Техника на паровом двигателе. Паровички: быстрые, бесшумные и простые: Паровые автомобили

Техника на паровом двигателе. Паровички: быстрые, бесшумные и простые: Паровые автомобили

Паровые машины использовались как приводной двигатель в насосных станциях , локомотивах , на паровых судах, тягачах , паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Позднее паровые машины были вытеснены двигателями внутреннего сгорания , паровыми турбинами , электромоторами и атомными реакторами , КПД которых выше.

Паровая машина в действии

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном из Александрии в первом столетии - это так называемая «баня Герона», или «эолипил». Пар, выходящий по касательной из дюз, закреплённых на шаре, заставлял последний вращаться. Предполагается, что преобразование пара в механическое движение было известно в Египте в период римского владычества и использовалось в несложных приспособлениях.

Первые промышленные двигатели

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Сейвери в 1698 году . На своё устройство Сейвери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Затем английский кузнец Томас Ньюкомен в 1712 году продемонстрировал свой «атмосферный двигатель», который был первым паровым двигателем, на который мог быть коммерческий спрос. Это был усовершенствованный паровой двигатель Сейвери, в котором Ньюкомен существенно снизил рабочее давление пара. Ньюкомен, возможно, базировался на описании экспериментов Папена, находящихся в Лондонском королевском обществе , к которым он мог иметь доступ через члена общества Роберта Гука , работавшего с Папеном.

Схема работы паровой машины Ньюкомена.
– Пар показан лиловым цветом, вода - синим.
– Открытые клапаны показаны зелёным цветом, закрытые - красным

Первым применением двигателя Ньюкомена была откачка воды из глубокой шахты. В шахтном насосе коромысло было связано с тягой, которая спускалась в шахту к камере насоса. Возвратно-поступательные движения тяги передавались поршню насоса, который подавал воду наверх. Клапаны ранних двигателей Ньюкомена открывались и закрывались вручную. Первым усовершенствованием было автоматизация действия клапанов, которые приводились в движение самой машиной. Легенда рассказывает, что это усовершенствование было сделано в 1713 году мальчиком Хэмфри Поттером, который должен был открывать и закрывать клапаны; когда это ему надоедало, он связывал рукоятки клапанов верёвками и шёл играть с детьми. К 1715 году уже была создана рычажная система регулирования, приводимая от механизма самого двигателя.

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Хэмфри Гэйнсборо в 1760-ых годах построил модель паровой машины с конденсатором. В 1769 году шотландский механик Джеймс Уатт (возможно, использовав идеи Гейнсборо) запатентовал первые существенные усовершенствования к вакуумному двигателю Ньюкомена, которые сделали его значительно более эффективным по расходу топлива. Вклад Уатта заключался в отделении фазы конденсации вакуумного двигателя в отдельной камере, в то время как поршень и цилиндр имели температуру пара. Уатт добавил к двигателю Ньюкомена ещё несколько важных деталей: поместил внутрь цилиндра поршень для выталкивания пара и преобразовал возвратно-поступательное движения поршня во вращательное движение приводного колеса.

На основе этих патентов Уатт построил паровой двигатель в Бирмингеме . К 1782 году паровой двигатель Уатта оказался более чем в 3 раза производительнее машины Ньюкомена. Повышение эффективности двигателя Уатта привело к использованию энергии пара в промышленности. Кроме того, в отличие от двигателя Ньюкомена, двигатель Уатта позволил передать вращательное движение, в то время как в ранних моделях паровых машин поршень был связан с коромыслом, а не непосредственно с шатуном. Этот двигатель уже имел основные черты современных паровых машин.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Р.Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм , или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования.

Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: "fardier à vapeur" (паровую телегу). Возможно, его изобретение можно считать первым автомобилем . Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки, прессы и др. В 1788 году пароход , построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7-8 миль в час . Пароход Дж. Фитча не был коммерчески успешным, поскольку с его маршрутом конкурировала хорошая сухопутная дорога. В 1802 году шотландский инженер Уильям Симингтон построил конкурентоспособный пароход, а в 1807 году американский инженер Роберт Фултон использовал паровой двигатель Уатта для привода первого коммерчески успешного парохода. 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив , построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными » или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов , во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить. В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века . Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку» , замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвое пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объем цилиндра.

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа . В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нем пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд - Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд - Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд - Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте . Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.

Множественное расширение

Упрощённая схема паровой машины с тройным расширением.
Пар высокого давления (красный цвет) от котла проходит через машину, выходя в конденсатор при низком давлении (голубой цвет).

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четверного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объем которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на цилиндры высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остается более или менее постоянным. Прямоточные машины одинарного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одинарного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в нее подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии . Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Другие типы паровых двигателей

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот

Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Сухопутные транспортные средства:
    • Паровой автомобиль
    • Паровой трактор
    • Паровой экскаватор, и даже
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т.д. В результате такие паровозы имеют на 60% меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты , содержащейся в топливе . Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен

,


24 декабря 1801 года механик-конструктор Ричард Тревитик продемонстрировал первый паровой автомобиль. В честь этой даты мы решили рассказать о самых знаковых машинах с тепловым двигателем внешнего сгорания.

Паровой автомобиль Тревитика



Восьмиместный автомобиль Тревитика имел огромные задние колеса, между которыми располагался паровой двигатель. Уголь для нагревания котла подбрасывал кочегар. Инженер использовал машину для заработка, перевозя многочисленных желающих. У Тревитика также было несколько проектов паровозов, однако, не получив необходимого финансирования, он вскоре разорился и уехал из Англии.

Омнибус Enterprise



Праотцом всех автобусов стал омнибус Enterprise Уолтера Хэнкока 1833-го года - огромная машина, развивавшая скорость до 32 км/ч. "Топливного бака", вмещавшего одну тонну воды, хватало на 32 километра пути. Автомобиль Хэнкока все же вытеснял гужевой транспорт вплоть до 40-х годов.

La Marquise



Один из первых легковых автомобилей класса "люкс" был построен в 1884 году. Четырехместная паровая машина La Marquise развивала скорость до 59 км/ч. Кстати, автомобиль работает и по сей день. В 2011 году он был продан на аукционе неизвестному лицу за 4 миллиона 260 тысяч долларов.

Паромобиль "Дукс"



В первом десятилетии XX-го века в Царской России крайне популярны были паровые автомобили компании "Дукс". Машины, мощностью около 3 л.с., были почти бесшумны и крайне просты в управлении.

Stanley Rocket



В 1906 году Stanley Rocket установил рекорд скорости - 203 км/ч. Тогда за рулем находился гонщик Фред Марриотт. Почти через год, Фред попытался побить этот рекорд на усовершенствованном Stanley Rocket, однако попытка завершилась неудачей - автомобиль разрушился на неровностях трассы.

Sentinel Standard



Шотландские паровые грузовики Sentinel Standard выпускались с 1906 года. Массивные машины оснащались паровыми двигателями от катеров, мощностью около 24 л.с.. Максимальная скорость составляла 12 км/ч. Некоторые сохранившиеся экземпляры сейчас используются в качестве туристических автобусов.

Doble Detroit



Братья Добл впервые представили паровые автомобили в практичном и элегантном кузове. Их модель Detroit имела ключ зажигания и новый, более мощный и практичный двигатель. К примеру, машина "разогревалась" всего за полторы минуты, в то время как более старым паровым автомобилям для этого требовалось не менее получаса. Несмотря на большой ажиотаж, вызванный машиной на автосалоне в 1917 году, из нескольких тысяч заказанных машин, было построено не более 80 (а по некоторым данным - всего 11).

Doble Model E




На Нью-Йоркском автошоу 1924 года братья Добл представили Model E - один из самых мощных и надежных серийных паровых автомобилей. Его максимальная скорость составляла 160 км/ч, а до "сотни" он разгонялся всего за 10 секунд - такими показателями не могут похвастаться даже многие современные "легковушки". Однако новые технологии и материалы заметно увеличили стоимость машины. Doble E могли позволить себе только состоятельные люди. Всего было выпущено 50 экземпляров.

НАМИ-012



В 1949 году в Советском Союзе был разработан паровой грузовик НАМИ-012 на базе ЯАЗ-200. По задумке инженеров, паровые двигатели должны были обладать хорошей тягой и практичностью, однако проект был закрыт, а все созданные прототипы - утилизированы.



Казалось бы, век паровых автомобилей уже давно прошел, однако некоторые энтузиасты до сих пор питают к ним особые чувства. В 2009 году был построен скоростной болид Inspiration, который, спустя век, побил рекорд машины Stanley. Паромобиль, оснащенный двенадцатью бойлерами, показал среднюю скорость в 225,06 км/ч по результатам двух заездов.

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930 -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 - 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 - 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор ). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» - «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины - с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок - «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания

п

Станцыонарные Паровые машины могут быть разделены на два типа по режиму использования:

    Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.

  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз - впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем

Множественное расширение

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых т

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

В те годы, когда автомобиль только зарождался двигатель внутреннего сгорания лежал лишь на одном из направленний конструкторской мысли. С автомобилем, где использовались двигатели такого рода, успешно конкурировали паровые и электрические. Паровой автомобиль француза Луи Сорполле даже установил в 1902 году рекорд скорости. И в последующие годы - безраздельного господства бензиновых двигателем находились oтдельные энтузиасты пара, которые никак не могли примириться с тем, что этот вид энергии вытеснен с шоссейных дорог. Американцы братья Стенлей строили паровые автомобили с 1897 до 1927 года. Их машины были вполне совершенны, но несколько громоздки. Другая родственная пара, тоже американская - братья Добл, - продержалась несколько дольше. Неравную борьбу они закончили в 1932 году, создав несколько десятков паровых автомобилей. Одна из таких машин эксплуатируется до сих пор, не подвергаясь почти никаким изменениям. Установлен лишь новый котел и форсунка, работающая на дизельном топливе. Давление пара достигает 91,4 атм. при температуре 400° С. Максимальная скорость автомобиля весьма высока - около 200 км/ч. Но самое замечательное - возможность при трогании с места развить огромный крутящий момент. Этим свойством паровой машины двигатели внутреннего сгорания не обладают, и потому и своё время так трудно было внедрить дизель на локомотивы. Автомобиль братьев Добл прямо с места переезжал через положенный под колеса брусок размером 30 на 30 см. Ёще одно любопытное свойство: задним ходом он взбирается на холм быстрее, чем обычные машины передним. Отработанный пар используется лишь для вращения вентилятора и генератора, заряжающего аккумуляторную батарею. Но эта машина так и осталась бы курьезом, претендентом на место в музее истории техники, если бы взоры конструкторов в наши дни не обратились вновь к старым идеям - электромобилю и пару - под влиянием опасности, которую представляет загрязнение атмосферы.

Что с этой точки зрения привлекает в паровом автомобиле? Исключительно важное свойство - очень малое выделение с продуктами сгорания вредных веществ. Происходит это потому, что топливо сгорает не вспышками, как в бензиновом двигателе, а непрерывно, процесс горения идет стабильно, время сгорания гораздо больше.

Открытия в этом как будто бы вовсе нет - различие между паровым двигателем и двигателем внутреннего сгорания лежит в самом принципе их работы. Почему же паровые автомобили не выдержали конкуренции с бензиновыми? Потому что у двигателей их есть ряд серьезных недостатков.

Первое - известный факт: шоферов-любителей сколько угодно, машинистов же любителей пока нет ни одного. В этой области человеческой деятельности заняты исключительно профессионалы. Самое главное заключается в том, что шофер-любитель, садясь за руль, рискует только жизнью своей и тех, кто ему добровольно доверился; машинист же - тысячами других. Но важно еще и другое: для обслуживания парового двигателя требуется более высокая квалификация, нежели для обслуживания бензинового. Ошибка приводит к серьезным поломкам и даже взрыву котла.

Второе. Кто не видал паровоза, мчащегося в белом облаке по рельсам? Облако - это пар, выпускаемый в атмосферу. Паровоз - могучая машина, на ней хватит места и для большого котла с водой. А на автомобиле не хватает. И это одна из причин отказа от паровых двигателей.

Третье же и самое главное - это низкий к. п. д. паровой машины. Недаром в индустриально развитых странах все паровозы на магистралях стараются заменить теперь тепло- и электровозами, недаром неэкономичность паровоза вошла даже в поговорку. 8% - ну что это за к. п. д.

Для повышения его нужно увеличить температуру и давление пара. Чтобы к. п. д. парового двигателя мощностью от 150л. с. и выше равнялся 30% должно поддерживаться рабочее давление в 210 кг/см2, для чего требуется температура в 370°. Технически это осуществимо, но вообще-то крайне опасно, потому что даже небольшая утечка пара в двигателе или котле может привести в катастрофе. А от высокого давления до взрыва - дистанция совсем небольшая.

Это - главные трудности. Есть и более мелкие (хотя надо оговориться, что в технике мелочей не бывает). Сложно смазывать цилиндры, ибо масло образует эмульсию с горячей водой, попадает в трубы котла, где откладывается на стенках. Это ухудшает теплопроводность и вызывает сильный местный перегрев. Другая «мелочь» - затрудненный по сравнению с обычным пуск парового двигателя.

И тем не менее конструкторы взялись за очень старое и абсолютно новое для них дело. Две удивительные по своему устройству машины вышли на улицы американских городов. Внешне они не отличались от обычных машин, одна даже обтекаемостью форм напоминала спортивную. Это были паровые автомобили. Оба они трогались с места менее чем через 30 сек. после включения двигателя и развивали скорость до 160 км/ч, работали на любом горючем, в том числе и керосине, и на 800 километров пробега расходовали 10 галлонов воды.

В 1966 году фирма «Форд» испытала четырехтактный высокооборотный паровой двигатель для автомобиля рабочим объемом 600 см3. Испытания показали, что в выхлопных газах содержится всего лишь 20 частиц углеводорода на 1 млн. (предписаниями сенатской комиссии по борьбе с загрязнениями воздуха допускается 27 частиц), окиси углерода содержалось 0,05 % общей массы выхлопных газов, что в 30 раз меньше допустимого количества.


Экспериментальный паровой автомобиль, сделанный фирмой «Дженерал моторс», под индексом Е-101 демонстрировался на выставке автомобилей с необычными двигателями. Внешне он не отличался от той машины, на базе которой был создан - «понтиак», - но двигатель вместе с котлом, конденсатором и прочими агрегатами паровой системы весил на 204 кг больше. Водитель садился на свое место, поворачивал ключ и ждал 30-45 сек, пока не загорится лампочка. Это означало, что давление пара достигло нужной величины и можно ехать. Столь короткий промежуток времени можно расчленить на такие этапы.

Котел заполнился - включается топливный насос, топливо поступает в камеру сгорания, смешивается с воздухом.

Воспламенение.

Температура и давление пара достигли нужного уровня, пар идет в цилиндры. Двигатель работает на холостом ходу.

Водитель нажимает на педаль; количество пара, идущего в двигатель, увеличивается, машина трогается с места. Топливо любое - дизельное, керосин, бензин.

Все эти опыты дали возможность Роберту Айресу из Вашингтонского центра перспективных разработокок заявить, что недостатки парового автомобиля преодолены. Высокая себестоимость при серийном производстве безусловно понизится. Котел, состоящий из труб, исключает опасность взрыва, так как в любой момент в работе участвует лишь небольшое количество воды. Если трубы расположить теснее, размеры двигателя уменьшатся. Антифриз избавит от опасности замерзания. Паровой двигатель не нуждается в коробке передач, трансмиссии, стартере, карбюраторе, глушителе, системах охлаждения, газораспределения и зажигания. В этом его огромное преимущество. Режим работы машины можно регулировать, подавая большее или меньшее количество пара в цилиндры. Если вместо воды использовать фреон, который замерзает при очень низких температурах да еще и обладает смазочным свойством, то преимущества возрастут еще более. Паровые двигатели соперничают с обычными по приемистости, расходу горючего, показателю мощности на единицу веса.

Пока о широком использовании паровых автомобилей речи нет. До промышленного образца не доведена ни одна машина, а перестраивать автомобильную индустрию никто не собирается. Но самодеятельные конструкторы никакого отношения к промышленной технологии не имеют. И они один за другим создают оригинальные образцы автомобилей с паровыми двигателями.

Два изобретателя, Петерсон и Смит, переделали подвесной лодочный мотор. Они подавали пар в цилиндры через отверстия для свечей. Двигатель весом 12 кг развил мощность в 220 л. с. при 5600 об/мин. Их примеру последовали инженер-механик Петер Баррет и его сын Филипп. Использовав старое шасси, они построили паровой автомобиль. Смит поделился с ними опытом. Отец и сын использовали четырехцилиндровый подвесной мотор, совместив его с паровой турбиной конструкции Смита.

Пар производился в специально сконструированном котле, который содержит около 400 футов медных и стальных трубок, соединенных в спиралевидные связки, проходящие друг над другом. Так увеличивается циркуляция. Вода накачивается в котел из бака. Горючее смешивается с воздухом в камере сгорания, и раскаленные языки пламени вступают в соприкосновение с трубами. Через 10-15 сек. вода превращается в сжатый пар температурой примерно 350°С и давлением 44 кг/см. Он выбрасывается из противоположного конца парогенератора и направляется во впускной канал двигателя.

Пар поступает в цилиндр через вращающиеся лопасти, вдоль которых проходят каналы постоянного сечения.
Наружная муфта коленчатого вала жестко связана с цепной передачей на ведущие колеса.

Наконец перегретый пар выполнил свою полезную работу, и он должен теперь превратиться в воду, чтобы быть готовым начать цикл снова. Это делает конденсатор, внешне похожий на обычный радиатор автомобильного типа. Он и размещен спереди - для лучшего охлаждения встречными потоками воздуха.

Наибольшие трудности инженеров заключаются в том, что часто, чтобы добиться хотя бы относительной простоты конструкции, приходится уменьшать И без того невысокий к. п. д. автомобиля. Двум самодеятельным конструкторам очень помогли советы Смита и Петерсона. Именно в результате совместной работы удалось внести в конструкцию много ценных новинок. Начать хотя бы с воздуха для горения. Перед непосредственным поступлением В горелку его подогревают, проводя между раскаленными стенками котла. Это обеспечивает более полное сгорание топлива, сокращает время выпуска, а также делает более высокой температуру сгорания смеси и, стало быть, к. п. д.

Для зажигания горючей смеси в обычном паровом котле используется простая свечка. Петер Баррет сконструировал более эффективную систему - электронного зажигания. В качестве горючей смеси использован спирт-ректификат, поскольку он дешев и имеет высокое октановое число. Конечно, керосин, дизельное топливо и другие жидкие сорта тоже будут работать.


Но самое интересное здесь - конденсатор. Конденсация больших количеств пара считается главным затруднением современных паросиловых установок. Смит сконструировал радиатор с таким расчетом, чтобы использовалась водяная пыль. Конструкция работает отлично, система конденсирует влагу на 99%. Вода почти не расходуется - кроме того небольшого количества, которое все же просачивается через уплотнения.

Другая интересная новинка - система смазки. Цилиндры паровой машины обычно смазываются с помощью сложного и громоздкого устройства, распыляющего тяжелую масляную пыль в паре. Масло оседает на стенках цилиндров и затем выбрасывается с отработанным паром. Позже масло необходимо отделить от водяного конденсата и возвратить в систему смазки.

Барреты использовали химический эмульсигатор, который вбирает оба элемента - воду и масло и затем разделяет их, устраняя, таким образом, необходимость в громоздком инжекторе или механическом сепараторе. Испытания показывают, что при работе химического эмульсигатора не образуется осадков ни в паровом котле, ни в конденсаторе.

Интересен также механизм типа сцепления, который напрямую соединяет двигатель с ведущим валом и карданной передачей. Машина не имеет коробки перемены передач, скорость контролируется изменением впуска пара в цилиндры. Использование системы «впуск-выпуск» позволяет без затруднений поставить двигатель в нейтральное положение. Пар может направляться в двигатель, нагревать его и в то же самое время приводить паровой котел в положение готовности к активной работе, сохраняя в нем постоянное близкое к рабочему давление. Паровой двигатель развивает мощность 30- 50 л. с, а галлона топлива хватает на передвижение машины на расстояние 15-20 миль, что вполне сравнимо с расходом топлива у автомобилей с двигателем внутреннего сгорания. Контрольная система довольно сложна, но полностью автоматизирована; приходится следить только за рулевым механизмом и выбирать требуемую скорость. При испытаниях автомобиль достиг скорости около 50 миль в час, но это предел, поскольку шасси машины не соответствовало мощности двигателя.

Таков результат. Все это - пока эксперименты. Но как знать, не явимся ли мы свидетелями нового господства пара на дорогах - теперь уже не железных, а шоссейных.
Р. ЯРОВ, инженер
Моделист-конструктор 1971 год.

Я живу только на угле и воде и все еще обладаю достаточной энергией, чтобы разогнаться до 100 миль в час! Это именно то, что может сделать паровоз. Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части мировых железных дорог, паровые технологии живут в сердцах людей, и локомотивы, подобные этому, до сих пор служат туристическими достопримечательностями на многих исторических железных дорогах.

Первое современные паровые машины были изобретены в Англии в начале 18 века и ознаменовали начало Промышленной Революции.

Сегодня мы вновь возвращаемся к энергии пара. Из-за особенностей конструкции в процессе сгорания топлива паровой двигатель дает меньше загрязнений, чем двигатель внутреннего сгорания. В данной публикации на видео посмотрите, как он работает.

Конструкция и механизм действия паровой машины

Что питало старинный паровой двигатель?

Требуется энергия, чтобы делать абсолютно все, о чем вы только можете подумать: кататься на скейтборде, летать на самолете, ходить в магазины или водить машину по улице. Большая часть энергии, которую мы используем для транспортировки сегодня, поступает из нефти, но это было не всегда так. До начала 20-го века уголь был любимым топливом в мире, и он приводил в движение все: от поездов и кораблей до злополучных паровых самолетов, изобретенных американским ученым Сэмюэлем П. Лэнгли, ранним конкурентом братьев Райт. Что такого особенного в угле? Внутри Земли его много, поэтому он был относительно недорогим и широко доступным.

Уголь является органическим химическим веществом, что означает, что он основан на элементе углерода. Уголь образуется в течение миллионов лет, когда останки мертвых растений закапывают под камнями, сжимают под давлением и варят под действием внутреннего тепла Земли. Вот почему это называется ископаемое топливо. Комки угля – это действительно комки энергии. Углерод внутри них связан с атомами водорода и кислорода соединениями, называемыми химическими связями. Когда мы сжигаем уголь на огне, связи распадаются, и энергия выделяется в форме тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистое ископаемое топливо, такое как бензин, дизельное топливо и керосин – и это одна из причин, по которой паровые двигатели должны сжигать так много.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков