«белка» — модульный микроавтомобиль. Изготовление и применение на уроках биологии динамичной модели процесса синтеза белка Модель структуры белка своими руками

«белка» — модульный микроавтомобиль. Изготовление и применение на уроках биологии динамичной модели процесса синтеза белка Модель структуры белка своими руками

05.11.2019

И теоретической химии и применяется в биотехнологии (при создании новых ) и в медицине (в фармацевтике). Результативность развития методов предсказания оценивается в рамах всемирного эксперимента , промежуточные итого которого подводятся один раз в два года, начиная с 1994 года.

В 1960-х годах американский биохимик Кристиан Анфинсен предложил термодинамическую гипотезу, согласно которой атомы молекул белка, в естественных условиях, заключаются в термодинамически стабильную , что соответствует минимуму свободной энергии системы. Иными словами, белок принимает определенную пространственную форму в результате ограничений, диктуемых композицией и физико-химическими свойствами , его формирующих.

В свою очередь, белковые молекулы со схожей пространственной структурой обычно играют схожую биологическую роль в процессах клеточного уровня. Таким образом, структура белка может рассматриваться в качестве промежуточного звена между химическим составом (первичной структурой) и функцией белка.

Большинство аминокислотных последовательностей белков сегодня получают методом трансляции генов из нуклеотидных последовательностей , которые определяются широкомасштабными исследовательскими проектами – такими, например, как проект «Геном человека» .

Вместе с тем, методы экспериментального определения структуры белка технологически сложны, дороги и значительно (более чем на два порядка) отстают в производительности от методов определения химического состава. По состоянию на март 2010 года, в публичных базах данных были депонированы почти 10000000 последовательностей белков, и это количество продолжает увеличиваться стремительными темпами, при том, что усилиями крупных мировых центров структуральной генетики, централизованную базу данных структур белков удалось наполнить только 60000 структурами. Предполагается, что заполнить пробел между количеством последовательностей и структур белков можно исключительно методом теоретического предсказания структуры белков.

Решение данной проблемы означает открытие широких возможностей для внедрения и совершенствования самых различных биотехнологий (сегодня компьютерное предсказание структуры белка используется в биологии и медицине, в частности при разработке лекарств).

Знание структуры белка может подсказать потенциальных партнеров для белковой взаимодействия и, тем самым, подтолкнуть исследователей к разработке или совершенствованию новых , объяснить проведенных мутаций, косвенно, помочь в определении места для проведения мутаций с целью изменения определенных фенотипов.

Методы предсказания структуры белков

Предсказания структуры белков является сложной задачей по многим причинам:

  • Во-первых, количество возможных пространственных конфигураций белков достаточно велико,
  • Во-вторых, физические основы структурообразования белков и их стабильности еще не до конца изучены.

Для достижения успеха в построении модели для предсказания структуры белка, изначально должна быть разработана стратегия эффективного перестроения пространства возможных структур и выбора наиболее вероятных кандидатов на нативную структуру .

Сегодня существуют два основных, концептуально различных метода сужения пространства поиска структурных конформаций белков:

Методы предсказания первого типа используют предположение, что искомая структура белка может быть похожей на одну или нескольких известных структур белков, или, по крайней мере, быть составлена из элементарных конструкционных блоков таких белков.

Методы предсказания второго типа не используют информацию об известных структурах, базируясь преимущественно на упрощенных энергетических потенциалах, используя для моделирования приближенные стратегии поиска минимума энергетического ландшафта.

Предсказания структуры белка по образцу (шаблону)

Если среди известных структур белка удается найти такие, для которых можно предположить, что они могут быть, в определенной степени, схожи с объектом моделирования (предсказания), значит их можно использовать в качестве шаблона (образца) для построения модели. Данный метод гомологического моделирования называется «предсказание структуры белка по образцу (по шаблону») (Template-based modeling).

Шаблоны (образцы) предсказания могут быть найдены с помощью методов непосредственного сравнения аминокислотных последовательностей (Comparative modeling methods), , или более комплексных методов для распознавания структурно схожих белков при слабом или практически невыявленном сходстве последовательностей (fold recognition / threading methods).

Последняя группа методов основана на том принципе, что структура является эволюционно консервативной, в отличие от последовательности, и, иногда, возможно найти родственные белки с непохожими последовательностями, а потом попытаться «проследить» последовательность искомого белка через структуру шаблона. Теоретически, подобные белки можно выявить, сконструировав и сравнив профили последовательности искомого белка и известных структур.

Предсказание структуры белка по образцу (шаблону) имеет огромный практический потенциал, так как если известна структура хотя бы одного белка семьи , значит можно попробовать построить модели для практически каждого белка в данной семье. С наполнением базы данных структур, данное моделирование становится возможным для всё большего количества белков.

Бесшаблонное методы предсказания структуры белков

Если найти шаблон для предсказания структуры белка одним из вышеупомянутых методов не удается, в этой ситуации применяются бесшаблонные методы (Template-free / de novo methods). К бесшаблонным методам предсказания относятся фрагментные методы и чисто физические методы.

Бесшаблонное предсказание структуры белков методом молекулярной динамики с энергетической функцией (в частности, молекулярной динамики и метода Монте-Карло, с использованием преимущества распределенных и параллельных вычислений), учитывающей детали взаимодействия на атомном уровне, сегодня практически нереализуемо из-за высоких требований к вычислительным ресурсам. Именно по этой причине, большинство ab initio методов использует упрощенную атомную структуру белков.

Фолдинг небольших альфа-спиральных белковых доменов, например, белка был успешно предсказан in silico . Благодаря применению гибридных методов предсказания, сочетающих стандартную молекулярную динамику с квантовой механикой, было исследованы электронные состояния зрительного пигмента родопсина.

Бесшаблонные методы предсказания структуры белка являются менее надежными, нежели шаблонные, однако они позволяют сконструировать модели, имеющие общую форму (англ. – Fold), близкую к нативной структуре искомого белка.

Примечания

Примечания и пояснения к статье «Предсказание (моделирование) структуры белка».

  • Белок , протеин, protein – высокомолекулярное органическое вещество, состоящее из альфа-аминокислот, объединенных пептидными связями (образующимися, когда аминогруппа одной аминокислоты и карбоксильная группа другой аминокислоты реагируют с выделением молекулы воды). Существуют две класса белков: простой белок , при гидролизе распадающийся исключительно на аминокислоты, и сложный белок (холопротеин, протеид), содержащий простетическую группу (подкласс кофакторов), при гидролизе сложного белка, кроме аминокислот, освобождается небелковая часть или продукты ее распада. Белки-ферменты ускоряют (катализируют) протекание биохимических реакций, оказывая существенное влияние на процессы обмена веществ. Отдельные белки выполняют механические или структурные функции, образуя цитоскелет, сохраняющий форму клеток. Помимо прочего, белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Белки являются основой для создания мышечной ткани, клеток, тканей и органов у человека.
  • Молекулярное моделирование , ММ, Molecular modelling – собирательное название методов исследования свойств и структуры молекул с использованием вычислительной техники и последующей визуализацией результатов, что, в итоге, обеспечивает их трехмерное представления при заданных в расчете условиях.
  • in silico – термин, обозначающий компьютерную симуляцию (моделирование) эксперимента, обычно биологического. Корни термина in silico ведут к терминам in vitro (в пробирке) и in vivo (в живом организме). in silicio буквально означает «в кремнии», символизируя, тем самым, кремний, как полупроводниковый материал, играющий важную роль в создании кремниевых микросхем, использующихся в производстве компьютерной техники.
  • Дизайн белка , protein design – рациональная конструкция новых белковых молекул, свернутых в целевой структуре белка, с целью проектирования его новых функций и / или поведения. Благодаря дизайну, белки могут быть разработаны как заново (новый белок), так и путем изменения уже существующих, на базе известной структуры белка и его последовательности (реконструкция).
  • Третичная структура , трехмерная структура – пространственное строение (включая конформацию) всей молекулы белка, иной макромолекулы, состоящей из единственной цепи.
  • Биоинформатика – совокупность подходов и методов, использующихся, в частности, в биофизике, биохимии, экологии, включающих в себя математические методы компьютерного анализа в сравнительной геномике, разработку программ и алгоритмов для предсказания пространственной структуры биополимеров, исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем. В биоинформатике используются методы прикладной математики, информатики и статистики.
  • Ферменты , энзимы, enzymes – как правило, белковые молекулы или рибозимы (молекулы РНК) либо их комплексы, катализирующие (ускоряющие) химические реакции в живых системах. Ферменты, как и все белки, синтезируются в виде линейной цепочки аминокислот, сворачивающихся определенным образом. Каждая последовательность аминокислот сворачивается особым образом, в результате чего, получающаяся белковая глобула (молекула) обладает уникальными свойствами. Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ в другие. Ферментативная активность может регулироваться ингибиторами и активаторами (ингибиторы – понижают, активаторы – повышают). По типу катализируемых реакций ферменты подразделяются на шесть классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Для осуществления катализа, отдельным ферментам необходимы компоненты небелковой природы – кофакторы. Кофакторы могут быть как неорганическими (железо-серные кластеры, ионы металлов, в том числе), так и органическими (гем, флавин, в том числе) молекулами. Органические кофакторы, прочно связанные с ферментом, называются простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.
  • Критическая оценка предсказания белковых структур , Critical Assessment of protein Structure Prediction, CASP – масштабный эксперимент по предсказанию белковых структур, считающийся всемирным соревнованием в науке структурного моделирования. Основной целью CASP является координация усилий в улучшении методов определения трехмерной структуры белков из их аминокислотных последовательностей. В рамках CASP происходит объективное тестирование методов предсказания белковых структур с последующей независимой оценкой структурного моделирования. В эксперименте, на постоянной основе, участвует свыше 100 исследовательских групп.
  • Кристиан Бемер Анфинсен , Christian Boehmer Anfinsen (1916 – 1995 гг.) – американский биохимик, лауреат Нобелевский премии по химии 1972 года (совместно со Стэнфордом Муром и Уильямом Стайном), «за работу по установлению связи между аминокислотной последовательностью рибонуклеазы А и её биологически активной конформацией» .
  • Конформация – пространственное расположение атомов в молекуле определенной конфигурации, обусловленное поворотом вокруг одной или нескольких одинарных сигма-связей.
  • Аминокислота – органическое соединения, являющееся строительным материалом для белковых структур, мышечных волокон. Организм использует аминокислоты для собственного роста, укрепления и восстановления, для выработки различных гормонов, ферментов и антител.
  • Дезоксирибонуклеиновая кислота , ДНК, deoxyribonucleic acid, DNA – одна из трех основных макромолекул (две другие РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК хранит информацию о структуре различных видов РНК и белков. С химической точки зрения, ДНК представляет собой длинную полимерную молекулу, состоящую из повторяющихся блоков – нуклеотидов. Каждый нуклеотид состоит из азотистого основания (цитозин, тимин, гуанин и аденин), сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счет дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (за исключением отдельных вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Цепи переплетены между собой в виде спирали, откуда и пошло название структуры молекулы ДНК – «двойная спираль».
  • , Проект Человеческий Геном, The Human Genome Project, HGP – международный научно-исследовательский проект, главной целью которого являлось определение последовательности нуклеотидов, составляющих ДНК, и идентификация 20-25 тысяч генов в человеческом геноме. Проект начался в 1990 году под эгидой Национальных институтов здравоохранения США, в 2000 году был выпущен рабочий черновик структуры генома, полный геном – в 2003 году. Основной объём секвенирования был выполнен в университетах и исследовательских центрах США, Великобритании и Канады.
  • Protein Data Bank , PDB – банк данных 3-D структур белков и нуклеиновых кислот, полученных методами рентгеновской кристаллографии или ЯМР-спектроскопии. PDB является одним из важнейших ресурсов для ученых, работающих в области структурной биологии.
  • Антитела , иммуноглобулины, ИГ, antibody, Ab, immunoglobulins, Ig, – класс сложных белков гликопротеинов, присутствующих в виде растворимых молекул в тканевой жидкости и в сыворотке крови, в виде мембраносвязанных рецепторов на поверхности B-лимфоцитов. Антитела способны крайне избирательно связываться с конкретными видами молекул (которые, в связи с чем называются антигенами). У человека выделяют пять классов антител (иммуноглобулинов), различающихся между собой по строению и аминокислотному составу тяжелых цепей и по выполняемым эффекторным функциям – IgG, IgA, IgM, IgD и IgE. Антитела являются важнейшим фактором специфического иммунитета, используются иммунной системой для идентификации и нейтрализации чужеродных объектов – вирусов и бактерий, в том числе.
  • Фенотип (от греческих `6,^5,^3,_7,`9, – «обнаруживаю, являю» и `4,a3,`0,_9,`2, – «пример, образец, шаблон») – совокупность характеристик, присущих индивиду на определенной стадии развития (в результате онтогенеза). Фенотип формируется на базе генотипа, опосредованного рядом внешнесредовых факторов.
  • Виллин – тканеспецифичный белок массой 92,5 кДа, связывающий актиновые филаменты щеточных каемок. Виллин содержит повторяющиеся гельзолин-подобные домены, увенчанные небольшой (8,5 кДа) «головкой» на C-конце, состоящей из быстро и независимо формирующихся трехспиральных последовательностей, стабилизированных гидрофобными взаимодействиями. Функции виллина до конца не изучены, однако предполагается, что он принимает участие в нуклеации, образовании, соединении в пучки и разрезании актиновых филаментов .

При написании статьи о структуре белка, а также о методах предсказания (моделирования) структуры белка, в качестве источников использовались материалы информационных и справочных интернет-порталов, сайтов новостей NCBI.NLM.NIH.gov, ProteinStructures.com, Stanford.edu, ScienceDaily.com, Genome.gov, FASTA.Bioch.Virginia.edu, FEN.NSU.ru, SGU.ru, VIGG.ru, Википедия, а также следующие печатные издания:

  • Гинтер Е. К. «Медицинская генетика. Учебная литература для студентов медицинских вузов». Издательство «Медицина», 2003 год, Москва ,
  • Скальный А. В., Рудаков И. А. «Биоэлементы в медицине» Издательство «Оникс», 2004 год, Москва ,
  • Мюльберг А. А. «Фолдинг белка» Издательство «Издательство Санкт-Петербургского государственного университета», 2004 год, Санкт-Петербург ,
  • Стефанов В. Е., Мавропуло-Столяренко Г. Р. «Анализ структуры белков методами биоинформатики». Издательство «Золотое сечение», 2007 год, Санкт-Петербург ,
  • Коничев А. С., Севастьянова Г. А. «Молекулярная биология. Высшее профессиональное образование». Издательство «Академия», 2008 год, Москва ,
  • Новоселецкий В. (редактор) «Структура и функционирование белков. Применение методов биоинформатики. Под руководством Даниэля Джона Ригдена». Издательство «URSS», 2014 год, Москва . (1 votes, average: 5,00 out of 5)

Каким быть автоконструкторскому кружку? Какие в нем следует строить автомобили? Как организовать занятия? Эти да и многие другие вопросы были затронуты в недавних публикациях М. Л. Ларкина и И. Ф. Рышкова «Проект - модель - машина» и «Конструктору автомобилей - авто-конструктор!» («М-К» № 1, 1979 г.). Более всего наших читателей заинтересовала техническая сторона дела - устройство модульного микроавтомобиля. Сегодня мы предлагаем последнюю разработку автоконструкторской лаборатории КЮТа Сибирского отделения Академии наук СССР - микроавтомобиль «Белка».

У этого небольшого, изящного прогулочно-спортивного «джипа» всего за полчаса можно коренным образом изменить весь облик. Стоит переставить два-три элемента конструкции - и перед вами багги. А если появится желание прекратить «Белку» в туристский автомобиль, то достаточно установить на нее съемный тент-обтекатель. Без особого труда превращается она и в легкий грузовичок. При необходимости автомобиль легко разбирается и складывается в собственный грузовой кузов, как в коробку.

Несмотря на сравнительно небольшие размеры («Белка» свободно размещается даже на письменном столе!), это не игрушка, а самый настоящий автомобиль. Его скорость около 40 км/ч, а горючего в бензобаке хватает на 100 км пути.

Как возникла идея модульного автомобиля? Прежде всего нас не устраивали сроки проектирования и строительства «традиционных» машин - наши мальчишки успевали вырасти, окончить школу и уйти из клуба, так и не сев ни разу за руль.

Не подходили для нас и схемы с использованием каркаса и нетехнологичных в условиях кружка профилированных панелей. Такие конструкции, помимо того, что на их воплощение требуется слишком много времени и сил, к тому же абсолютно неизменяемы - другую машину сделать на базе старой весьма затруднительно. Строить же новый автомобиль без использования элементов старого накладно.

1 - поперечная рессора, 2 - поперечная тяга, 3 - маятник передней подвески, 4 - проушина крепления передней подвески, 5 - хребтовая рама, 6 - рычаг запуска двигателя, 7 - поперечная балка рамы, 8 - проушины крепления маятника задней подвески, 9 - маятник задней подвески, 10 - заднее колесо, 11 - продольная рессора, 12 - двигатель ВП-150.

И последнее, что побудило взяться за разработку трансформируемого микроавтомобиля, - это проблема хранения. Число наших разработок медленно, но неуклонно возрастало; несколько машин мы держали в лаборатории, остальные - в гараже. Интерес к ним пропадал, поскольку ребятам хотелось попробовать силы в строительстве именно своего автомобиля, и постепенно труд нескольких поколений кружковцев превращался в металлолом.

Все это и заставило нас обратиться к принципиально новой идее - спроектировать многоцелевой блочный (модульный) автомобиль.

Были, правда, и возражения: некоторые думали, что проектирование такой машины поставит юного конструктора в жесткие рамки, мешающие полету творческой фантазии. Но большинство ребят склонилось к мысли, что этого не произойдет. Наоборот, ограничения в конструкции дадут возможность юному автостроителю проявить максимум изобретательности при проработке собственного варианта на базе стандартного набора элементов.

Давайте теперь мысленно откроем коробку-кузов и рассмотрим, из чего складывается основа автоконструктора.

Кузов «Белки»-грузовичка представляет собой ящик, собранный из шестимиллиметровой фанеры и окантованный дюралюминиевым уголком. Сверху лежат детали водительского кресла - спинка и сиденье. Они простые - основание (фанера толщиной 6 мм) с наклеенным на него поролоном обтянуто искусственной кожей красного цвета. Габаритные размеры сиденья 570X300 мм.

Под деталями сиденья лежит стальной лист 720X510 мм толщиной 2 мм, оклеенный с одной стороны рифленой резиной, - это днище автомобиля. Двенадцать отверстий Ø 4 мм по кромке листа предназначены для крепления пола к кузову.

Вынув днище, вы обнаружите под ним шесть бортовых панелей, являющихся основой кузова автомобиля, поскольку практически все остальные элементы корпуса крепятся к ним.

В центре ящика между бортовыми панелями оставлено место для четырех колес 3,50-5 модель В-25 А. В них вложены восемь колесных дисков и две ступицы с подшипниками и осями в сборе с поворотными цапфами и продольными тягами.

Еще ниже лежат две качалки переднего моста, сваренные из газовых труб с внешним Ø 20 мм. Здесь же находится и подмоторная рама, служащая одновременно основанием заднего моста и его подвеской. Сварена она из газовый труб Ø 30 мм.

В тот же ящик-кузов уложена и хребтовая рама автомобиля квадратного сечения 40X40 мм с приваренными к ней проушинами для крепления качалок переднего и заднего мостов. Под рамой лежат две рессоры (передняя - поперечная и задняя - продольная) и четыре стремянки с наклад« нами для крепления подвески к раме. Полосы рессор можно подобрать от автомобиля «Москвич» любой марки.

В комплект конструктора входят также рулевое колесо, рулевая колонка с кронштейнами и поводками и поперечные тяги с шарнирами. В отдельном пакете - педали управления дроссельной заслонкой карбюратора, сцеплением и тормозами. На самое дно кузова уложены панель капота, ветровое стекло, задняя опора спинки сиденья (она же - капот бензобака), передние и задние крылья, приборный щиток и два стальных уголковых профиля 20X20 мм длиной 720 мм. В специальном отсеке находятся фары и подфарники, габаритные огни, тросы, спидометр, тумблеры, комплект элементов электропроводки и пакет крепежных деталей - болтов, винтов, шайб и гаек. Не забыты и торцевые гаечные ключи, отвертки.

Двигатель ВП-150 упакован вместе с бензобаком, шлангом бензопровода и кикстартером в отдельном ящике.

Комплект деталей автомобиля налицо. Попытаемся теперь вместе собрать один из вариантов автоконструктора, в частности, микроавтомобиль «Белка»-«джип».

Начинать сборку лучше всего с шасси. Для этого на монтажную площадку следует уложить хребтовую раму и к ней двумя болтами М10 шарнирно подсоединить подмоторную раму и качалки переднего моста. Концы передней поперечной рессоры вводим в опорные скобы качалок переднего моста, а центр ее закрепляем двумя стремянками на раме.

В левую втулку подмоторной рамы вставляется вал двигателя, а сам он пристыковывается к раме двумя стопзрнымй болтами. Ось свободно катящегося колеса с подшипниками и обоймой вставляется в правую втулку подмоторной рамы. После этого можно монтировать заднюю продольную рессору, один из концов которой должен находиться в опорной скобе подмоторной качающейся рамы, а другой фиксируется двумя стремянками на хребтовой раме.

Теперь приступим к монтажу задних колес. Первым делом следует собрать с помощью трех болтов и гаек покрышку с камерой и оба диска и накачать колесо. Колеса насаживаются на шпильки ступиц задних осей, снаряженных тормозными колодками и дисками. Задний мост, таким образом, оказывается полностью собранным.

1 - эмблема, 2 - приборный щиток, 3 - капот, 4 - опора спинки, 5, 17 - боковины заднего крыла, 6, 18 - основание кузова, 7, 13 - бортовые панели, 8, 14 - боковины переднего крыла, 9, 15, 16 - передние и задние крылья (размеры в скобках - для задних крыльев), 10 - передняя панель, 11 - накладка, 12 - днище, 19 - задняя панель.

Следующий этап - сборка переднего моста. Сначала на кулаки качалок устанавливаются две поворотные цапфы с полуосями передних колес, закрепляются шкворнями И шплинтуются. На полуоси надеваются ступицы с запрессованными в них подшипниками. Сборка передних колес кичем не отличается от соответствующих операций с задними.

Остается поставить на место рулевую колонку и поперечные тяги, и работу над шасси можно считать законченной.

Теперь настала очередь кузова. Для начала возьмем пару панелей основания кузова и скрепим их четырехмиллиметровыми болтами. Далее монтируем бортовые панели, крылья с обязательной вставкой шумопоглощающих элементов. В передней и задней частях кузова в образовавшиеся при сборке проемы устанавливаем два распорных уголка и закрепляем их четырьмя болтами. К отбортовкам крыльев приворачиваем днище.

Далее последовательно закрепляются капот (не забудьте о прокладках!), ветровое стекло, приборный щиток (крепится винтами-саморезами), передние фары и задние габаритные огни. И в заключение в готовый корпус устанавливается бензобак, а на приборную доску - спидометр, тумблеры и замок зажигания. Корпус почти собран, остается поставить на место педали и рычаги управления и смонтировать электропроводку.

Теперь кузов можно стыковать с шасси, установить тросики управления и бензопровод. Автомобиль «Белка»-«джип» собран. Можно отправляться в путь.

М. ЛАРКИН, руководитель лаборатории опытного

моделирования и конструирования КЮТа СО АН CCCР

»
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1. Запросить у диспетчера место самолета. 2. Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм); БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди...

»
Средний крутящий момент ротора равен:

»
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

»
Для предотвращения случаев попадания в районы с опас­ными для полетов метеоявлениями необходимо: 1) перед полетом тщательно изучить метеообстановку по трас­се и прилегающим к ней районам; 2) наметить порядок обхода опасных условий погоды; 3) наблюдать в полете за изменением погоды, особенно за развитием явлений, опасных для полетов; 4) периодически получать по радио сведения о сос...

»
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда...

»
Модель вертолета «Пэнни» (рис. 54) разработал амери­канский авиамоделист Д. Буркхем. Этот миниатюрный вер­толет с резиновым мотором снабжен хвостовым винтом и Имеет автомат стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный кор­пус модели. Сверху...

»
Если ось ротора и ц. т. автожира лежат в плоскости симметрии автожира (фиг. 92), то при установившемся прямолинейном полете на автожир буду действовать следующие крепящие моменты: 1) момент на головке ротора согласно уравнению (78); 2) момент от поперечной силы, равный: 3) при моторном полете реактивный момент пропеллера, равный:

»
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1) горизонтальных скоростей - максимальных и минимальных, без снижения;2) потолка;3) скороподъемности;4) скорости по траектории при крутом планировании.

»
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых. В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по всей Польше проводит...

»
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1) нормальные — ось цилиндра совпадает с осью вращения Земли; 2) поперечные — ось цилиндра перпендикулярна к оси вращения Земли; 3) кос...

»
Азимут и дальность до самолета опре­деляются диспетчером по экрану индика­тора, на котором самолет изображается в виде ярко светящейся метки. Азимут от­считывается относительно северного на­правления истинного меридиана по шка­ле индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения даль...

»
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу...

»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

»
Условия самолетовождения над безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

»
Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1) при установке на самолет, нового радиокомпаса или отдель­ных его блоков; 2) после выполнения регламентных работ, при которых заме­нялись отдельные блоки радиокомпаса; 3) при обнаружении в полете ошибок в показаниях указателя курсовы...

»
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн...

»
Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и по­стоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направлен...

»
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те...

»
Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линей­ки и карандаша понадобится еще и клей. Лучше всего при­менять клей ПВА, а бумагу — из альбомов для рисования. С рисунка по клеткам пере­носят форму фюзеляжа на сло­женную вдвое бумажную заго­товку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано...

»
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

»
Если при проектировании автожира имеются в виду его основные характерные качества, как то: крутой угол посадки и низкая мини­мальная скорость горизонтального полета без снижения, то выбор диаметра ротора нужно делать, задавшись такой нагрузкой w на единицу поверхности ометаемого диска ротора, при которой вертикальная скорость крутой посадки была бы безопасна. Величины нагрузки на ометаемую ротором...

»
Навигационный индикатор может быть использован в полете следующими методами: 1. Методом контроля пройденного расстояния. 2. Методом контроля оставшегося расстояния (методом при­хода стрелок к нулю). 3. Методом условных координат.

»
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S", путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время сближения самолетов tсбл= S"/ W1 + W2

»
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

»
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс...

»
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр...

»
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр...

»
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

»
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения...

»
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки: для кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток...

Размер молекул, как правило, несоизмеримо меньше того предела, который можно разглядеть глазом, даже используя самый лучший оптический микроскоп - ведь длина волны видимого света существенно превосходит характерные размеры большинства молекул. Поэтому для изучения фундаментальных основ жизни приходится прибегать к упрощениям - молекулярным моделям , - чтобы биологические молекулы из области, доступной исключительно интеллекту, перенеслись в область чего-то видимого (на дисплее или листе бумаги) или даже осязаемого. Однако молекулы оказались не только желанным объектом для изучения: сама их суть стала для многих учёных и художников объектом вдохновения - и появилась молекулярная скульптура .

Удивительно стремление разума человеческого
к построению моделей и к совершенствованию оных,
пока они не станут всё ближе и ближе к реальности...

Людвиг Больцман
Поистине невероятно, как малó взаимное проникновение
науки XX века и искусства этого же века.

Чарльз Сноу. Две культуры

Историческая справка

Понятие об атомарной структуре материи восходит к античности - их приписывают философу Демокриту, рассуждавшему об организации всего сущего. Однако внимание научного мира заострилось на проблеме строения вещества уже в средние века, когда Иоганн Кеплер размышлял о проблемах симметрии снежинок и симметричной же упаковке сферических объектов (задаче, известной также как 18-я проблема Гильберта , которая получила решение лишь недавно ). В начале 19 века Джон Дальтон уже говорил об атомах как о реальных частицах разной массы и размера, а ближе к середине столетия австрийский учёный Йозеф Лошмидт изображал различные молекулы в виде набора соприкасающихся окружностей. Создание первой пространственной модели молекулы (это был метан) приписывается Августу Вильгельму Хофману, однако важнейшая концепция химической науки - стереохимия - была заложена Якобом Хендриком Вант-Гоффом, обратившим внимание на тетраэдрическое строение электронной оболочки атома углерода в метане. Развитие химии и рентгеновской кристаллографии привело к важнейшим открытиям в биологии XX века - установлению пространственной структуры молекул ДНК и белков, - и задача адекватного представления структуры биологических молекул, особенно сложных, встала весьма остро. Были разработаны «конструкторы» для сборки молекулярных моделей (некоторые из них до сих пор являются отраслевым стандартом), а одновременное развитие вычислительной техники и компьютерных дисплеев привело появлению программ, направленных на визуализацию и изучение биомолекул .

Несмотря на невиданный прогресс в области молекулярной графики, произошедший за последние 10–20 лет, «физические» модели молекул не утратили своей значимости. Эдгар Мейер, один из «персонажей» этого рассказа, хорошо подметил некоторую ущербность компьютерной графики: «Моё первое знакомство c биомолекулами научило меня благоговению перед Природой на молекулярном уровне. Компьютерная графика, хотя и привлекает своей цветной динамичностью, неспособна полностью передать всей трёхмерной прелести молекул ».

Таблица 1. Хронология развития моделей молекул .
Автор(ы) Год Технология Описание
Кеплер ~1600 Упаковка сфер, симметрия снежинок
Лошмидт 1861 «Плоские» рисунки Изображение атомов и химических связей с помощью соприкасающихся сфер
Вант-Гофф 1874 Бумага Тетраэдрические модели атомов, приведшие к развитию стереохимии
Кори, Полинг, Колтун (CPK-модели) 1951 Сферическая модель атомов (пропорционально атомарным радиусам) Теория химического резонанса, разработанная Полингом, и открытая им структура белковой α-спирали в существенной мере определили представления о структуре биомакромолекул
Крик и Уотсон 1953 «Скелетная» модель: небольшие атомы, соединённые отрезками проволоки Двуцепочечная структура ДНК была расшифрована во многом благодаря наличию качественного «конструктора»
Перутц, Кендрю 1958 Модель электронной плотности молекулы белка, склеенная из нескольких слоёв материала Первые полученные структуры белковых молекул - миоглобина и гемоглобина - ещё не были настолько точны, чтобы определить точное положение отдельных атомов
Молекулярная графика 1964 Компьютерный дисплей Молекулярная графика, хотя во многом заменила «физические» модели молекул, является удачным их дополнением

Трёхмерное прототипирование

Первые модели структуры белков конструировали из большого числа шариков, проволочек, втулок, винтиков и других деталей . Они были очень громоздки, хрупки и требовали огромного времени и усердия для изготовления, даже при условии использования специальных «конструкторов» - наборов стандартных деталей для сборки. В настоящее время компьютеры почти полностью заменили такие конструкторы, но ведь иметь возможность взглянуть на модель молекулы не только на компьютерном экране, но и «в реале» означает лучше понять её функцию и оценить красоту!

Одним из современных методов производства «твёрдых» моделей молекул (про «конструкторы» мы тут подробно говорить не будем, потому что про них уже достаточно было сказано ранее ) является трёхмерное прототипирование - способ изготовления объёмных макетов любых объектов, используемый, в частности, в промышленном дизайне. Изготовление моделей производится на автоматизированных установках (в том числе управляемых через интернет), входными данными для которых является CAD-файл или файл с координатами атомов белка в общепринятом формате pdb. Одна из компаний, предлагающих изготовить «твёрдую» модель белка - 3D Molecular Designs , - располагает целым арсеналом технологий прототипирования : стереолитография, избирательное спекание лазером, производство посредством ламинирования, моделирование путём последовательного наплавления и трёхмерная печать. Последняя технология аналогична обычной струйной печати с той лишь принципиальной разницей, что вместо чернил такой принтер использует специальные полимеризующиеся композиты вроде гипса или смолы, и печать объекта происходит слой за слоем, пока модель не будет готова. Трёхмерная печать лидирует среди других технологий прототипирования по скорости (хотя несколько проигрывает в качестве) и, кроме того, она единственная, которая позволяет печатать цветные объёкты (за счёт использования разноцветных «чернил»). Модели, полученные с помощью других технологий, необходимо после изготовления дополнительно красить, ведь специфическая окраска атомов очень важна для «макетов» молекул.

Учёные отмечают, что подобные модели чрезвычайно полезны в обучении, ведь если студент сможет в собственных руках подержать молекулу хемотрипсина, гемоглобина или рибосому, он немедленно, на интуитивном уровне, почувствует, как структура белка связана с его функцией - а ведь это один из самых важных аспектов молекулярной биологии!

Русские идут в 3D

Не следует думать, что вопросы визуального представления молекул и наукоёмкого материала вообще занимают умы исключительно зарубежных учёных. Московская компания Visual science предлагает свои услуги по созданию научных иллюстраций, трёхмерных моделей биологических объектов, мультимедийных презентаций и пластиковых моделей биомолекул и других медико-биологических объектов (изготавливаемых с помощью технологии трёхмерной печати). Среди своих целей компания называет:

  1. грамотную и наглядную подачу научной информации с использованием современных технологий;
  2. создание профессиональных иллюстраций и схем для образовательных материалов и учебников;
  3. иллюстрирование научно-популярных публикаций без фактических ошибок, которыми изобилуют современные издания.

Белковые кристаллы

Обычно под белковыми кристаллами подразумевают специальным образом приготовленные образцы белка, за счёт своей высокоупорядоченной структуры способные давать чёткую дифракционную картину при рентгеновском облучении (этот эффект используется для экспериментального исследования структуры белков (см., например, )). Однако есть и другие кристаллы - своеобразные миниатюрные произведения искусства на тему структуры белка, выполненные прямо в толще стеклянного блока.

Памятник антибиотику

Перед главным входом в Институт биоорганической химии РАН имени академиков М. М. Шемякина и Ю. А. Овчинникова (где я работаю - А. Ч. ) стоит своеобразное изваяние. «Скульптура изображает комплекс антибиотика валиномицина с ионом калия. Общий принцип связывания ионов металлов и их перенос через мембраны с помощью ионофоров был открыт в институте в 1963 году », - гласит надпись на постаменте.

Необычные модели молекул должны конструироваться из необычных материалов. Однако у некоторых энтузиастов молекулярной скульптуры, видимо, нет средств на необычные строительные блоки - они используют... обычные надувные шарики-«лошарики»! (Это такие длинные надувные трубочки, скручивая которые, клоуны на сцене создают фигурки животных.) На специальном сайте , посвящённом созданию моделей молекул из таких шариков, размещены подробные инструкции по узлам, которые понадобится освоить для постройки, например, «надувной» молекулы ДНК, и приведены фотографии большого количества моделей. Создатели сайта - трое кандидатов наук (Ph.D.) из Германии - уверяют, что их технология незаменима в учебном процессе - на лекциях и семинарах.

Молекула своими руками

Вдохновение, вызываемое биологическими молекулами у учёных, сподвигло их дерзнуть на большее, нежели создание абсолютно точных «физических» моделей - даже несмотря на свой завораживающий внешний вид, дотошно скопированные со структурных файлов модели остаются всего лишь моделями. Романтическая душа исследователей требовала большего, и некоторые из них начали создавать произведения искусства «по мотивам» структуры белков.

Рисунок 8. «Вальс полипептидов», автор - Мара Хэйзелтайн. Скульптура расположена в институте Колд Спринг Харбор , США. Белок BLyS (B-лимфоцит-стимулирующий белок, отвечает за производство антител в организме) был открыт при участии отца Мары и, видимо, поэтому стал центральным элементом композиции.

Отец Мары - Уильям Хэйзелтайн - известный учёный и бизнесмен, организовавший семь биотехнологических компаний, среди которых - Human Genome Sciences , занимающаяся геномными исследованиями, направленными на борьбу с неизлечимыми заболеваниями, такими как многие формы рака или СПИД. «[На этой скульптурной композиции BLyS] растёт из микроскопического зародыша в полноразмерную молекулу , - комментирует он творение своей дочери. - В науке форма определяет функцию. Знание структуры чрезвычайно важно, чтобы понять, как что-то работает. В работах Мары эта форма показана. Она прекрасна в своей динамичной изменчивости ». Сама же Мара признаётся, что её отец и другие учёные всегда были для неё неистощимым источником вдохновения. «Эта скульптура посвящена моему папе и огромной работе, которую он проделал », - говорит скульптор.

В 2006 году в Сингапуре открылась бронзовая скульптура «Ингибированный SARS », выполненная Марой Хэйзелтайн по специальному приглашению руководства биотехнологического консорциума Biopolis, на территории которого располагается скульптура. Во время эпидемии тяжелого острого респираторного синдрома (или, как его чаще называют, атипичной пневмонии) 2003 года сингапурские учёные из этого консорциума провели тщательное геномное исследование коронавируса TOPC, вызывающего заболевание, и определили пространственную структуру протеазы, ответственной за проникновение вируса в клетку. Эта скульптура (рис. 9) стала памятником труду учёных, благодаря которому удалось спасти множество человеческих жизней.

Рисунок 9. Огромная бронзовая скульптура, расположенная в кампусе «Биополиса » (Сингапур), раскрывает механизм работы ингибитора протеазы SARS-вируса, открытый в этом научном центре

«Нам невероятно повезло, что мы наделены сознанием, позволяющим наслаждаться красотой нашей планеты и, благодаря современным технологиям, заглядывать одновременно в микроскопический мир, находящийся в каждой клетке нашего существования, и в необъятные глубины космоса. Именно это явление я и пытаюсь раскрыть в своих работах », - поясняет своё творческое амплуа Хэйзелтайн.

Первоначально статья «Изваяние невидимого» была опубликована в «Компьютерре» .

Литература

  1. Чугунов А.О. (2007). Изваяние невидимого . «Компьютерра» . 712 , 24–26.


© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков