Адаптивная система управления дорожным движением. Проектирование и строительство автоматизированных систем управления дорожным движением (асудд) Управление дорожным движением

Адаптивная система управления дорожным движением. Проектирование и строительство автоматизированных систем управления дорожным движением (асудд) Управление дорожным движением

Автоматизированные системы управления дорожным движением (АСУДД) - это взаимосвязанный комплекс технических, программных и организационных мер, собирающих и обрабатывающих информацию о данных транспортных потоков и на основе этого оптимизирующих управление движением. Задачей автоматизированных систем управления дорожным движением (АСУДД) является обеспечение организации безопасности дорожного движения на дорогах.

АСУДД подразделяются на несколько видов:

Магистральные автоматизированные системы управления дорожным движением (АСУДД) координированного управления - бесцентровые, централизованные и централизованные интеллектуальные.

  • · бесцентровые АСУДД - нет необходимости создания управляющего пункта. Существует 2 модификации бесцентровых АСУДД. В одной из них работу синхронизирует главный контроллер, к которому идет связь от остальных контроллеров (линия одна для всех). В следующей модификации бесцентровых АСУДД от всех контроллеров идет своя линия связи.
  • · централизованные АСУДД - имеют центр управления, со связанными с ним контроллерами их собственными линиями связи. Зачастую, АСУДД могут осуществлять многопрограммное КУ со сменой программ в течение дня.
  • · централизированные интеллектуальные АСУДД - они оснащены определителями транспорта, и в зависимости от загруженности потока могут менять планы координации движения.

Общегородские автоматизированные системы управления дорожным движением (АСУДД) - упрощенные, интеллектуальные, с управлением движением на городских дорогах непрерывного движения и с реверсивным движением.

· интеллектуальные АСУДД - содержат мощные управляющие вычислительные комплексы (УВК), и сеть изменяющихся информационных дисплеев. Эти АСУДД могут проводить непрерывный контроль потока транспорта и могут управлять автоматическое адаптивное управление ДД и позволяю перераспределить транспортные потоки по сети.

АСУ ДД, как часть ИТС, выполняет управляющие и информационные функции, основными из которых являются:

  • · управление транспортными потоками;
  • · обеспечение транспортной информацией;
  • · организация электронных платежей;
  • · управление безопасностью и управление в особых ситуациях.

В общем виде подсистемы АСУ ДД могут быть представлены как совокупность устройств дорожной телематики, контроллеров и автоматизированных рабочих мест (АРМ), включенных в сеть обмена данными, с организацией центрального и местных центров управления -- в зависимости от плотности и интенсивности дорожного движения.

В качестве устройств дорожной телематики применяются знаки переменной информации (ЗПИ), многопозиционные дорожные указатели, табло переменной информации (ТПИ), детекторы транспорта, автоматические дорожные метеостанции (АДМС), видеокамеры и т. д.

Телекоммуникационную часть АСУ ДД составляет дорожная интегрированная система связи. Устойчивое функционирование систем связи на автомобильных дорогах позволяет повысить уровень безопасности дорожного движения и обеспечить эффективную работу служб содержания дороги, а также оперативных и спасательных служб при возникновении чрезвычайных ситуаций.

В составе ДИСС могут быть организованы следующие функциональные подсистемы:

  • · информационного обмена АСУ ДД;
  • · связи с подвижными объектами (включает подсистемы оперативно-технологической радиосвязи и радиодоступа);
  • · управления и технической эксплуатации;
  • · обеспечения информационной безопасности ДИСС;
  • · предоставления инфокоммуникационных услуг на возмездной основе.

Повышение эффективности управления дорожным движением связано с созданием автоматизированных систем управления дорожным движением (АСУ ДД), которые являются неотъемлемыми компонентами интеллектуальных транспортных систем (ИТС). ИТС -- это комплексная система информационного обеспечения и управления на наземном автомобильном транспорте, основанная на применении современных информационных и телекоммуникационных технологий и методов управления.

Для обеспечения функционирования АСУ ДД и предоставления инфокоммуникационных услуг участникам дорожного движения создаются ДИСС, к которым в настоящее время предъявляются следующие обобщенные требования:

  • · многофункциональность;
  • · устойчивость;
  • · экономичность.

АСУ «ГОРОД-ДД» - предназначена для обеспечения эффективного управления движением транспортных и пешеходных потоков в городах при помощи средств, светофорной сигнализации, видеоконтроля и регистрации нарушений на дорогах, оперативного анализа экологической обстановки в городе, контроля движения маршрутного транспорта и др.

Основные достоинства и преимущества АСУ «ГОРОД-ДД»

  • - значительное повышение эффективности управления дорожным движением и контроля состояния дел на дорогах, что позволяет ежегодно экономить около 5-8 миллионов долларов в год в масштабах областного центра (экономия складывается из снижения расхода горючего, сокращения времени проезда автотранспорта, времени пребывания пассажиров в пути и т.д.);
  • - более эффективное использование организационно-профилактических мероприятий по нормализации движения на дорогах;
  • - комплексный подход к организации дорожного движения;
  • - использование отечественных технических и программных средств, ориентированные на современные технологии и современные методы управления дорожным движением в соответствии с требованиями ISO 9001;
  • - новые возможности по контролю состояния дел на дорогах: визуальный контроль городских перекрестков, видеорегистрация дорожно-транспортных происшествий, видеорегистрация нарушений скоростного режима и правил проезда перекрестков, оперативный анализ экологической обстановки и др.;
  • - возможность поэтапного ввода в действие, путем постепенной замены существующих систем управления дорожным движением с истекшим сроком эксплуатации и полная совместимость любой из частей предлагаемой системы (контроллеров, ЦУП, МЗЦ) со всеми типами существующего оборудования.

Автоматизированная система «Город-ДД»:

  • · Центрального управляющего пункта;
  • · Модулей зональных центров (при необходимости);
  • · Контроллеров (в трех вариантах исполнения - С, СМ, СЛ);
  • · Дополнительного оборудования;
  • · Комплекта программного обеспечения.

Классификация и назначение

Управление движением в условиях предельного насыщения дорог транспортными и пешеходными потоками требует все более совершенных методов регулирования движения. В последнее время все большую актуальность приобретает применение автоматизированных систем управления дорожным движением (АСУДД), представляющих собой комплекс технических средств, реализующий определенные технологические алгоритмы управления транспортными потоками.

Основная цель введения АСУДД заключается в снижении суммарных задержек транспортных средств на пересечениях в зоне действия этой системы - на перекрестке, в районе или городе. Общие требования к АСУДД определены ГОСТ 24.501 - 82 «Автоматизированные системы управления дорожным движением. Общие требования».

Классификация АСУДД с разделением по методам управления приведена на рис. 5.3.

Рис. 5.3. Классификация АСУДД

(автоматизированной системы управления дорожным движением)

Локальной является АСУДД, если для определения параметров регулирования на перекрестке используется только информация о транспортных потоках на подходах к этому перекрестку и в зоне перекрестка. С помощью локальных алгоритмов определяют цикл регулирования, последовательность фаз регулирования, их длительности или моменты переключения фаз, параметры промежуточных тактов.

Особенностью сетевых АСУДД является их использование для определения параметров регулирования информации о транспортной ситуации на нескольких перекрестках, обычно связанных в единую сеть, характеризующуюся значительной интенсивностью движения транспортных средств между соседними перекрестками и небольшими (до 600...700 м) расстояниями между ними.

Как правило, на сетевом уровне определяются циклы регулирования для группы перекрестков и временные сдвиги для отдельных светофорных объектов. Для определения этих параметров помимо данных, необходимых для локального управления, используется информация о топологии сети, взаимосвязях транспортных потоков на соседних стоп-линиях и (или) геометрических направлениях проезда через перекрестки, временах проезда между соседними стоп-линиями.



По временному критерию все алгоритмы светофорного регулирования подразделяют на алгоритмы, реализующие управление дорожным движением по прогнозу (программные, жесткие ), и алгоритмы, действующие в реальном времени (адаптивные ).

Управление по прогнозу не исключает достаточно частого (до 3 - 5 раз в суточном цикле) изменения параметров регулирования, однако эти параметры определяются не исходя из текущей транспортной ситуации, а ее прогнозированием, основанным на выполненных ранее наблюдениях.

Промежуточное положение между адаптивными и неадаптивными алгоритмами занимают алгоритмы, основанные на ситуационном управлении . Алгоритмы этой группы предполагают предварительный расчет параметров регулирования для различных классов транспортных ситуаций и создание библиотеки типовых режимов регулирования. Выбор конкретного режима из библиотеки производится в реальном времени на основании текущей информации о транспортной ситуации и отнесении ее к одному из классов транспортных ситуаций.

Таким образом, методы автоматизированного управления транспортными потоками в АСУДД можно отнести к одному из четырех классов, как это показано на рис. 5.4 (для каждого класса указаны наиболее распространенные алгоритмы управления).

В настоящее время в России наиболее распространенным является метод локального жесткого однопрограммного управления светофорной сигнализацией.

Данный метод основан на предварительном расчете длительности цикла регулирования и фаз регулирования.

Рис. 5.4. Методы автоматизированного управления

Введение

Понятие адаптивного управления дорожным движением в узле транспортной сети

Сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением

Постановка и анализ моделирования

Разработка базы нечетких правил, определения параметров управления движение транспортных потоков в узле транспортной сети

1 Построение функции принадлежности

2 Построение правил соответствия конкретному классу параметра управления

3 База нечетких правил

Заключение

Список литературы

Введение

Изменившиеся условия мобильности, характеризующиеся увеличением в течение последних лет количества автомобилей, привели к повышению нагрузки на транспортную инфраструктуру и окружающую среду. Растущую потребность в улучшении условий передвижения нельзя полностью удовлетворить (ни внутри населенных пунктов, ни за их пределами) только лишь созданием новых путей транспортного сообщения или проведением иных строительных мероприятий. Для выхода из сложившейся ситуации необходимо внедрение целого комплекса мер по организации и управлению дорожным движением. Адаптивные системы управления дорожным движением (АСУД) представляют новый подход к организации управления дорожным движением и совместно с управляемыми ими высокопроизводительными транспортными компьютерами реализуют соответствующие технологии управления.

Постоянное увеличение количества транспортных средств в условиях недостаточной пропускной способности дорог ведёт к затруднениям движения транспортных потоков. Интеллектуальные транспортные системы (ИТС) позволяют минимизировать образование заторных ситуаций и увеличивать пропускную способность транспортной сети. Наработки в области ИТС примеряются для организации дорожного движения населённых пунктов и магистралей. Оптимизация управления дорожным движением достигается за счет взаимодействия управляющих, классифицирующих, прогнозирующих, экспертных, принимающих решения или поддерживающих эти процессы подсистем ИТС. В связи с этим стоит задача поиска методов обработки информации о нештатных ситуациях на улично-дорожной сети (УДС).

В данной работе будут рассмотрены следующие вопросы: понятие адаптивного управления дорожным движением в узле транспортной сети, на сети, а так же сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением.

1. Понятие адаптивного управления дорожным движением в узле транспортной сети

Возможности улучшения условий движения транспорта за счет оптимальной организации движения во многом недооценены, и развитие транспортной инфраструктуры понимается в основном как мероприятия, связанные со строительством новых дорог и магистралей, реконструкцией существующих путепроводов и развязок. Вместе с тем значительно улучшить транспортную ситуацию позволяет внедрение современных инновационных технологий, получивших название «Интеллектуальные Транспортные Системы» (ИТС). Внедрение ИТС-технологий в России позволяет лучше управлять транспортными потоками, повысить уровень пропускной способности улично-дорожной сети и снизить загрузку отдельных ее элементов.

Рост автомобильного парка и объема перевозок ведет к увеличению интенсивности движения, что в условиях городов с исторически сложившейся застройкой приводит к возникновению транспортной проблемы. Особенно остро она проявляется в узловых пунктах улично-дорожной сети. Здесь увеличиваются транспортные задержки, образуются очереди и заторы, что вызывает снижение скорости сообщения, неоправданный перерасход топлива и повышенное изнашивание узлов и агрегатов транспортных средств. Изменившиеся условия мобильности, характеризующиеся увеличением в течение последних лет количества автомобилей, привели к повышению нагрузки на транспортную инфраструктуру и окружающую среду. Растущую потребность в улучшении условий передвижения нельзя полностью удовлетворить (ни внутри населенных пунктов, ни за их пределами) только лишь созданием новых путей транспортного сообщения или проведением иных строительных мероприятий. Для выхода из сложившейся ситуации необходимо внедрение целого комплекса мер по организации и управлению дорожным движением.

Адаптивные системы управления дорожным движением (АСУД) представляют новый подход к организации управления дорожным движением и совместно с управляемыми ими высокопроизводительными транспортными компьютерами реализуют соответствующие технологии управления. В настоящее время в мировой практике в составе АСУД наиболее распространены следующие технологии управления транспортными потоками:

Технология управления по фиксированным планам (координированное управление);

Технология сетевого адаптивного управления;

Технология ситуационного управления.

САУДД-это система управления дорожным движением с центрально-распределенным интеллектом, состоящая из:

центрального пункта управления (ЦПУ);

точек адаптивного управления дорожным движением, оборудованных интеллектуальными контроллерами и детекторами транспорта, обеспечивающих:

локальное адаптивное управление наиболее сложными и важными пересечениями и участками УДС;

информационное взаимодействие с ЦПУ;

системных детекторов, сообщающих в ЦПУ сведения о транспортных потоках;

системных контроллеров, управляемых из ЦПУ постоянно или периодически.

Организация дорожного движения на уровне служб дорожного движения представляет комплекс инженерных и организационных мероприятии на существующей улично-дорожной сети, обеспечивающих безопасность и достаточную скорость транспортных и пешеходных потоков. К числу таких мероприятий относится управление дорожным движением, которое, являясь составной частью организации движения, как правило, решает более узкие задачи. В общем случае под управлением понимается воздействие на тот или иной объект с целью улучшения его функционирования. Применительно к дорожному движению объектом управления являются транспортные и пешеходные потоки.

Сущность управления движением заключается в том, чтобы обязывать водителей и пешеходов, запрещать или рекомендовать им те или иные действия в интересах обеспечения скорости и безопасности. Оно осуществляется путем включения соответствующих требований в Правила дорожного движения, а также применением комплекса технических средств и распорядительными действиями инспекторов дорожно-патрульной службы и других лиц, имеющих соответствующие полномочия.

2. Сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением

Современное состояние управления транспортными потоками в большинстве городов можно вообще характеризовать так, что устройства управления (узлы) управляются по фиксированному графику или по состоянию транспортного потока. Существенная разница заключается в том, что для управления по графику времени не нужны детекторы и система неспособна реагировать на какие-либо изменения транспортного потока. В случае транспортно-зависимого управления пере стоп-линиями имеются детекторы, которые фиксируют моментальное присутствие транспортных средств, и устройство управления, таким образом, реагирует на мгновенные условия в узле, увеличением длительности зеленого сигнала. Следовательно, речь идет об управлении в секундной сетке времени.

Временно-зависимое (автономное) управление - транспортные состояния определяются на основании статистического анализа исторических значений характеристик движения транспортных потоков (интенсивность движения) и на их основании определяются выходные значения процесса регулирования.

Транспортно-зависимое (режим текущего времени - онлайн) управление, в англосаксонской литературе, называемое также Traffic Responsive, заключается в том, что вмешательство системы управления рассчитывается по мгновенной транспортной ситуации. Методы режима онлайн обеспечивают работу в реальном времени и на основании переменных входных данных о движении транспортных потоков каждую секунду изменяют и оптимизируют параметры управления, т.е. продолжительность зеленого сигнала в соответствующем направлении. Устройства управления в данном режиме работают независимо или, в крайнем случае, расположены в линии и линейно координированы.

Управление осуществляется на локальном уровне. Если используется центр управления, то потом часто осуществляется мониторинг состояния устройств управления или мониторинг состояния транспортных потоков. Управление светофорами в реальном времени является достаточно известным и стандартно используется под наименованием транспортно-зависимое управление или динамическое управление. Его принцип заключается в том, что транспортный узел оснащен обычно двумя видами датчиков: датчиками интервалов и вызова, которыми являются в большинстве случаев индуктивные петли. Транспортное устройство управления управляет по программе, которая непрерывно тестирует состояние транспортного потока над отдельными датчиками и на основании заранее заданных алгоритмов увеличивает длительность сигналов, модифицирует последовательность фаз или вкладывает фазу по вызову. Данные изменения обычно осуществляются в рамках заранее определенного времени цикла и заранее определенных максимальных значений длительности зеленых сигналов. Датчик интервалов, расположенный приблизительно на 30-50 м перед стоп-линией, получил свое название в результате того, что он непрерывно измеряет интервалы времени между транспортными средствами и если они меньше данного значения (обычно 3-5 секунд), то он увеличивает продолжительность зеленых сигналов вплоть до заранее заданного максимума. Такой способ измерения называется «Управление измерением интервала времени». Вторая возможность заключается в том, что отдельные узлы соединены с центром управления движением транспортных потоков, который на уровне района координирует и управляет работой узлов. Для управления областью используются следующие режимы:

Временно-зависимое (автономное) управление - информация о характеристиках состояния транспортных потоков в районе получают путем статистического анализа, данные о характеристиках движения транспортных потоков (интенсивности и состава движение) за прошлые годы, измеренных в главных точках транспортной сети, и на их основании определяется режим работы транспортных устройств управления. Затем они вводятся в устройства управления в зависимости от времени суток или дня года. При расчетах оптимизируется длительность зеленых сигналов, продолжительность цикла и временной сдвиг. В качестве примера метода, основанного на автономном режиме, можно привести метод TRANSYT, когда фиктивные транспортные средства «выпускаются» в соответствии с заранее заданными правилами в область, и через данную область проходят на основании и в соответствии с моделью движения транспортного потока. На их движение оказывает влияние изменение управляемых параметров узла. С помощью числовых математических методов для разных параметров, как например, длительность цикла, длительность зеленых сигналов и временной сдвиг, находится минимум определенной целевой функции (оптимизация параметров).

Транспортно-зависимое (режим онлайн) управление характеризуется тем, что для различных состояний транспортных потоков на сети заранее рассчитываются системы сигнальных планов, которые хранятся в устройствах управления или в центре управления движением транспортных потоков. Для расчета максимальных значений длительности зеленого сигнала, длительности цикла и временного сдвига, как правило, используется метод TRANSYT. Одновременно в области выбраны стратегические датчики и составлены логические уравнения, описывающие разные комбинации состояний всех или выбранных датчиков. В зависимости от мгновенной транспортной ситуации посредством соответствующего уравнения выбирается программа, которая лучше всех соответствует данной ситуации. Примером может служить описание состояния транспортного потока по стратегическим датчикам SDV1 и SDV5, которое означает: если в точке SDV1 существует степень 2 и одновременно в точке SDV5 - степень 4, то следует выбрать сигнальную программы номер 6.=2 &SDV5=4 THENSP6

Если в сети не классифицируется состояние транспортного потока, то для описания используется только один параметр, которым является интенсивность движения. Транспортно-зависимое управление используется в реальной шкале времени и каждую секунду принимает сигналы выбранных датчиков. Однако переключение сигнальных программ осуществляется с определенным гистерезисом для обеспечения стабильности в транспортной сети. На практике это означает изменение программы устройства управления в сетке нескольких десятков минут.

Оптимизация в автономном режиме дает возможность рассчитать основные регулируемые величины: длительность цикла, последовательность фаз, временной сдвиг и длительность зеленых сигналов для базы исторических данных (данных прошлых лет). Эти данные получаются путем длительного измерения с помощью транспортных детекторов. На основании длительно записываемых данных обычно разрабатывается статистическая модель, которая для интенсивности движения обычно дает возможность определить типичные рабочие дни и особенно субботу и воскресенье, в результате чего сильно ограничиваются изменения переменных. Существенной чертой является, то, что речь идет о макроскопическом управлении в автономном режиме, основанном на детерминистическом моделировании потоков и алгоритмах оптимизации, когда рассчитываются системы сигнальных планов по пространственно-временному вектору данных об интенсивности за предыдущие годы. Модели оптимизации использованы для расчетов в автономном режиме сигнальных временных планов транспортных устройств управления в транспортной сети или линии.

В таком случае процесс управления выбирает в зависимости от времени самый выгодный из множества заранее подготовленных сигнальных планов. Такой способ называется временно-зависимым управлением.

Преимущества временно-зависимого управления:

возможность простого контроля;

простота модификации сигнальных программ;

относительно низкие расходы на оборудование и установку.

Недостатки временно-зависимого управления:

нельзя повысить эффективность использования времени сигналов (разрешение движения для отдельных направлений);

нельзя покрыть пики интенсивности (необходим определенный резерв интенсивности);

нельзя вступать в процесс управления со стороны отдельных транспортных средств или пешеходов;

нельзя устранить возникшие транспортные заторы.

3. Постановка и анализ моделирования

Задача моделирования стратегий управления дорожным движением в узле транспортной сети, как и на сети состоит в разработке классического модуля нечеткого управления. Его составляющие:

Блок фуззификации: система управления с нечеткой логикой оперирует нечеткими множествами, поэтому конкретное значение входного сигнала модуля нечеткого управления подлежит операции фуззификации, в результате которой ему будет сопоставлено нечеткое множество.

База правил представляет собой множество нечетких правил определения нечеткого множества, которому принадлежат выходной сигнал системы.

Блок выработки решения: непосредственное определение множества принадлежности выходного сигнала при конкретно заданных множествах входных сигналов.

Блок дефуззификации представляет процедуру отображения нечеткого множества, получаемого на выходе блока выработки решения в конкретное значение, представляет собой управление воздействия.

Для построения стратегий управления предлагают использовать программный комплекс «TRANSYT», основанный на оценке поведения транспортного потока с помощью моделирования дорожного движения и позволяющего выбирать оптимальные параметры режима работы светофорной сигнализации. По результатам моделирования дорожного движения в программе для различных комбинаций интенсивности движения определенно оптимальное время горения зеленного сигнала светофора.

4. Разработка базы нечетких правил определения параметров управления движением транспортных потоков в узле транспортной сети

Построение базы нечетких правил определения оптимального времени горения зеленого сигнала светофора на перекрестке, характеризуемом максимальными интенсивностями движения на пересекающихся дорогах. Необходимые данные были получены при помощи транспортного детектора.

Базу правил классификации стратегий управления создаем для системы с двумя входами и одним выходом:

1. Необходимы данные в виде множества . Далее находим области определения элементов множества , которые разбиваем на областей (отрезков), причем значение N подбираем индивидуально, а отрезки могут иметь одинаковую или различную длину. Отдельные области можно обозначить следующим образом: …, S,,…,.

Строим функции принадлежности определенному классу элементов заданного множества обучающих данных. Предлагаем использовать функции треугольной формы по принципу: вершина графика расположена в центре области разбиения, ветви графика лежат в центрах соседних областей. Степень принадлежности данных определенным классом будет выражаться значение функций принадлежности .

Затем для каждой пары определяем правило соответствия классу стратегии управления. Окончательное для каждой пары обучения данных можно записать 1 правило, то есть

Поскольку в наличии имеется большое количество пар существует высокая вероятность того, что некоторые из правил окажутся противоречивыми. Это относится к правилам с одной и той же посылкой (условием), но с разными средствами (выводами).

Одним из методов решения этой проблемы заключается в приписывании каждому правилу так называемые степени истинности с последующим выбором противоречащих друг другу правил того, у кого эта степень окажется наибольшей. После чего база правил заполняется качественной информацией.

Например, согласно выше описанным правилам степени истинности имеют вид

4. Для определения количественных значений параметра оптимизации стратегии управлении необходимо выполнить операцию дефуззификации. Для расчета выходного значения управления воздействия можно и рекомендуется воспользоваться способом дефуззификации по методу центра тяжести.

1 Построение функции принадлежности

Для элементов множества обучающих систему данных обозначим следующую область определения

Разбив Х 1 Х 2 и G на 2n+1 отрезков и строим функции принадлежности вида


Рисунок 4.1 Общий вид графика функций принадлежности

Имеем в итоге:

Рисунок 4.2 Графики функций принадлежности интенсивности х 1 к классам разбиения множества Х 1.

Определяем функции принадлежности µ(x 1) на отрезках разбиения области Х 1 методом отнесения µ(x 1) к определенному классу.

Таблица 4.1. Функции принадлежности µ(x 1) на отрезках разбиения области Х 1 (n=4)

Отрезок разбиения

Обозначение

Функция принадлежности µ(х 1)

;

;

, ;

, ;

,;

,;

;

;

, ;


Рисунок 4.3 Графики функций принадлежности интенсивности х 2 к классам разбиения множества Х 2 .

Определяем функции принадлежности µ(x 2) на отрезках разбиения области Х 2 методом отнесения µ(x 2) к определенному классу по рисунку 4.3.

Таблица 4.2 Функции принадлежности µ(x 2) на отрезках разбиения области Х 2 (n=5)

Отрезок разбиения

Обозначение

;

,;

, ;

,;

, ;

,;

;

;

,;

;

, ;


Рисунок 4.4 Графики функций принадлежности интенсивности gк классам разбиения множества Q.

Определяем функции принадлежности µ(g) на отрезках разбиения области Gметодом отнесения µ(g) к определенному классу

Таблица 4.3 Функции принадлежности µ(g) на отрезках разбиения области G(n=6)

Отрезок разбиения

Обозначение

Функция принадлежности µ(х 2)

;

;

;

, ;

;

,;

;

,;

,;

;

;


2 Построение правил соответствия конкретному классу параметра управления

Определяем правило соответствия классу стратегий управления и приписываем каждому правилу степень истинности.

Таблица 4.4 Значения функций принадлежности данных определенным классам

(i)µ((i))(i)µ((i))g(i)µ(g (i))







Получаем таблицу с присвоенными степенями истинности и степень истинности для каждой из пар x 1 , x 2 .

транспорт управление дорожный пассажирский

Таблица 4.5 Нечеткие правила, сгенерированные по обучающимся данным и степень истинности этих правил


3 База нечетких правил

Согласно определенным в таблице 4.7 правилам составляем базу нечетких правил, определяющую оптимальное значение зеленого сигнала светофора.

Таблица 4.6 База нечетких правил
















































































Заключение

В данной работе были рассмотрены следующие вопросы: понятие адаптивного управления дорожным движением в узле транспортной сети, на сети, а так же сравнение временно-зависимой и транспортно-зависимой стратегии управления дорожным движением.

Основные концепции адаптивного управления, реализуемые в различных странах и преимущества такие как: обеспечение высокую работоспособность в условиях изменения свойств управляемого объекта, окружающей среды и целей, за счет разработки новых алгоритмов функционирования.

Организация движения городского пассажирского общественного транспорта при работе адаптивной системы управления дорожным движением, реализация данного условия происходит за счет установки радиометок на транспортные средства и считывающих устройств на светофорные объекты. Распознавание транспортного средства позволит «растягивать» время горения зеленого сигнала и обеспечить беспрепятственный проезд общественного транспорта. А так жеможно использовать принцип обмена данными непосредственно между контроллерами соседних перекрестков. Данные детекторов, подключенные к дорожному контроллеру, дополняются данными тех детекторов, которые установлены на соседних перекрестках. Этот позволяет директивно задавать состояние сигнальных групп, а также обеспечивает приоритет общественного транспорта

Так как адаптивное управление очень затратно был предложен альтернативный метод для определения оптимального времени горения зеленого сигнала светофора на пересечение. А именно метод разработки классического модуля нечеткого управления, исходными данными для которого служили множества данных об интенсивности двух пересекающихся дорог. В данной работе были рассмотрены первые три блока данного метода и были проведены расчеты.

Список литературы

1. П. Пржибыл, М. Свитек "Телематика на транспорте", 2004 г;

Коноплянко, В.И., Гуджоян О.П., Зырянов В.В., Березин А.С. Безопасность движения.

Кузин М.В. Имитационное моделирование транспортных потоков при координированном режиме управления Омск - 2011;

В.Г. Кочерга, Е.Е. Шаталова Технические средства современных автоматизированных систем управления дорожным движением. Ростов-на-Дону 2011;

Е.А. Петров статья «Адаптивная система управления дорожным движением в составе городской ИТС»;

Абрамова Л.С. Журнал Вестник Харьковского национального автомобильно-дорожного университета.

УДК 517.977.56, 519.876.5

адаптивное управление дорожным движением на базе системы микроскопического моделирования транспортных потоков

A. С. Голубков,

инженер, младший научный сотрудник

B. А. Царев,

канд. техн. наук, доцент Институт менеджмента и информационных технологий Череповецкий филиал Санкт-Петербургского государственного политехнического университета

Описаны состав и особенности функционирования современных автоматизированных систем управления дорожным движением. Предложен способ адаптивного управления дорожным движением на основе предсказания транспортных потоков и быстрых моделей оптимизации перекрестков. Представлены характеристики системы микроскопического моделирования транспортных потоков, применяемой в системе адаптивного управления дорожным движением.

Ключевые слова - адаптивное управление дорожным движением, оптимизация управления дорожным движением, моделирование транспортных потоков, микроскопическое моделирование.

Введение

В настоящее время во многих крупных городах весьма остро стоит проблема транспортных заторов. При этом исследования показывают, что потенциал существующих улично-дорожных сетей (УДС) используется далеко не полностью. Повышение пропускной способности УДС может быть достигнуто за счет внедрения автоматизированных систем управления дорожным движением (АСУДД). При внедрении АСУДД достигается улучшение следующих показателей : время в пути транспортных средств (ТС) снижается на 10-15 %; количество общих транспортных остановок сокращается на 20-40 %; расход топлива снижается на 5-15 %, количество вредных выбросов в атмосферу сокращается на 5-15 %; повышается безопасность дорожного движения.

Современные АСУДД

Основными компонентами современных АСУДД помимо светофоров и светофорных контроллеров являются:

1) детекторы транспорта (ДТ), обеспечивающие обнаружение ТС и подсчет их числа при движении по полосам;

2) одна или несколько ЭВМ для обработки данных с ДТ и расчета оптимальных управляющих сигналов;

3) совокупность программных средств, реализующих алгоритмы детектирования транспорта и оптимизации управления транспортными потоками;

4) средства информирования водителей ТС (различные информационные табло);

5) средства связи и телекоммуникации, используемые для объединения программно-аппаратных средств АСУДД в единую систему.

В современных АСУДД применяются различные типы детекторов транспорта: петлевые (индукционные); инфракрасные активные и пассивные; магнитные; акустические; радарные; видеодетекторы; комбинированные (в различных комбинациях ультразвуковые, радарные, инфракрасные и видеодетекторы). Все ДТ обладают различной эффективностью в различных условиях эксплуатации . Однако в связи с достигнутым высоким уровнем развития вычислительной и телевизионной техники во многих случаях наиболее предпочтительными являются видеодетекторы на основе технологий обработки и анализа изображений, а также комбинации видеодетекторов с детекторами других типов.

В существующих АСУДД тех или иных производителей используются в различных комбинациях три основных способа адаптивного управления транспортными потоками .

1. Метод управления с использованием библиотек, характеризуемый предварительным расчетом множества планов координации и переключением их на основании текущих усредненных показаний стратегических ДТ путем выбора из библиотеки соответствующего подходящего плана.

2. Метод актуального управления, характеризуемый предварительным расчетом планов координации светофоров, переключением их по календарному графику и реализацией изменений в этих планах в соответствии с транспортными запросами, фиксируемыми локальными детекторами на отдельных направлениях.

3. Метод адаптивного управления, характеризуемый постоянным пересчетом планов координации и календарных режимов на основании информации, получаемой с локальных и стратегических (путевых) детекторов в режиме реального времени.

Оптимизация управления транспортными потоками в современных АСУДД производится различными методами. В системе Balance (Германия) применяются генетические алгоритмы оптимизации. В системе Utopia (Нидерланды) производится расчет на основе ценовой функции, учитывающей время задержки, число остановок, специфические приоритетные требования, взаимное расположение перекрестков. В системе «Спектр» (Санкт-Петербург, Россия) ис-

пользуются следующие алгоритмы: поиск разрывов потока транспорта; расчет по формуле Вебстера; переключение программ по интенсивностям. В АСУДД производства ОАО «Электромеханика» (Пенза, Россия) используется следующее алгоритмическое обеспечение: алгоритм поиска разрыва потоков транспорта; поиск разрыва с сохранением общей длительности цикла координации; алгоритм переключения заранее рассчитанных режимов по контрольным точкам интенсивности движения транспорта; алгоритм динамического перерасчета параметров цикла на основе формулы Вебстера. В АСУДД «Агат» (Минск, Белоруссия) используются следующие эвристические алгоритмы управления: выбор плана координации по карте времени; выбор фазы, режима по плану координации; выбор плана координации по параметрам движения в характерных точках и др.

Адаптивное управление транспортными потоками на основе моделей оптимизации перекрестков

Разрабатываемая система управления дорожным движением (рисунок) состоит из одного центрального пункта и множества локальных пун-

■ Схема системы адаптивного управления дорожным движением

ктов управления, число которых соответствует числу управляемых перекрестков в системе. Все локальные пункты имеют соединение по каналам связи с центральным пунктом управления.

Центральный пункт управления выполняет функции сбора и обработки информации об интенсивностях движения транспортных средств в УДС. Обработка информации представляет собой предсказание величин транспортных потоков на основе следующих данных:

Текущих интенсивностей транспортных потоков;

Скоростей движения ТС;

Расстояний между смежными управляемыми перекрестками в системе;

Предсказания маршрутов движения ТС на основе статистики для текущего дня недели и времени суток;

Текущих длин фаз светофорных объектов на перекрестках УДС.

Локальные пункты в системе выполняют непосредственно оптимизацию управления транспортными потоками на соответствующих перекрестках. В состав каждого локального пункта управления входят:

Детекторы транспорта;

ЭВМ, выполняющая предобработку данных с ДТ, если это необходимо, и оптимизацию управления транспортными потоками;

Контроллер светофоров, допускающий внешнее задание длин фаз светофорного объекта;

Светофоры.

В качестве ДТ предлагается использовать видеодетекторы. В этом случае сигнал с видеокамер поступает в ЭВМ локального пункта управления, где программный модуль предобработки выполняет анализ видеоизображений и оценку интенсивностей транспортных потоков на всех контролируемых полосах. Далее интенсивности транспортных потоков передаются в центральный пункт управления.

Оптимизация управления транспортными потоками производится следующим образом. В ЭВМ имеется точная программная микроскопическая модель перекрестка. При расчете оптимальных длин фаз для следующего фазового цикла управления светофорным объектом (длительность фазового цикла составляет, как правило, 2-5 мин) выполняются следующие действия.

В модели задаются входные интенсивности транспортных потоков на следующие 5 мин (прогноз интенсивностей от центрального пункта управления) с точностью до отдельного ТС.

Модуль оптимизации запускает прогоны модели перекрестка длительностью 5 мин модельного времени, для каждого прогона задает новые длины фаз модельного светофорного объекта

и рассчитывает по результатам каждого прогона значение целевой функции.

В результате цикла оптимизации, состоящего из нескольких прогонов модели, модуль оптимизации находит оптимальные длины фаз модельного светофорного объекта, соответствующие экстремуму целевой функции поиска.

Длины фаз светофорного объекта представляют собой вектор параметров оптимизации j = (фр ф2, ф3, ф4) (на крестообразном перекрестке обычно задается не более четырех фаз). В качестве целевой функции F(j) может служить среднее время ожидания проезда перекрестка ТС. Критерием оптимизации в этом случае будет минимум среднего времени ожидания проезда

min .Р(ф) = F(^*),

где Ф - допустимое множество значений координат вектора длин фаз; j* - вектор оптимальных значений длин фаз. Допустимое множество значений координат вектора длин фаз имеет следующий вид:

Ф = {ф|Tmin < Фi < Tmax.i = 1.-. 4} С r4.

где Т. и - соответственно минимальное

и максимальное значения длины фазы.

Расчет производных целевой функции на модели является невозможным, поэтому в качестве методов оптимизации могут быть использованы только прямые методы. Предложено применение поочередного циклического варьирования длин фаз светофорного объекта от прогона к прогону с постоянным шагом по длине фазы. Длина шага варьирования длин фаз может быть задана равной 2-3 с.

Необходимым условием возможности реализации описанной системы адаптивного управления дорожным движением является наличие системы микроскопического моделирования транспортных потоков, скорость работы которой была бы достаточной для выполнения оптимизации длин фаз светофорного объекта за время одного фазового цикла.

Система микроскопического моделирования транспортных потоков

Авторами статьи разработана система микроскопического моделирования транспортных потоков в УДС, которая может быть использована для оптимизации управления транспортными потоками в составе системы адаптивного управления дорожным движением. Главной особенностью системы моделирования является применение дискретно-событийного подхода в моделиро-

вании , благодаря чему система имеет высокое быстродействие.

Быстродействие системы оценено в серии экспериментов с моделями отдельных типовых перекрестков. Эксперименты выполнены на компьютере с процессором Intel Core 2 Quad Q6600 с частотой каждого ядра 2,4 ГГц (реально в экспериментах использовалось только одно ядро, так как моделирование выполняется в один программный поток). В результате моделирование транспортных потоков через единичный перекресток в течение 45 сут (3 888 000 с) заняло 2864 с процессорного времени. Таким образом, превышение скорости моделирования над скоростью течения реального времени составило 3 888 000/2864 « » 1358 раз, т. е. за время реального фазового цикла на перекрестке модуль оптимизации способен выполнить более 1300 прогонов оптимизационного эксперимента.

Особенностью дискретно-событийного подхода в моделировании является независимость результатов моделирования от скорости выполнения модели, т. е. даже в режиме полной загрузки процессора моделирование покажет совершенно идентичные результаты результатам выполнения, например, в режиме реального времени.

Напротив, в системно-динамическом подходе при ускорении моделирования посредством увеличения шага дискретизации по времени точность моделирования падает. Системно-динамический подход реализует подавляющее большинство современных систем микроскопического моделирования транспортных потоков: Aimsun (Испания) , Paramics Modeler (Шотландия) , DRACULA (Великобритания) , TransModeler (США) , VISSIM (Германия) . Во всех перечисленных системах моделирования используется шаг дискретизации по времени 0,1-1,0 с.

В системно-динамической дорожно-транспортной модели шаг моделирования по времени, равный 1 с, вполне способен лишить модель адекватности. Так, ТС на скорости 60 км/ч за 1 с преодолевает более 16 м пути, т. е. на типовых скоростях движения модельное ТС позиционируется лишь с точностью порядка 10 м.

В предложенной дискретно-событийной модели точность позиционирования модельных объектов остается постоянной практически при любой скорости и зависит от разрядности использу-

1. Бродский Г. С., Айвазов А. Р. Автоматизированное управление дорожным движением в городской среде // Мир дорог. 2007. № 26. С. 2-3.

емых переменных и типа выполняемых над ними арифметических операций. При использовании чисел с плавающей запятой двойной точности (64 бита, 15 значащих десятичных цифр мантиссы) точность позиционирования модельных ТС в дискретно-событийной модели в любой момент времени составит не более 1 см.

Заключение

Предложенная система адаптивного управления дорожным движением способна продемонстрировать высокую эффективность благодаря исчерпывающей оптимизации каждого отдельного перекрестка и учету транспортных потоков между соседними перекрестками с точностью до отдельных ТС. При наличии в УДС по какому-либо направлению транспортного потока высокой плотности происходит автоматическая подстройка управления на всех смежных перекрестках с организацией на данном направлении зеленой волны. При этом оптимизации подвергаются и все прочие направления с транспортными потоками меньшей плотности.

Оптимизация управления каждым отдельным перекрестком в реальном времени является возможной благодаря использованию системы микроскопического дискретно-событийного моделирования транспортных потоков в УДС, разработанной авторами статьи. Данная система моделирования вследствие применения дискретнособытийного подхода обладает высокой производительностью и точностью. В ближайшее время на сайте разработчиков будет доступна ознакомительная версия системы моделирования.

Качество оптимизации управления транспортными потоками в высокой степени зависит от точности предсказания плотности потоков транспорта. При этом точность предсказания тем выше, чем меньше временной интервал предсказания. При использовании на локальных перекрестках аппаратного обеспечения достаточной производительности пересчет оптимальных длин фаз цикла регулирования светофорного объекта может производиться с началом каждой следующей фазы. В этом случае реально используемый временной интервал предсказания сократится до длительности одной фазы, т. е. до 15-100 с, в результате чего повысится эффективность оптимизации.

2. Бродский Г. С., Рыкунов В. В. Поехали! АСУДД - мировой опыт и экономический смысл // Мир дорог. 2008. № 32. С.36-39.

3. ГНПО АГАТ. http://www.agat.by (дата обращения:

4. Crowdhury M. A., Sadek A. Fundamentals of Intelligent Transportation System planning. - Boston - London: Artech House, 2005. - 190 p.

5. Кременец Ю. А., Печерский М. П., Афанасьев М. Б. Технические средства организации дорожного движения. - М.: Академкнига, 2005. - 279 с.

6. GEVAS software: Traffic Control. http://www.gevas.eu/index.php?id=149&L=1 (дата обращения: 16.06.2010).

7. UTOPIA - Peek Traffic. http://www.peektraffic.nl/ page/484 (дата обращения: 16.06.2010).

8. ЗАО «РИПАС»: Разработка и производство автоматизированных систем. http://www.ripas.ru (дата обращения: 16.06.2010).

9. АСУДД - ОАО «Электромеханика». http://www. elmeh.ru/catalog/3/asud (дата обращения:

10. Карпов Ю. Г. Имитационное моделирование систем. Введение в моделирование с AnyLogic 5. - СПб.: БХВ-Петербург, 2006. - 400 с.

11. Советов Б. Я., Яковлев С. А. Моделирование систем. - М.: Высш. шк., 2001. - 343 с.

12. Nagel K. High-speed microsimulations of traffic flow. Thesis: University Cologne, 1995. - 202 p.

13. Aimsun. The integrated transport modeling software. http://www.aimsun.com (дата обращения:

14. Quadstone Paramics. Traffic Simulation Solutions. http://www.paramics-online.com (дата обращения:

15. SATURN Software Web Site. https://saturnsoftware. co.uk (дата обращения: 20.05.2010).

16. TransModeler Traffic Simulation Software. http:// www.caliper.com/transmodeler/ (дата обращения:

17. PTV Vision - транспортное планирование. http:// www.ptv-vision.ru (дата обращения: 20.05.2010).

18. Компания «Малленом». http://www.mallenom.ru (дата обращения: 20.05.2010).

Каждому из Вас необходимо зарегистрироваться на сайте РУНЭБ (http://www.elibrary.ru) с тем, чтобы Вам присвоили индивидуальный цифровой код (при регистрации код присваивается автоматически), что обязательно для создания корректной базы данных РУНЭБ, объективно отражающей информацию о Вашей научной активности, а также для подсчета Вашего индекса цитирования (РИНЦ).



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков