - с наличием предкамеры, m - четырехтактный с наддувом без воздухоохладителя. Число цилиндров указано между буквами К и Z, числитель дроби-диаметр цилиндра, знаменатель - ход поршня. Заводы-лицензиаты фирмы МАН наличие наддува обозначают буквой А с цифровыми индексами: А3 и А5 - последовательно-параллельная система наддува с газотурбонагнетателями, работающими на газах соответственно с постоянным и переменным давлением.

Фирмой «Фиат» приняты такие обозначения: S и SS с наддувом первой и второй форсировки, Т - крейцкопфный с диаметром цилиндра до 600 мм (при D = 600 мм буква Т может отсутствовать), R - четырехтактный реверсивный, С и В - модификации дизеля. Первые цифры означают диаметр цилиндра, последующие - число цилиндров.

Дизели ГДР: D-дизель, V - четырехтактный, Z - двухтактный, К - с малым ходом поршня (S/D < 1,3), N -со средним ходом поршня (S/D > 1,3), первая цифра означает число цилиндров, вторая - ход поршня, см.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков