Арифмометр Лейбница: история создания, особенности, описание, фото. Реферат: Счетная машина Лейбница Готфрида Вильгельма

Арифмометр Лейбница: история создания, особенности, описание, фото. Реферат: Счетная машина Лейбница Готфрида Вильгельма

Можно понять гордость Лейбница, писавшего тогда Томасу Бернету: “Мне посчастливилось построить такую арифметическую машину, которая совершенно отлична от машины Паскаля, поскольку дает возможность мгновенно выполнять умножение и деление над огромными числами”. Арифметическая машина Лейбница была первой в мире машиной, предназначенной для выполнения четырех действий арифметики.

Счетная машина, над которой Лейбниц начал работать в 70-е годы, представляла шаг в направлении поиска "универсального языка". Первое описание "арифметического инструмента" сделано Лейбницем в 1670 году. Через два года он составил новое эскизное описание, на основе которого был, по-видимому, изготовлен тот экземпляр, который ученый демонстрировал в феврале 1673 г. на заседании Лондонского Королевского общества. Лейбниц заявил, что новый арифметический инструмент придуман им с целью механически выполнять все арифметические действия надежно и быстро, особенно умножение. Под конец своего выступления он признал, что инструмент несовершенен, обещав его улучшить, как только вернется в Париж, где им нанят с этой целью мастер, которому он даст распоряжение изготовить полный инструмент для нужд Общества. Последнее поблагодарило его за такое проявление уважения и щедрости. Действительно, в 1674-1676 гг. Лейбниц внес существенные усовершенствования в машину, а в 1676 г., выполняя данное им Королевскому обществу обещание, привез в Лондон новый вариант счетной машины. Однако это была модель с малой разрядностью чисел, а не арифмометр, пригодный для практических вычислений. Такой арифмометр был построен под руководством Лейбница только в 1694 г. в Ганновере, где после возвращения из Парижа он прожил почти всю жизнь. Впоследствии Лейбниц еще несколько раз возвращался к своему изобретению; последний вариант был предложен им в 1710 г.

Хотя работа Лейбница над арифмометром была и длительной, но отнюдь не непрерывной, поскольку автор машины одновременно трудился в самых различных областях науки. "Уже свыше двадцати лет назад, - писал он в 1695 г., - французы и англичане видели мою счетную машину... с тех пор Ольденбург, Гюйгенс и Арно, сами или через своих друзей, побуждали меня издать описание этого искусного устройства, а я все откладывал это, потому что я сперва имел только маленькую модель этой машины, которая годится для демонстрации механику, но не для пользования. Теперь же с помощью собранных мною рабочих готова машина, позволяющая перемножать до двенадцати разрядов. Уже год, как я этого достиг, но рабочие еще при мне, чтобы можно было изготовить другие подобные машины, так как их требуют из разных мест" (стоит упомянуть, что по признанию самого Лейбница, работа над машиной обошлась ему в 24 000 талеров - огромную по тем временам сумму, если учесть, что годовая зарплата министра в немецком герцогстве или королевстве составляла 1000-2000 талеров.).

Интересно, что один из первых экземпляров "арифметического инструмента" конструкции 1694 г. Лейбниц намеревался подарить Петру I, но машина оказалась неисправной, а механик ученого не смог ее починить в короткий срок. Лейбница интересовал молодой царь далекой Московии, которого он считал выдающимся реформатором. Начиная с 1711 г. Лейбниц несколько раз встречался с Петром I, был принят на русскую службу в звании тайного советника юстиции и составил для русского правительства план организации Академии наук, а также ряд других проектов и докладных записок. "Я не принадлежу к числу тех, - писал Лейбниц Петру I, - которые питают страсть к своему отечеству или к какой-либо другой нации, мои помыслы направлены на благо всего человеческого рода... и мне приятнее сделать много добра у русских, чем мало у немцев..."

Лейбниц с полным основанием высоко отзывался о собственном изобретении. "Наконец я окончил свой арифметический прибор, - сообщал он в одном из писем Р. Вагнеру. - Подобного прибора до сих пор еще никто не видел, так как он чрезвычайно оригинален". Другому своему корреспонденту, Т. Бернету, он пишет: "Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию".

Упоминание машины Паскаля является не случайным, так как сначала Лейбниц пытался лишь улучшить машину великого француза, но понял, что для выполнения операций умножения и деления необходим совершенно новый принцип, который позволил бы:

    обойтись одной установкой множимого;

    вводить множимое в счетчик (т. е. получать кратные и их суммы) одним и тем же движением приводной ручки.

Лейбниц блестяще разрешил эту задачу, предложив использовать цилиндр, на боковой поверхности которого, параллельно образующей, расположено девять ступенек различной длины. Этот цилиндр впоследствии получил название "ступенчатого валика". Валик S насаживался на четырехгранную ось с нарезкой типа зубчатой рейки (рис. 1). Эта рейка входила в зацепление с десятизубым колесом E, по окружности которого были нанесены цифры 0, 1...9. Поворачивая это колесо так, чтобы в прорези крышки (не указанной на рисунке) появлялась та или другая цифра, перемещали ступенчатый валик параллельно оси зубчатого колеса F основного счетчика. Если теперь повернуть валик на 360 градусов, то в зацепление с колесом F войдут одна, две... наиболее длинные ступеньки, в зависимости от величины сдвига. Соответственно колесо F повернется на 0, 1...9 частей полного оборота; также повернется и связанный с ним цифровой диск или ролик R. Со следующим оборотом валика на счетчик вновь перенесется то же число.

Рис. 1. "Ступенчатый" валик Лейбница

"Арифметический инструмент" состоит из двух частей - неподвижной (Pars immobilis) и подвижной (Pars mobbilis)(одвижная часть машины впоследствии получила название каретки и стала непременной принадлежностью каждого механического (и электромеханического) арифмометра). В неподвижной части помещаются 12-разрядный основной счетчик и ступенчатые валики устройства ввода. Установочная часть этого устройства, состоящая из 8 малых цифровых кругов, расположена в подвижной части машины (рис. 2).

Рис. 2. Принцип действия арифмометра Лейбница

В центре каждого круга есть ось, на которую под крышкой машины насажено зубчатое колесо (колесо Е на рис. 1), а поверх крышки установлена стрелка, которая вращается вместе с осью. Конец стрелки может быть установлен против любой цифры круга.

Вспомогательный счетчик в машине Лейбница выполнен следующим образом.

В подвижной части расположено большое колесо (Rota Majuscula), которое состоит из трех частей: наружной, неподвижной части в виде кольца с десятью цифрами от 0 до 9, средней, вращающейся части кольца с десятью отверстиями, и внутренней, неподвижной части, где цифры от 0 до 9 расположены в обратном, нежели во внешнем кольце, порядке; между цифрами 0 и 9 внешнего кольца имеется такой же, как в машине Паскаля, упор, обращенный к центру колеса.

При повороте главного приводного колеса (Маgna Rota) среднее кольцо большого колеса поворачивается на одно деление по часовой стрелке. Если предварительно вставить штифт в отверстие этого кольца против, скажем, цифры 5 на внешнем кольце, то после пяти оборотов приводного кольца этот штифт наткнется на неподвижный упор и тем самым остановит вращение приводного колеса.

Заметим, что внешнее кольцо большого колеса используется при выполнении операции сложения и умножения, а внутреннее - при выполнении вычитания и деления.

Для сдвига 8-разрядного множимого подвижная часть вращением рукоятки К может смещаться влево (на рис. 2 она смещена влево на два разряда).

Внешний вид "арифметического инструмента" показан на рис. 3.


Рис. 3. Внешний вид арифмометра Лейбница

Машина Лейбница, несмотря на все остроумие ее изобретателя, не получила широкого распространения по двум причинам. Первая и основная заключалась в том, что в конце XVII - начале XVIII века не существовало сколько-нибудь устойчивого спроса на столь сложную и заведомо дорогую машину. Другая причина заключалась в некоторой неточности конструкции, в результате которой передача десятков в арифмометре не всегда происходила удовлетворительно.

Но основная идея Лейбница - идея ступенчатого валика - осталась действительной и плодотворной не только в XVIII, но и в XIX и даже в XX столетиях. На принципе ступенчатого валика был построен и арифмометр Томаса - первая в мире счетная машина, которая изготовлялась промышленно. Ее автором был Карл Ксавье Томас (1785-1870), уроженец городка Кольмар в Эльзасе. Получив в 1820 г. патент на свое изобретение, Томас сумел организовать производство машин: за первые 50 лет было продано около 1500 арифмометров.

Впоследствии арифмометр Томаса был усовершенствован многими изобретателями, в частности немцем Бурхгардтом (1884) и англичанином С. Тейтом (1903). Счетные машины, основанные на принципе "ступенчатого валика", длительное время выпускались в России (например, автоматический арифмометр ВММ-2 курского завода "Счетмаш").

Арифмометр (машина) Лейбница

Аппарат, вошедший в историю под названием «калькулятор Лейбница», можно смело считать прадедушкой современных компьютеров. Различные вычислительные устройства создавались и ранее. Заслуга Лейбница в том, что изобретенные и реализованные им принципы вычислений и их механизации активно применялись на практике в течение трех столетий, до 1970-х годов.

Называть данный механический калькулятор, прообраз будущих арифмометров, предком компьютеров – не преувеличение. В отличие многих от других устройств аналогичного назначения (например, логарифмической линейки), он использовал цифровой принцип – уже в XVII веке. Кроме того, операции умножения и деления были механизированы и производились по тем временам моментально.

Для умножения 9 на 3 в арифмометре Лейбница не нужно было вручную складывать три девятки. Все происходило автоматически. А ведь даже в самых первых электронно-вычислительных машинах XX века результат такого умножения иногда получался путем трехкратного повторения операции сложения.

Имя великого Готфрида Вильгельма Лейбница (1646-1716), однако, известно не благодаря калькулятору, а благодаря работам в области психологии, истории, лингвистики, но главным образом – физики и математики. В математике он заложил основы математического анализа, комбинаторики, а также математической логики. Также он описал двоичную систему счисления, которую использует большинство современных цифровых приборов.

Идея вычислительной машины пришла Лейбницу в голову не сама по себе. Первые наметки появились после того, как он познакомился с другим великим физиком, математиком, изобретателем и астрономом того времени – Кристианом Гюйгенсом. Проводя свои астрономические изыскания, Гюйгенс обнаружил туманность Ориона, описал кольца Сатурна и совершил еще много открытий. В процессе своих исследований он был вынужден делать массу вычислений. Лейбниц пожалел коллегу, сказав, что тот занимается рутинными математическими операциями и сел за создание машины.

Получившееся устройство было не первым в своем роде. Физик, математик, писатель и философ Блез Паскаль представил свою «Паскалину» 30 годами раньше. До этого в разной степени удачные попытки делались еще в Древнем Китае. Лейбниц обо всем этом знал и это учитывал, и его арифмометр, по сравнению со всем, что изобреталось ранее, был почти настолько же более совершенен, насколько современные автомобили совершеннее первых фордовских моделей.

Дебютная публичная демонстрация «арифметического инструмента» состоялась в 1673 году на заседании Лондонского королевского общества. Лейбниц признавал определенное несовершенство нового прибора, но обещал его улучшить, чем с перерывами занимался на протяжении почти 40 лет своей жизни. В конце концов он добился того, что на его калькуляторе можно было практически мгновенно перемножать 12-разрядные числа. Но и обошлась эта затея дорого даже для небедного ученого. В общей сложности сумма была эквивалентной зарплате министра того времени почти за четверть века.

В 1697 году Лейбниц познакомился с Петром I. Первоначально их отношения были довольно прохладными. Лейбниц даже написал стихотворение, в котором желал побитому Петром Карлу XII завоевать Россию «от Москвы до самых до окраин». Однако со временем они подружились, и первый российский император назначил ученому изрядную пенсию и сделал тайным советником юстиции. В благодарность Лейбниц подарил Петру экземпляр своего арифмометра, который, по некоторым данным, Петр передарил китайскому императору.

Лейбниц утверждал, что ему со всех сторон поступают заказы на его машину, однако реальные запросы удалось удовлетворить довольно быстро. Не вполне известно, по какой цене, но можно смело предположить, что по немаленькой. Оказалось, что XVII и даже XVIII век был еще не готов к массовому производству и внедрению подобных устройств.

Главным новшеством в калькуляторе Лейбница было использование ступенчатого валика особой конструкции. Он применялся в счетных устройствах даже в середине двадцатого столетия и лежал в основе конструкции арифмометра Томаса – первой счетной машины массового производства. Другой важной новацией в машине Лейбница было наличие подвижной части. Эта подвижная часть затем получила название каретки и стала непременной составляющей любого механического и электрического арифмометра.

По мнению отца кибернетики Норберта Винера, если бы кибернетика нуждалась в святом покровителе, им должен был бы стать Лейбниц. Конечно, Винер имел в виду в первую очередь работы Лейбница по математической логике и двоичной системе счисления. Однако в те далекие времена ученые были замечательны своей многогранностью и редко оказывались чистыми теоретиками. Поэтому калькулятор Лейбница, хоть и был десятичным, стал вехой в истории кибернетики и информатики.

Добавить комментарий

Имя: E-mail:

Защита от спама: одна тысяча шестьсот девяносто два (число):*

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Отделение связей с общественностью

Кафедра связей с общественностью

СЧЕТНАЯ МАШИНА ЛЕЙБНИЦА ГОТФРИДА ВИЛЬГЕЛЬМА

(реферат по «Информатике»)

Барнаул 2011


Введение

1. Биография Лейбница Готфрида Вильгельма

2. Научная деятельность Лейбница Готфрида Вильгельма

3. Счетная машина

Заключение

Список используемой литературы


Введение

Много бед принесла Германии первая половина XVII столетия. Тридцатилетняя война опустошила множество деревень и городов, привела в упадок торговлю и ремесла; население страны уменьшилось с 16 до 6 миллионов человек. Когда наступил долгожданный мир, "Германия оказалась поверженной - беспомощной, растоптанной, растерзанной, истекающей кровью..."

Но - парадокс! - именно эта несчастная страна, которая в научном отношении тогда представляла собой глухую провинцию (она имела лишь одного ученого мирового класса - Иоанна Кеплера), подарила человечеству Готфрида Вильгельма Лейбница, чей универсальный гений оказал громадное влияние на развитие не только немецкой, но и всей европейской науки.

Лейбниц Готфрид Вильгельм является немецким философом, математиком-физиком, юристом, дипломатом, экономистом, лингвистом, археологом и историографом. Его заслуги велики. Он является одной из центральных фигур в развитии логики. Его логическое наследие - поразительный феномен в истории мысли. А его ориентация на математизацию, алгебраизацию и аксиоматизацию логики опередила время минимум на полтора столетия. Поэтому логические идеи пронизывают практически все интеллектуальное наследие Лейбница, так или иначе, затрагиваются во всех его работах от ранней диссертации до «Монадологии» и «Новых опытов о человеческом разуме».

Готфрид Вильгельм изобрел счетную машину, которая стала открытием XVIIвека. Я хочу более подробно рассмотреть механизм и последовательность работы данного изобретения.

лейбниц счетный калькулятор


1. Биография Готфрида Вильгельма Лейбница (1646-1716)

Готфрид Вильгельм фон Лейбниц (нем. GottfriedWilhelmvonLeibniz) родился 21 июня1646 в г. Лейпциге (Германия), в семье профессора философии морали (этики) лейпцигского университета Фридриха Лейбнюца (нем. FriedrichLeibnütz) и Катерины Шмук (нем. CatherinaSchmuck).

Когда мальчику было 8 лет, его отец умер, оставив после себя большую личную библиотеку. Свободный доступ к книгам и врождённый талант позволили молодому Лейбницу уже к 12 годам самостоятельно изучить латынь и взяться за изучение греческого языка.

В 15-летнем возрасте (1661) Готфрид Вильгельм сам поступил в тот же Лейпцигский университет, где когда-то работал его отец. В свою бытность студентом он познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года переходит в Йенский университет, где изучает математику. Затем возвращается в Лейпциг изучать право, но получить докторскую степень там не удалось. Расстроенный отказом, Лейбниц отправился в Нюрнбергский университет в Альтдорфе, где успешно защищает диссертацию на соискание степени доктора права. Диссертация была посвящена разбору вопроса о запутанных юридических случаях. Защита состоялась 5 ноября 1666 года; эрудиция, ясность изложения и ораторский талант Лейбница вызывают всеобщее восхищение.

В этом же году он написал первое из своих многочисленных сочинений: «О комбинаторном искусстве». Опередив время на два века, 20-летний Лейбниц задумал проект математизации логики. Будущую теорию (которую он так и не завершил) он называет «всеобщая характеристика». Она включала все логические операции, свойства которых он ясно представлял.

Закончив обучение, он устраивается советником курфюрста Майнцского по юридическим и торговым делам (1670). Работа требовала постоянных разъездов по всей Европе; в ходе этих путешествий он подружился с Гюйгенсом, который согласился обучать его математике. Служба, однако, продолжалась недолго, в начале 1672 года Лейбниц с важной дипломатической миссией покинул Майнц, а спустя год курфюрст умер.

Затем с 1676 года и до конца жизни Лейбниц в течение сорока лет находился на службе при Браун-Люнебургском герцогском дворе.

В это время Лейбниц изобретает собственную конструкцию арифмометра, гораздо лучше паскалевской - он умел выполнять умножение, деление и извлечение корней. Предложенные им ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров.

Но в его жизни было и немало безрадостного. Окруженный недоверием, презрением и недоброй славой полуатеиста, великий философ и ученый доживал последние годы, оказываясь иногда без жалования и терпя крайнюю нужду. Для англичан он был ненавистен как противник Ньютона в спорах о научном приоритете, для немцев он был чужд и опасен как человек, перетолковывающий все общепринятое по-своему. Горьким был и личный итог жизни и деятельности Лейбница: непонятый и презираемый, притесняемый и гонимый невежественной придворной кликой, он пережил крушение лучших своих надежд. Пренебрежение и вражда власть имущих и церковников к великому мыслителю преследовали его и после смерти.

Но сейчас всеми признано, что Лейбницу были свойственны исключительно широкий кругозор и диапазон деятельности, одновременное усмотрение разнообразных связей разбираемых им проблем и целеустремленное исследование внутреннего их существа. Лейбниц обладал поразительной сжатостью и точностью стиля, творческой энергией и умением подметить самые различные следствия, вытекающие из выдвинутых им положений.


2. Научная деятельность Готфрида Вильгельма Лейбница

Лейбниц - один из важнейших представителей новоевропейской метафизики, в центре внимания которой - вопрос о том, что такое субстанция. Лейбниц развивает систему, получившую название субстанциальный плюрализм или монадология.

Важнейшими научными достижениями Лейбница являются то, что Лейбниц, независимо от Ньютона, создал математический анализ - дифференциальное и интегральное исчисление и в 1684 публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов». В этой работе Лейбница излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости (следовательно, и достаточные условия экстремума для простейшего случая), а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv.

Также создал комбинаторику как науку; только он во всей истории математики одинаково свободно работал как с непрерывным, так и с дискретным. Готфрид Вильгельм обосновал необходимость регулярно измерять у больных температуру тела. Задолго до Зигмунда Фрейда привёл доказательства существования подсознания человека.

В 1686 Лейбниц даёт подразделение вещественных чисел на алгебраические и трансцендентные; ещё раньше он аналогично классифицировал кривые линии. Впервые в печати вводит символ интеграла и указывает, что эта операция обратна дифференцированию. А в 1692 вводит общее понятие огибающей однопараметрического семейства кривых, выводит её уравнение.

Затем Лейбниц рассматривает вопрос о разрешимости линейных систем; его результат фактически вводит понятие определителя. Но это открытие не вызвало тогда интереса, и линейная алгебра возникла только спустя полвека.

В 1695 Лейбниц вводит показательную функцию в самом общем виде: uv. Чуть позже, в 1702 совместно с Иоганном Бернулли открыл приём разложения рациональных дробей на сумму простейших. Это решает многие вопросы интегрирования рациональных функций.

Лейбниц также описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника.

В физике Лейбниц ввёл понятие «живой силы», позднее получившей название кинетической энергии.

3. Счетная машина

Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем и называлась «Калькулятор Лейбница».

Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал двенадцатиразрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

Описание калькулятора Лейбница ведется на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

24.Идеи Чарльза Бэббиджа

Ра́зностная маши́на Чарльза Бэббиджа - механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Копия разностной машины в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.

В помощь отцу, имела важный недостаток, который заключался в неудобстве выполнения на ней всех операций, кроме простого сложения. Первое устройство, позволявшее легко осуществлять такие арифметические операции как вычитание, умножение и деление, было изобретено позже в том же XVII в. только уже в Германии. Изобретение такой машины принадлежит гениальному учёному, творческое воображение которого казалось неиссякаемым. Готфрид Вильгельм Лейбниц родился в 1646 г. в Лейпциге. Он принадлежал к роду, который уже был известен своими учеными и политическими деятелями. Отец Лейбница, профессор этики, умер рано, ребенку не было ещё и 7, но уже тогда Лейбницем овладела жажда знаний. День за днём он проводил в отцовской библиотеке, читая книги и занимаясь историей, изучением иностранных языков и другими предметами.

Поступив в Лейпцигский университет в возрасте 15 лет, он по своей эрудиции мог соперничать со многими профессорами. Но в то же время здесь он открыл для себя и много нового: впервые познакомился с работами Кеплера , Галилея и других ученых, передовых учёных, стремительно расширявших границы научного познания. Темпы невиданного прежде научного прогресса поразили воображение молодого Лейбница, и он решил добавить в свою учебную программу математику.

Поразительно, но факт: в возрасте 20 лет Лейбницу предложили должность профессора в Нюрнбергском университете, которую, однако, он отклонил, предпочтя жизни ученого дипломатическую карьеру. Впрочем, пока он разъезжал в карете из одного европейского города в другой, его беспокойный учёный ум терзали всевозможные вопросы из разных областей науки - от этики до гидравлики и астрономии. В 1672 г. Лейбниц пребывал в Париже, и там он познакомился со знаменитым голландским математиком и астрономом Христианом Гюйгенсом . Наблюдая, как много вычислений приходится делать астроному, Лейбниц решил сконструировать механическое устройство, которое облегчило бы расчеты. «Ибо недостойно это таких замечательных людей, - писал Лейбниц, - подобно рабам, тратить время на вычислительную работу, которую можно было бы доверить любому другому при использовании машины».

Так, в 1673 г. на свет появился механический калькулятор Лейбница. Сложение производилось на нем, в принципе, так же, как и на «Паскалине», однако Лейбниц добавил в конструкцию движущуюся часть (ставшую прообразом подвижной каретки будущих настольных калькуляторов) и ручку, при помощи которой можно было крутить ступенчатое колесо, а в последующих вариантах устройства - цилиндры, расположенные внутри аппарата. Данный механизм с подвижным элементом позволил ускорить повторяющиеся операции сложения, столь необходимые для перемножения или деления чисел. Важно отметить, что само повторение тоже было автоматическим.

Лейбниц продемонстрировал своё изобретение во Французской академии наук и Лондонском королевском обществе. Один из экземпляров калькулятора Лейбница попал к Петру Великому, который, в свою очередь, подарил ее китайскому императору, желая удивить последнего европейскими техническими достижениями. И всё же Лейбниц прославился отнюдь не изобретением счётного устройства, а созданием дифференциального и интегрального исчисления, которое также независимо разрабатывал в Англии



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков