Испытание огнем. General Electric готовит революцию в авиационном двигателестроении

Испытание огнем. General Electric готовит революцию в авиационном двигателестроении

Военно-морские силы США планируют в будущем провести модернизацию силовых газотурбинных установок, которые в настоящее время установлены на их самолетах и кораблях, поменяв обычные двигатели с циклом Брайтона на детонационные ротационные двигатели. За счет этого предполагается экономия топлива на сумму около 400 миллионов долларов ежегодно. Однако серийное использование новых технологий возможно, по оценкам экспертов, не ранее, чем через десятилетие.


Разработки ротационных, или спиновых ротационных двигателей в Америке проводятся Научно-исследовательской лабораторией флота США. Согласно первоначальным подсчетам, новые двигатели будут обладать большей мощностью, а также примерно на четверть экономичнее обычных двигателей. При этом, основные принципы работы силовой установки останутся прежними – газы от сгоревшего топлива будут поступать в газовую турбину, вращая ее лопасти. Согласно данным лаборатории ВМС США, даже в относительно далеком будущем, когда весь американский флот будет приводиться в действие при помощи электричества, за выработку энергии по-прежнему будут отвечать газовые турбины, в определенной степени видоизмененные.

Напомним, что изобретение пульсирующего воздушно-реактивного двигателя приходится на конец девятнадцатого века. Автором изобретения был шведский инженер Мартин Виберг. Широкое распространение новые силовые установки получили в годы Второй мировой войны, хотя они значительно уступали по своим техническим характеристикам авиадвигателям, которые существовали в то время.

Надо заметить, что на данный момент времени американский флот насчитывает 129 кораблей, на которых используется 430 газотурбинных двигателя. Каждый год расходы на обеспечение их топливом составляют порядка 2 миллиардов долларов. В будущем, когда современные двигатели будут заменены новыми, изменятся и объемы затрат на топливную составляющую.

Двигатели внутреннего сгорания, используемые в настоящее время, работают по циклу Брайтона. Если определить суть данного понятия в нескольких словах, то все сводится к последовательному смешиванию окислителя и топлива, дальнейшем сжатии полученной смеси, затем – поджоге и горении с расширением продуктов горения. Это расширение как раз и используется для приведения в движение, перемещения поршней, вращения турбины, то есть выполнения механических действий, обеспечивая постоянное давление. Процесс горения топливной смеси двигается с дозвуковой скоростью – этот процесс носит название дафлаграция.

Что касается новых двигателей, то ученые намерены использовать в них взрывное горение, то есть детонацию, при которой горение происходит со сверхзвуковой скоростью. И хотя в настоящее время явление детонации еще изучено не в полной мере, однако известно, что при таком виде горения возникает ударная волна, которая распространяясь по смеси топлива и воздуха вызывает химическую реакцию, следствием которой является выделение довольно большого количества тепловой энергии. Когда ударная волна проходит через смесь, происходит ее нагрев, что и приводит к детонации.

В разработке нового двигателя планируется использовать определенные наработки, которые были получены в процессе разработки детонационного пульсирующего двигателя. Его принцип работы состоит в том, что предварительно сжатая топливная смесь подается в камеру сгорания, где осуществляется ее поджог и детонация. Продукты горения расширяются в сопле, выполняя механические действия. Затем весь цикл повторяется сначала. Но недостатком пульсирующих двигателей является то, что частота повторения циклов слишком мала. Помимо этого, конструкция самих этих двигателей в случае увеличения числа пульсаций становится более сложной. Это объясняется необходимостью синхронизации работы клапанов, которые отвечают за подачу топливной смеси, а также непосредственно самими циклами детонирования. Пульсирующие двигатели ко всему прочему еще и очень шумные, для их работы необходимо большое количество топлива, а работа возможна только при постоянном дозированном вспрыскивании топлива.

Если сравнивать детонационные ротационные двигатели с пульсирующими, то принцип их работы немного отличается. Так, в частности, в новых двигателях предусмотрена постоянная незатухающая детонация топлива в камере сгорания. Подобное явление получило название спиновая, или вращающаяся детонация. Впервые она была описана в 1956 году советским ученым Богданом Войцеховским. А открыто это явление было гораздо раньше, еще в 1926 году. Первопроходцами стали британцы, которые заметили, что в определенных системах возникала яркая светящаяся «голова», которая двигалась по спирали, вместо детонационной волны, имеющей плоскую форму.

Войцеховский же, использовав фоторегистратор, который сам же и сконструировал, сфотографировал фронт волны, которая двигалась в кольцевой камере сгорания в топливной смеси. Спиновая детонация отличается от плоской тем, что в ней возникает единственная ударная поперечная волна, затем следует нагретый газ, который не прореагировал, а уже за этим слоем находится зона химической реакции. И именно такая волна предотвращает сгорание самой камеры, которую Марлен Топчиян обозвал «сплющенным бубликом».

Необходимо отметить, что в прошлом детонационные двигатели уже применялись. В частности речь идет и пульсирующем воздушно-реактивном двигателе, который использовался немцами в конце Второй мировой войны на крылатых ракетах «Фау-1». Производство его было достаточно простое, использование достаточно легкое, однако при этом этот двигатель был не очень надежным для решения важных задач.

Далее, в 2008 году, в воздух поднялся Rutang Long-EZ - экспериментальный самолет, оснащенный детонационным пульсирующим двигателем. Полет длился всего десять секунд на высоте тридцати метров. За это время силовая установка развила тягу порядка 890 ньютонов.

Экспериментальный образец двигателя, представленный американской лабораторией ВМС США, - это кольцевая конусообразная камера сгорания, имеющая диаметр 14 сантиметров со стороны подачи топлива и 16 сантиметров со стороны сопла. Между стенками камеры расстояние составляет 1 сантиметр, при этом «трубка» имеет длину 17,7 сантиметров.

Смесь воздуха и водорода используется в качестве топливной смеси, которая подается под давлением 10 атмосфер в камеру сгорания. Температура смеси составляет 27,9 градусов. Отметим, данная смесь признана самой удобной для изучения явления спиновой детонации. Но, как утверждают ученые, в новых двигателях вполне можно будет использовать топливную смесь, состоящую не только из водорода но и из других горючих компонентов и воздуха.

Экспериментальные исследования ротационного двигателя показали его большую эффективность и мощность по сравнению с двигателями внутреннего сгорания. Еще одно достоинство – значительная экономия топлива. В то же время, в ходе проведения эксперимента было выявлено, что сгорание топливной смеси в ротационном «пробном» двигателе происходит неоднородно, поэтому необходимо оптимизировать конструкцию двигателя.

Продукты горения, которые расширяются в сопле, можно собрать в одну газовую струю с помощью конуса (это так называемый эффект Коанда), а затем эту струю отправлять в турбину. Под действием этих газов турбина будет вращаться. Таким образом, частично работу турбины можно будет использовать для приведения в движение кораблей, а частично – для выработки энергии, которая необходима для корабельного оборудования и различных систем.

Сами двигатели можно производить без подвижных частей, что значительно упростит их конструкцию, что, в свою очередь, снизит стоимость силовой установки в целом. Но это только в перспективе. Перед тем, как запускать новые двигатели в серийное производство, необходимо решить немало непростых задач, одной из которых является подбор прочных термостойких материалов.

Отметим, что в данный момент ротационные детонационные двигатели считаются одними из наиболее перспективных двигателей. Разработками их также занимаются ученые из Техасского университета в Арлингтоне. Силовая установка, которая были ими создана, была названа «двигателем непрерывной детонации». В том же университете проводятся исследования по подбору различных диаметров кольцевых камер и различных топливных смесей, в состав которых входят водород и воздух или кислород в различных пропорциях.

В России также ведутся разработки в данном направлении. Так, в 2011 году, по словам управляющего директора научно-производственного объединения «Сатурн» И.Федорова, силами ученых Научно-технического центра имени Люльки, ведутся разработки пульсирующего воздушного реактивного двигателя. Работа ведется параллельно с разработками перспективного двигателя, получившего название «Изделие 129» для Т-50. Помимо этого, Федоров также сказал, что объединение ведет исследования по созданию перспективных самолетов следующего этапа, которые, как предполагается, будут беспилотными.

При этом руководитель не уточнил, о каком именно виде пульсирующего двигателя идет речь. В данный момент известны три типа таких двигателей – бесклапанный, клапанный и детонационный. Общепринятым, между тем, признан факт, что пульсирующие двигатели являются наиболее простыми и дешевыми в производстве.

На сегодняшний день некоторые крупные оборонные фирмы занимаются проведением исследований в сфере создания пульсирующих высокоэффективных реактивных двигателей. Среди этих фирм – американские Pratt & Whitney и General Electric и французская SNECMA.

Таким образом, можно сделать определенные выводы: создание нового перспективного двигателя имеет определенные трудности. Главная проблема в данный момент заключается в теории: что именно происходит при движении ударной детонационной волны по кругу, известно лишь в общих чертах, а это в значительной степени усложняет процесс оптимизации разработок. Поэтому новая технология, хотя и имеет очень большую привлекательность, но в масштабах промышленного производства она малореализуема.

Однако если исследователям удастся разобраться с теоретическими вопросами, можно будет говорить о настоящем прорыве. Ведь турбины используются не только на транспорте, но и в энергетической сфере, в которой повышение КПД может иметь еще более сильный эффект.

Использованы материалы:
http://science.compulenta.ru/719064/
http://lenta.ru/articles/2012/11/08/detonation/

История авиации характеризуется непрекращающейся борьбой за повышение скорости полета самолетов. Первый официально зарегистрированный мировой рекорд скорости, установленный в 1906 году, составлял всего 41,3 километра в час. К 1910 году скорость лучших самолетов возросла до 110 километров в час. Построенный на Русско-Балтийском заводе еще в начальный период первой мировой войны самолет-истребитель РБВЗ-16 обладал максимальной скоростью полета – 153 километра в час. А к началу второй мировой войны уже не отдельные машины – тысячи самолетов летали со скоростями, превышавшими 500 километров в час.
Из механики известно, что мощность, необходимая для обеспечения движения самолета, равна произведению силы тяги на его скорость. Таким образом, мощность растет пропорционально кубу скорости. Следовательно, чтобы увеличить скорость полета винтомоторного самолета в два раза необходимо повысить мощность его двигателей в восемь раз. Это ведет к возрастанию веса силовой установки и к значительному увеличению расхода горючего. Как показывают расчеты, для удвоения скорости самолета, ведущего к увеличению его веса и размеров, нужно повысить мощность поршневого двигателя в 15-20 раз.
Но начиная со скорости полета 700-800 километров в час и по мере приближения ее к скорости звука сопротивление воздуха увеличивается еще более резко. Кроме того, коэффициент полезного действия воздушного винта достаточно высок лишь при скоростях полета, не превышающих 700-800 километров в час. С дальнейшим ростом скорости он резко снижается. Поэтому, несмотря на все старания авиаконструкторов, даже у лучших самолетов-истребителей с поршневыми моторами мощностью 2500-3000 лошадиных сил максимальная скорость горизонтального полета не превышала 800 километров в час.
Как видим, для освоения больших высот и дальнейшего увеличения скорости был нужен новый авиационный двигатель, тяга и мощность которого с увеличением скорости полета не падали бы, а возрастали.
И такой двигатель был создан. Это – авиационный реактивный двигатель. Он был значительно мощнее и легче громоздких винтомоторных установок. Использование этого двигателя в конце концов позволило авиации перешагнуть звуковой барьер.

Принцип работы и классификация реактивных двигателей

Чтобы понять принцип работы реактивного двигателя, вспомним, что происходит при выстреле из любого огнестрельного оружия. Каждому, кто стрелял из ружья или пистолета, известно действие отдачи. В момент выстрела пороховые газы с огромной силой равномерно давят во все стороны. Внутренние стенки ствола, дно пули или снаряда и дно гильзы, удерживаемой затвором, испытывают это давление.
Силы давления на стенки ствола взаимно уравновешиваются. Давление пороховых газов на пулю (снаряд) выбрасывает ее из винтовки (орудия), а давление газов на дно гильзы и является причиной отдачи.
Отдачу легко сделать и источником непрерывного движения. Вообразим себе, например, что мы поставили на легкую тележку станковый пехотный пулемет. Тогда при непрекращающейся стрельбе из пулемета она покатится под влиянием толчков отдачи в сторону, противоположную направлению стрельбы.
На таком принципе и основано действие реактивного двигателя. Источником движения в реактивном двигателе служит реакция или отдача газовой струи.
В закрытом сосуде находится сжатый газ. Давление газа равномерно распределяется на стенки сосуда, который при этом остается неподвижным. Но если удалить одну из торцовых стенок сосуда, то сжатый газ, стремясь расшириться, начнет быстро вытекать из отверстия наружу.
Давление газа на противоположную по отношению к отверстию стенку уже не будет уравновешиваться, и сосуд, если он не закреплен, начнет двигаться. Важно отметить, что чем больше давление газа, тем больше скорость его истечения, и тем быстрее будет двигаться сосуд.
Для работы реактивного двигателя достаточно сжигать в резервуаре порох или иное горючее вещество. Тогда избыточное давление в сосуде вынудит газы непрерывно вытекать в виде струи продуктов сгорания в атмосферу со скоростью тем большей, чем выше давление внутри самого резервуара и чем меньше давление снаружи. Истечение газов из сосуда происходит под влиянием силы давления, совпадающей с направлением выходящей через отверстие струи. Следовательно неизбежно появится и другая сила равной величины и противоположного направления. Она-то и заставит резервуар двигаться.

Эта сила носит название силы реактивной тяги.
Все реактивные двигатели можно подразделить на несколько основных классов. Рассмотрим группировку реактивных двигателей по роду используемого в них окислителя.
В первую группу входят реактивные двигатели с собственным окислителем, так называемые ракетные двигатели. Эта группа в свою очередь состоит из двух классов: ПРД – пороховых реактивных двигателей и ЖРД – жидкостных реактивных двигателей.
В пороховых реактивных двигателях топливо одновременно содержит горючее и необходимый для его сгорания окислитель. Простейшим ПРД является хорошо всем известная фейерверочная ракета. В таком двигателе порох сгорает в течение нескольких секунд или даже долей секунды. Развиваемая при этом реактивная тяга довольно значительна. Запас топлива ограничен объемом камеры сгорания.
В конструктивном отношении ПРД исключительно прост. Он может применяться как непродолжительно работающая, но создающая все же достаточно большую силу тяги установка.
В жидкостных реактивных двигателях в состав топлива в состав топлива входит какая-либо горючая жидкость (обычно керосин или спирт) и жидкий кислород или какое-нибудь кислородосодержащее вещество (например, перекись водорода или азотная кислота). Кислород или заменяющее его вещество, необходимое для сжигания горючего, принято называть окислителем. При работе ЖРД горючее и окислитель непрерывно поступают в камеру сгорания; продукты сгорания извергаются наружу через сопло.
Жидкостный и пороховой реактивные двигатели, в отличие от остальных, способны работать в безвоздушном пространстве.
Вторую группу образуют воздушно-реактивные двигатели – ВРД, использующие окислитель из воздуха. Они в свою очередь подразделяются на три класса: прямоточные ВРД (ПВРД), пульсирующие ВРД (ПуВРД), и турбореактивные двигатели (ТРД).
В прямоточном (или бес компрессорном) ВРД горючее сжигается в камере сгорания в атмосферном воздухе, сжатом своим собственным скоростным напором. Сжатие воздуха осуществляется по закону Бернулли. Согласно этому закону, при движении жидкости или газа по расширяющемуся каналу скорость струи уменьшается, что ведет к повышению давления газа или жидкости.
Для этого в ПВРД предусмотрен диффузор – расширяющийся канал, по которому атмосферный воздух попадает в камеру сгорания.
Площадь выходного сечения сопла обычно значительно больше площади входного сечения диффузора. Кроме того по поверхности диффузора давление распределяется иначе и имеет большие значения, чем на стенках сопла. В результате действия всех этих сил возникает реактивная тяга.
КПД прямоточного ВРД при скорости полета 1000 километров в час равен примерно 8-9%. А при увеличении этой скорости в 2 раза КПД в ряде случаев может достигнуть 30% – выше, чем у поршневого авиадвигателя. Но надо заметить, что ПВРД обладает существенным недостатком: такой двигатель не дает тяги на месте и не может, следовательно, обеспечить самостоятельный взлет самолета.
Сложнее устроен турбореактивный двигатель (ТРД). В полете встречный воздух проходит через переднее входное отверстие к компрессору и сжимается в несколько раз. Сжатый компрессором воздух попадает в камеру сгорания, куда впрыскивается жидкое горючее (обычно керосин); образующиеся при сгорании этой смеси газы подаются к лопаткам газовой турбины.
Диск турбины закреплен на одном валу с колесом компрессора, поэтому горячие газы, проходящие через турбину, приводят ее во вращение вместе с компрессором. Из турбины газы попадают в сопло. Здесь давление их падает, а скорость возрастает. Выходящая из двигателя газовая струя создает реактивную тягу.
В отличие от прямоточного ВРД турбореактивный двигатель способен развивать тягу и при работе на месте. Он может самостоятельно обеспечить взлет самолета. Для запуска ТРД применяются специальные пусковые устройства: электростартеры и газотурбостартеры.
Экономичность ТРД на до звуковых скоростях полета намного выше, чем прямоточного ВРД. И только на сверхзвуковых скоростях порядка 2000 километров в час расход горючего для обоих типов двигателей становится примерно одинаковым.

Краткая история развития реактивной авиации

Самым известным и наиболее простым реактивным двигателем является пороховая ракета, много столетий назад изобретенная в древнем Китае. Естественно, что пороховая ракета оказалась первым реактивным двигателем, который попытались использовать в качестве авиационной силовой установки.
В самом начале 30-х годов в СССР развернулись работы, связанные с созданием реактивного двигателя для летательных аппаратов. Советский инженер Ф.А.Цандер еще в 1920 году высказал идею высотного ракетного самолета. Его двигатель “ОР-2”, работавший на бензине и жидком кислороде, предназначался для установки на опытный самолет.
В Германии при участии инженеров Валье, Зенгера, Опеля и Штаммера начиная с 1926 года систематически производились эксперименты с пороховыми ракетами, устанавливавшимися на автомобиль, велосипед, дрезину и, наконец, на самолет. В 1928 году были получены первые практические результаты: ракетный автомобиль показал скорость около 100 км/час, а дрезина – до 300 км/час. В июне того же года был осуществлен первый полет самолета с пороховым реактивным двигателем. На высоте 30 м. Этот самолет пролетел 1,5 км., продержавшись в воздухе всего одну минуту. Спустя немногим более года полет был повторен, причем была достигнута скорость полета 150 км/час.
К концу 30-х годов нашего века в разных странах велись исследовательские, конструкторские и экспериментальные работы по созданию самолетов с реактивными двигателями.

В 1939 году в СССР состоялись летные испытания прямоточных воздушно-реактивных двигателей (ПВРД) на самолете “И-15” конструкции Н.Н.Поликарпова. ПВРД конструкции И.А.Меркулова были установлены на нижних плоскостях самолета в качестве дополнительных моторов. Первые полеты проводил опытный летчик-испытатель П.Е.Логинов. На заданной высоте он разгонял машину до максимальной скорости и включал реактивные двигатели. Тяга дополнительных ПВРД увеличивала максимальную скорость полета. В 1939 году были отработаны надежный запуск двигателя в полете и устойчивость процесса горения. В полете летчик мог неоднократно включать и выключать двигатель и регулировать его тягу. 25 января 1940 года после заводской отработки двигателей и проверки их безопасности во многих полетах состоялось официальное испытание – полет самолета с ПВРД. Стартовав с Центрального аэродрома имени Фрунзе в Москве, летчик Логинов включил на небольшой высоте реактивные двигатели и сделал несколько кругов над районом аэродрома.
Эти полеты летчика Логинова в 1939 и 1940 годах были первыми полетами на самолете со вспомогательными ПВРД. Вслед за ним в испытании этого двигателя приняли участие летчики-испытатели Н.А.Сопоцко, А.В.Давыдов и А.И.Жуков. Летом 1940 года эти двигатели были установлены и испытаны на истребителе И-153 “Чайка” конструкции Н.Н.Поликарпова. Они увеличивали скорость самолета на 40-50 км/час.

Однако при скоростях полета, которые могли развивать винтовые самолеты, дополнительные бес компрессорные ВРД расходовали очень много горючего. Есть у ПВРД еще один важный недостаток: такой двигатель не дает тяги на месте и не может, следовательно, обеспечить самостоятельный взлет самолета. Это означает, что самолет с подобным двигателем должен быть обязательно снабжен какой-либо вспомогательной стартовой силовой установкой, например винтомоторной, иначе ему не подняться в воздух.
В конце 30-х – начале 40-х годов нашего столетия разрабатывались и испытывались первые самолеты с реактивными двигателями других типов.

Один из первых полетов человека на самолете с жидкостным реактивным двигателем (ЖРД) был также совершен в СССР. Советский летчик В.П.Федоров в феврале 1940 года испытал в воздухе ЖРД отечественной конструкции. Летным испытаниям предшествовала большая подготовительная работа. Спроектированный инженером Л.С.Душкиным ЖРД с регулируемой тягой прошел всесторонние заводские испытания на стенде. Затем его установили на планер конструкции С.П.Королева. После того, как двигатель успешно прошел наземные испытания на планере, приступили к летным испытаниям. Реактивный самолет отбуксировали обычным винтовым самолетом на высоту 2 км. На этой высоте летчик Федоров отцепил трос и, отлетев на некоторое расстояние от самолета-буксировщика, включил ЖРД. Двигатель устойчиво работал до полного израсходования топлива. По окончании моторного полета летчик благополучно спланировал и приземлился на аэродроме.
Эти летные испытания явились важной ступенью на пути создания скоростного реактивного самолета.

Вскоре советский конструктор В.Ф.Болховитинов спроектировал самолет, на котором в качестве силовой установки был использован ЖРД Л.С.Душкина. Несмотря на трудности военного времени, уже в декабре 1941 года двигатель был построен. Параллельно создавался и самолет. Проектирование и постройка этого первого в мире истребителя с ЖРД были завершены в рекордно короткий срок: всего за 40 дней. Одновременно шла подготовка и к летным испытаниям. Проведение первых испытаний в воздухе новой машины, получившей марку “БИ”, было возложено на летчика-испытателя капитана Г.Я.Бахчиванджи.
15 мая 1942 года состоялся первый полет боевого самолета с ЖРД. Это был небольшой остроносый самолет-моноплан с убирающимся в полете шасси и хвостовым колесом. В носовом отсеке фюзеляжа помещались две пушки калибром 20 мм, боезапас к ним и радиоаппаратура. Далее были расположены кабина пилота, закрытая фонарем, и топливные баки. В хвостовой части находился двигатель. Полетные испытания прошли успешно.
В годы Великой Отечественной войны советские авиаконструкторы работали и над другими типами истребителей с ЖРД. Конструкторский коллектив, руководимый Н.Н.Поликарповым, создал боевой самолет “Малютка”. Другой коллектив конструкторов во главе с М.К.Тихонравовым разработал реактивный истребитель марки “302”.
Работы по созданию боевых реактивных самолетов широко проводились и за рубежом.
В июне 1942 года состоялся первый полет немецкого реактивного истребителя-перехватчика “Ме-163” конструкции Мессершмитта. Только девятый вариант этого самолета был запущен в серийное производство в 1944 году.
Впервые этот самолет с ЖРД был применен в боевой обстановке в середине 1944 года при вторжении союзнических войск во Францию. Он предназначался для борьбы с бомбардировщиками и истребителями противника над немецкой территорией. Самолет представлял собой моноплан без горизонтального хвостового оперения, что оказалось возможным благодаря большой стреловидности крыла.

Фюзеляжу была придана обтекаемая форма. Наружные поверхности самолета были очень гладкие. В носовом отсеке фюзеляжа размещалась ветрянка для привода генератора электросистемы самолета. В хвостовой части фюзеляжа устанавливался двигатель – ЖРД с тягой до 15 кН. Между корпусом двигателя и обшивкой машины имелась огнеупорная прокладка. Баки с горючим были размещены в крыльях, а с окислителями – внутри фюзеляжа. Обычного шасси на самолете не было. Взлет происходил с помощью специальной стартовой тележки и хвостового колеса. Сразу же после взлета эта тележка сбрасывалась, а хвостовое колесо убиралось внутрь фюзеляжа. Управление самолетом производилось посредством руля поворота, установленного, как обычно, за килем, и размещенных в плоскости крыла рулей высоты, которые одновременно являлись и элеронами. Посадка производилась на стальную посадочную лыжу длиной около 1,8 метра с полозом шириной 16 сантиметров. Обычно самолет взлетал, используя тягу установленного на нем двигателя. Однако по замыслу конструктора была предусмотрена возможность использования подвесных стартовых ракет, которые сбрасывались после взлета, а также возможность буксировки другим самолетом до нужной высоты. При работе ЖРД в режиме полной тяги самолет мог набирать высоту почти по вертикали. Размах крыльев самолета составлял 9,3 метра, его длина – около 6 метров. Полетный вес при взлете был равен 4,1 тонны, при посадке – 2,1 тонны; следовательно, за все время моторного полета самолет становился почти вдвое легче – расходовал примерно 2 тонны топлива. Длина разбега была более 900 метров, скороподъемность – до 150 метров в секунду. Высоту в 6 километров самолет достигал через 2,5 минуты после взлета. Потолок машины был 13,2 километра. При непрерывной работе ЖРД полет продолжался до 8 минут. Обычно по достижении боевой высоты двигатель работал не непрерывно, а периодически, причем самолет то планировал, то разгонялся. В результате общая продолжительность полета могла быть доведена до 25 минут и даже более. Для такого режима работы характерны значительные ускорения: при включении ЖРД на скорости 240 километров в час самолет достигал скорости 800 километров в час спустя 20 секунд (за это время он пролетал 5,6 километров со средним ускорением 8 метров в секунду квадрат). У земли этот самолет развивал максимальную скорость 825 километров в час, а в интервале высот 4-12 километров его максимальная скорость возрастала до 900 километров в час.

В тот же период в ряде стран велись интенсивные работы по созданию воздушно-реактивных двигателей (ВРД) различных типов и конструкций. В Советском Союзе, как уже говорилось, испытывался прямоточный ВРД, установленный на самолете-истребителе.
В Италии в августе 1940 года был совершен первый 10-минутный полет реактивного самолета-моноплана “Кампини-Капрони СС-2”. На этом самолете был установлен так называемый мотокомпрессорный ВРД (этот тип ВРД не рассматривался в обзоре реактивных двигателей, так как он оказался невыгодным и распространения не получил). Воздух входил через специальное отверстие в передней части фюзеляжа в трубу переменного сечения, где поджимался компрессором, который получал вращение от расположенного позади звездообразного поршневого авиамотора мощностью 440 лошадиных сил.
Затем поток сжатого воздуха омывал этот поршневой мотор воздушного охлаждения и несколько нагревался. Перед поступлением в камеру сгорания воздух смешивался с выхлопными газами от этого мотора. В камере сгорания, куда впрыскивалось топливо, в результате его сжигания температура воздуха повышалась еще больше.
Газо-воздушная смесь, вытекавшая из сопла в хвостовой части фюзеляжа, создавала реактивную тягу этой силовой установки. Площадь выходного сечения реактивного сопла регулировалась посредством конуса, могущего перемещаться вдоль оси сопла. Кабина пилота располагалась вверху фюзеляжа над трубой для потока воздуха, проходящей через весь фюзеляж. В ноябре 1941 года на этом самолете был совершен перелет из Милана в Рим (с промежуточной посадкой в Пизе для заправки горючим), длившийся 2,5 часа, причем средняя скорость полета составила 210 километров в час.

Как видим, реактивный самолет с двигателем, выполненным по такой схеме, оказался неудачным: он был лишен главного качества реактивного самолета – способности развивать большие скорости. К тому же расход горючего у него был весьма велик.
В мае 1941 года в Англии состоялся первый испытательный полет экспериментального самолета Глостер “Е-28/39” с ТРД с центробежным компрессором конструкции Уиттла.
При 17 тысячах оборотов в минуту этот двигатель развивал тягу около 3800 ньютонов. Экспериментальный самолет представлял собой одноместный истребитель с одним ТРД, расположенным в фюзеляже позади кабины пилота. Самолет имел убирающееся в полете трехколесное шасси.

Полтора года спустя, в октябре 1942 года, было проведено первое летное испытание американского реактивного самолета-истребителя “Эркомет” Р-59А с двумя ТРД конструкции Уиттла. Это был моноплан со среднерасположенным крылом и с высоко установленным хвостовым оперением.
Носовая часть фюзеляжа была сильно вынесена вперед. Самолет был оснащен трехколесным шасси; полетный вес машины составлял почти 5 тонн, потолок – 12 километров. При летных испытаниях была достигнута скорость 800 километров в час.

Среди других самолетов с ТРД этого периода следует отметить истребитель Глостер “Метеор”, первый полет которого состоялся в 1943 году. Этот одноместный цельнометаллический моноплан оказался одним из наиболее удачных реактивных самолетов-истребителей того периода. Два ТРД были установлены на низко расположенном свободнонесущем крыле. Серийный боевой самолет развивал скорость 810 километров в час. Продолжительность полета составляла около 1,5 часов, потолок – 12 километров. Самолет имел 4 автоматические пушки калибра 20 миллиметров. Машина обладала хорошей маневренностью и управляемостью на всех скоростях.

Этот самолет был первым реактивным истребителем, применявшемся в боевых воздушных операциях союзной авиации в борьбе против немецких самолетов-снарядов “V-1” в 1944 году. В ноябре 1941 года на специальном рекордном варианте этой машины был установлен мировой рекорд скорости полета – 975 километров в час.
Это был первый официально зарегистрированный рекорд, установленный на реактивном самолете. Во время этого рекордного полета ТРД развивали тягу примерно по 16 килоньютонов каждый, а потребление горючего соответствовало расходу приблизительно 4,5 тысячи литров в час.

В годы второй мировой войны несколько типов боевых самолетов с ТРД было разработано и испытано в Германии. Укажем на двухмоторный истребитель “Ме-262”, развивавший максимальную скорость 850-900 километров в час (в зависимости от высоты полета) и четырех моторный бомбардировщик “Арадо-234”.

Истребитель “Ме-262” был наиболее отработанной и доведенной конструкцией среди многочисленных типов немецких реактивных машин периода второй мировой войны. Боевая машина была вооружена четырьмя автоматическими пушками калибром 30 миллиметров.
На заключительном этапе Великой Отечественной войны в феврале 1945 года трижды Герой Советского Союза И.Кожедуб в одном из воздушных боев над территорией Германии впервые сбил реактивный самолет врага – “Ме-262”. В этом воздушном поединке решающим оказалось преимущество в маневренности, а не в скорости (максимальная скорость винтового истребителя “Ла-5” на высоте 5 километров была равна 622 километра в час, а реактивного истребителя “Ме-262” на той же высоте – около 850 километров в час).
Интересно отметить, что первые немецкие реактивные самолеты оснащались ТРД с осевым компрессором, причем максимальная тяга двигателя была менее 10 килоньютонов. В то же время английские реактивные истребители были оборудованы ТРД с центробежным компрессором, развивающим примерно вдвое большую тягу.

Уже в начальный период развития реактивных машин прежние знакомые формы самолетов претерпевали более или менее значительные изменения. Весьма необычно выглядел, например, английский реактивный истребитель “Вампир” двух балочной конструкции.
Еще более непривычным для глаза был экспериментальный английский реактивный самолет “Летающее крыло”. Этот бес фюзеляжный и бесхвостый самолет был выполнен в виде крыла, в котором размещались экипаж, горючее и т.д. Органы стабилизации и управления также были установлены на самом крыле. Достоинством этой схемы является минимальное лобовое сопротивление. Известные трудности представляет решение проблемы устойчивости и управляемости “Летающего крыла”.

При разработке этого самолета ожидалось, что стреловидность крыла позволит добиться большой устойчивости в полете при одновременном существенном уменьшении сопротивления. Английская авиационная фирма “Де-Хевиленд”, построившая самолет, предполагала использовать его для изучения явлений сжимаемости воздуха и устойчивости полета при больших скоростях. Стреловидность крыла этого цельнометаллического самолета составляла 40 градусов. Силовая установка состояла из одного ТРД. На концах крыльев в специальных обтекателях находились противоштопорные парашюты.
В мае 1946 года самолет “Летающее крыло” был впервые испытан в пробном полете. А в сентябре того же года во время очередного испытательного полета он потерпел аварию и разбился. Пилотировавший его летчик трагически погиб.

В нашей стране в годы Великой Отечественной войны начались обширные исследовательские работы по созданию боевых самолетов с ТРД. Война ставила задачу – создать самолет-истребитель, обладающий не только большой скоростью, но и значительной продолжительностью полета: ведь разработанные реактивные истребители с ЖРД имели весьма малую продолжительность полета – всего 8-15 минут. Были разработаны боевые самолеты с комбинированной силовой установкой – винтомоторной и реактивной. Так, например, истребители “Ла-7” и “Ла-9” были снабжены реактивными ускорителями.
Работа над одним из первых советских реактивных самолетов началась еще в 1943-1944 годах.

Эта боевая машина создавалась конструкторским коллективом, возглавляемым генералом инженерно-авиационной службы Артемом Ивановичем Микояном. То был истребитель “И-250” с комбинированной силовой установкой, которая состояла из поршневого авиадвигателя жидкостного охлаждения типа “ВК-107 А” с воздушным винтом и ВРД, компрессор которого получал вращение от поршневого мотора. Воздух поступал в воздухозаборник под валом винта, проходил по каналу под кабиной летчика и поступал в компрессор ВРД. За компрессором были установлены форсунки для подачи топлива и запальная аппаратура. Реактивная струя выходила через сопло в хвостовой части фюзеляжа. Свой первый полет “И-250” совершил еще в марте 1945 года. Во время летных испытаний была достигнута скорость, значительно превышающая 800 километров в час.
Вскоре этот же коллектив конструкторов создал реактивный истребитель “МИГ-9”. На нем устанавливались два ТРД типа “РД-20”. Каждый двигатель развивал тягу до 8800 ньютонов при 9,8 тысячах оборотов в минуту. Двигатель типа “РД-20” с осевым компрессором и регулируемым соплом имел кольцевую камеру сгорания с шестнадцатью горелками вокруг форсунок для впрыска топлива. 24 апреля 1946 года летчик-испытатель А.Н.Гринчик совершил на самолете “МИГ-9” первый полет. Как и самолет “БИ”, эта машина мало отличалась по своей конструктивной схеме от поршневых самолетов. И все же замена поршневого мотора реактивным двигателем повысила скорость примерно на 250 километров в час. Максимальная скорость “МИГ-9” превышала 900 километров в час. В конце 1946 года эта машина была запущена в серийное производство.

В апреле 1946 года был совершен первый полет на реактивном истребителе конструкции А.С.Яковлева. Для облегчения перехода к производству этих самолетов с ТРД был использован серийный винтовой истребитель “Як-3”, у которого передняя часть фюзеляжа и средняя часть крыла были переделаны под установку реактивного двигателя. Этот истребитель применялся как реактивный тренировочный самолет наших ВВС.
В 1947-1948 годах прошел летные испытания советский реактивный истребитель конструкции А.С.Яковлева “Як-23”, который обладал более высокой скоростью.
Это было достигнуто благодаря установке на нем турбореактивного двигателя типа “РД-500”, который развивал тягу до 16 килоньютонов при 14,6 тысячах оборотов в минуту. “Як-23” представлял собой одноместный цельнометаллический моноплан со среднерасположенным крылом.

При создании и испытании первых реактивных самолетов наши конструкторы столкнулись с новыми проблемами. Оказалось, что одного увеличения тяги двигателя еще недостаточно для осуществления полета со скоростью, близкой к скорости распространения звука. Исследования сжимаемости воздуха и условий возникновения скачков уплотнения проводились советскими учеными начиная с 30-х годов. Особенно большой размах они приобрели в 1942-1946 годах после летных испытаний реактивного истребителя “БИ” и других наших реактивных машин. В результате этих исследований уже к 1946 году был поставлен вопрос о коренном изменении аэродинамической схемы высокоскоростных реактивных самолетов. Встала задача создания реактивных самолетов со стреловидным крылом и оперением. Наряду с этим возникли и смежные задачи – потребовалась новая механизация крыла, иная система управления и т.д.

Настойчивая творческая работа научно-исследовательских, конструкторских и производственных коллективов увенчалась успехом: новые отечественные реактивные самолеты ни в чем не уступали мировой авиационной технике того периода. Среди скоростных реактивных машин, созданных в СССР в 1946-1947 годах, выделяется своими высокими летно-тактическими и эксплуатационными характеристиками реактивный истребитель конструкции А.И.Микояна и М.И.Гуревича “МИГ-15”, со стреловидным крылом и оперением. Применение стреловидного крыла и оперения повысило скорость горизонтального полета без существенных изменений его устойчивости и управляемости. Увеличению скорости самолета во многом способствовало также повышение его энерговооруженности: на нем был установлен новый ТРД с центробежным компрессором “РД-45” с тягой около 19,5 килоньютонов при 12 тысячах оборотов в минуту. Горизонтальная и вертикальная скорости этой машины превосходили все достигнутое ранее на реактивных самолетах.
В испытаниях и доводке самолета принимали участие летчики-испытатели Герои Советского Союза И.Т.Иващенко и С.Н.Анохин. Самолет имел хорошие летно-тактические данные и был прост в эксплуатации. За исключительную выносливость, простоту в техническом обслуживании и легкость в управлении он получил прозвище “самолет-солдат”.
Конструкторское бюро, работающее под руководством С.А.Лавочкина, одновременно с выпуском “МИГ-15” создало новый реактивный истребитель “Ла-15”. Он имел стреловидное крыло, расположенное над фюзеляжем. На нем было мощное бортовое вооружение. Из всех существовавших тогда истребителей со стреловидным крылом “Ла-15” имел наименьший полетный вес. Благодаря этому самолет “Ла-15” с двигателем “РД-500”, имевшим меньшую тягу, чем двигатель “РД-45”, установленный на “МИГ-15”, обладал примерно такими же летно-тактическими данными, как и “МИГ-15”.

Стреловидность и специальный профиль крыльев и оперения реактивных самолетов резко уменьшили сопротивление воздуха при полетах со скоростью распространения звука. Теперь на волновом кризисе сопротивление возрастало уже не в 8-12 раз, а всего в 2-3 раза. Это подтвердили и первые сверхзвуковые полеты советских реактивных самолетов.

Применение реактивной техники в гражданской авиации

Вскоре реактивные двигатели стали устанавливаться и на самолетах гражданской авиации.
В 1955 году за рубежом начал эксплуатироваться многоместный пассажирский реактивный самолет “Комета-1”. Эта пассажирская машина с четырьмя ТРД обладала скоростью около 800 километров в час на высоте 12 километров. Самолет мог перевозить 48 пассажиров.
Дальность полета составляла около 4 тысяч километров. Вес с пассажирами и полным запасом горючего составлял 48 тонн. Размах крыльев, имеющих небольшую стреловидность и относительно тонкий профиль, – 35 метров. Площадь крыльев – 187 квадратных метров, длина самолета – 28 метров. Однако после крупной аварии этого самолета в Средиземном море его эксплуатация была прекращена. Вскоре стал использоваться конструктивный вариант этого самолета – “Комета-3”.

Представляют интерес данные об американском пассажирском самолете с четырьмя турбовинтовыми двигателями Локхид “Электра”, рассчитанном на 69 человек (включая экипаж из двух пилотов и бортинженера). Число пассажирских мест могло быть доведено до 91. Кабина герметизирована, входная дверь двойная. Крейсерская скорость этой машины – 660 километров в час. Вес пустого самолета – 24,5 тонн, полетный вес – 50 тонн, в том числе 12,8 тонн горючего для рейса и 3,2 тонны запасного горючего. Заправка и обслуживание самолета на промежуточных аэродромах занимали 12 минут. Выпуск самолета был начат в 1957 году.

Американская фирма “Боинг” с 1954 года проводила испытания самолета “Боинг-707” с четырьмя ТРД. Скорость самолета – 800 километров в час, высота полета – 12 километров, дальность – 4800 километров. Этот самолет был предназначен для использования в военной авиации в качестве “воздушного танкера” – для заправки боевых самолетов горючим в воздухе, но мог быть переоборудованным и для применения в гражданской транспортной авиации. В последнем случае на машине могло быть установлено 100 пассажирских мест.
В 1959 году началась эксплуатация французского пассажирского самолета “Каравелла”. У самолета был круглый фюзеляж диаметром 3,2 метра, в котором был оборудован герметизированный отсек длиной 25,4 метра. В этом отсеке размещалась пассажирская кабина на 70 мест. Самолет имел стреловидное крыло, скошенное назад под углом 20 градусов. Взлетный вес самолета – 40 тонн. Силовая установка состояла из двух ТРД с тягой по 40 килоньютонов каждый. Скорость самолета была около 800 километров в час.
В СССР уже в 1954 году на одной из воздушных авиалиний доставка срочных грузов и почты производилась скоростными реактивными самолетами “Ил-20.

С весны 1955 года реактивные почтово-грузовые самолеты “Ил-20” начали курсировать на воздушной трассе Москва-Новосибирск. На борту самолетов – матрицы столичных газет. Благодаря использованию этих самолетов жители Новосибирска получали московские газеты в один день с москвичами.

На авиационном празднике 3 июля 1955 года на Тушинском аэродроме под Москвой впервые был показан новый реактивный пассажирский самолет конструкции А.Н.Туполева “ТУ-104.
Этот самолет с двумя ТРД тягой по 80 килоньютонов каждый имел отличные аэродинамические формы. Он мог перевозить 50 пассажиров, а в туристическом варианте – 70. Высота полета превышала 10 километров, полетный вес – 70 тонн. Самолет имел прекрасную звуко- и теплоизоляцию. Машина была герметична, воздух в салон отбирался от компрессоров ТРД. В случае отказа одного ТРД самолет мог продолжать полет на другом. Дальность беспосадочного перелета составляла 3000-3200 километров. Скорость полета могла достигать 1000 километров в час.

15 сентября 1956 года самолет Ту-104 совершил первый регулярный рейс с пассажирами по трассе Москва-Иркутск. Через 7 часов 10 минут летного времени, преодолев с посадкой в Омске 4570 километров, самолет приземлился в Иркутске. Время в пути по сравнению с полетом на поршневых самолетах сократилось почти втрое. 13 февраля 1958 года самолет Ту-104 стартовал в первый (технический) рейс по авиалинии Москва-Владивосток – одной из самых протяженных в нашей стране.

“ТУ-104” получил высокую оценку и в нашей стране и за рубежом. Иностранные специалисты, выступив в печати, заявили, что начав регулярную перевозку пассажиров на реактивных самолетах “ТУ-104”, Советский Союз на два года опередил США, Англию и другие западные страны по массовой эксплуатации пассажирских турбореактивных самолетов: американский реактивный самолет «Боинг-707» и английская «Комета-IV» вышли на воздушные линии только в конце 1958 года, а французский «Каравелла» – в 1959 году.
В гражданской авиации также использовались самолеты с турбовинтовыми двигателями (ТВД). Эта силовая установка по устройству похожа на ТРД, но в ней на одном валу с турбиной и компрессором с передней стороны двигателя установлен воздушный винт. Турбина здесь устроена таким образом, что раскаленные газы, поступающие из камер сгорания в турбину, отдают ей большую часть своей энергии. Компрессор потребляет мощность значительно меньше той, которую развивает газовая турбина, а избыточная мощность турбины передается на вал винта.

ТВД – промежуточный тип авиационной силовой установки. Хотя газы, выходящие из турбины, и выпускаются через сопло и их реакция порождает некоторую тягу, основная тяга создается работающим винтом, как у обычного винтомоторного самолета.
ТВД не получил распространения в боевой авиации, так как он не может обеспечить такую скорость движения, как чисто реактивные двигатели. Также он непригоден на экспрессных линиях гражданской авиации, где решающим фактором является скорость, а вопросы экономичности и стоимости полета отходят на второй план. Но турбовинтовые самолеты целесообразно использовать на трассах различной протяженности, рейсы по которым совершаются со скоростями порядка 600-800 километров в час. При этом нужно учитывать, что, как показал опыт, перевозка на них пассажиров на расстояние 1000 километров обходится на 30% дешевле, чем на винтовых самолетах с поршневыми авиадвигателями.
В 1956-1960 годах в СССР появилось много новых самолетов с ТВД. Среди них “ТУ-114”(220 пассажиров), “Ан-10”(100 пассажиров), “Ан-24”(48 пассажиров), “Ил-18”(89 пассажиров).

GE Aviation разрабатывает революционно новый реактивный двигатель, который сочетает в себе лучшие черты турбореактивных и турбовентиляторных двигателей, при этом обладает сверхзвуковой скоростью и эффективно использует топливо, сообщает zitata.org.

В настоящее время в рамках проекта USAF ADVENT разрабатываются новые двигатели, которые экономят топливо на 25 процентов и снабжены новыми возможностями.

В авиации существуют два основных вида реактивных двигателей: турбовентиляторные с низкой степенью двухконтурности, как правило, их называют турбореактивными двигателями и ТРД с высокой степенью двухконтурности. Турбореактивные двигатели с низкой степенью двухконтурности оптимизированы для высокой производительности, толкая различные истребители, но при этом используя невероятно много топлива. Результат производительности стандартного турбореактивного зависит от нескольких элементов (компрессор, камера сгорания, турбины и сопла).

Напротив, ТРД с высокой степенью двухконтурности, являются мощнейшими устройствами гражданской авиации, оптимизированными для сверхмощных толчков с эффективным использованием топлива, но плохо зарекомендовавшими себя на сверхзвуковых скоростях. Обычный турбореактивный двигатель низкого давления получает воздушный поток от вентилятора, который приводится в действие реактивной турбиной. Затем, поток воздуха поступаемый от вентилятора обходит камеры сгорания, действуя как большой пропеллер.

В ADVENT (ADaptive VErsitile ENgine Technology) двигателе появился третий, внешний байпас, который может быть открыт и закрыт в зависимости от условия полёта. При взлёте для уменьшения степени двухконтурности третий байпас закрыт. В результате этого, для увеличения тяги генерируется большой поток воздуха через компрессор высокого давления. При необходимости открывается третий байпас для увеличения степени двухконтурности и снижения расхода топлива.

Дополнительный обходной канал расположен вдоль верхней и нижней части двигателя. Это третий канал будет открыт или закрыт, как часть переменного цикла. Если канал открыт — степень двухконтурности будет расти, снижая расход топлива и повышая звуковой диапазон до 40 процентов. Если каналы закрыты, дополнительный воздух проходит через компрессора высокого и низкого давлений, что безусловно повышает тягу, увеличивает толчок и обеспечивает сверхзвуковой производительностью при взлёте.

Конструкция двигателя ADVENT основана на новых технологиях производства, таких как 3D печать сложных компонентов охлаждения и супермощных, но лёгкий керамических композитов. Они позволяют производить высокоэффективные реактивные двигатели, работающие при температуре выше температуры плавления стали.

Инженеры разработали новый двигатель для лёгких полётов. «Мы хотим, чтобы двигатель был невероятно надёжным и позволил пилоту сосредоточиться на его миссии», — говорит Abe Levatter, руководитель проекта GE Aviation. Мы взяли на себя ответственность и разработали двигатель, который оптимизирован для любых полётов».

В настоящее время GE тестирует основные компоненты двигателя и планирует запустить его в середине 2013 года. На видео, расположенном ниже можно увидеть новый двигатель ADVENT в действии.

Тут и так то летаешь с неким опасением, и все время оглядываешься в прошлое, когда самолеты были маленькие и могли запросто планировать при любой неполадке, а тут все больше и больше. Почитаем и посмотрим на такой авиационный двигатель.
Американская компания General Electric в данный момент проводит тестирование самого большого в мире реактивного двигателя. Новинка разрабатывается специально для новых Boeing 777X.

Реактивный двигатель-рекордсмен получил имя GE9X. С учетом того, что первые Боинги с этим чудом техники поднимутся в небо не ранее 2020 года, компания General Electric может быть уверена в их будущем. Ведь на данный момент общее число заказов на GE9X превышает 700 единиц.
А теперь включите калькулятор. Один такой двигатель стоит $29 миллионов. Что касается первых тестов, то они проходят в окрестностях городка Пиблс, штат Огайо, США. Диаметр лопасти GE9X составляет 3,5 метра, а входное отверстие в габаритах равно 5,5 м х 3,7 м. Один двигатель сможет выдавать реактивной тяги на 45,36 тонны.



По словам GE, ни один из коммерческих двигателей в мире не имеет такую высокую степень сжатия (степень сжатия 27:1), как GE9X.
В конструкции двигателя активно используются композиционные материалы, выдерживающие температуры до 1,3 тысячи градусов Цельсия. Отдельные детали агрегата созданы с использованием 3D-печати.



GE9X компания GE собирается устанавливать на широкофюзеляжный дальнемагистральный самолет Boeing 777X. Компания уже получила заказы на более чем 700 двигателей GE9X на сумму 29 миллиардов долларов от авиакомпаний Emirates, Lufthansa, Etihad Airways, Qatar Airways, Cathay Pacific и других.



Сейчас проходят первые испытания полного двигателя GE9X. Испытания начались еще в 2011 году, когда велась проверка компонентов. По словам GE, эта относительно ранняя проверка была проведена с целью получения испытательных данных и запуска процесса сертификации, так как компания планирует установить такие двигатели для летных испытаний уже в 2018 году.
Двигатель GE9X разработан для авиалайнера 777X и будет установлен на 700 самолетах. Это обойдется компании в 29 млрд долларов США. Под кожухом двигателя находятся 16 лопастей четвертого поколения из графитового волокна, которые нагнетают воздух в 11-ступенчатый компрессор. Последний повышает давление в 27 раз. Источник: "Агентство по инновациям и развитию",



Камера сгорания и турбина выдерживают температуры до 1315 °C, что дает возможность более эффективно использовать топливо и снизить его выбросы.
В дополнение GE9X оснащен топливными форсунками, напечатанными на 3D-принтере. Эту сложную систему аэродинамических труб и углублений компания хранит в тайне. Источник: "Агентство по инновациям и развитию"


На GE9X установлены турбина компрессора низкого давления и редуктор привода агрегатов. Последний приводит в действие насос для подачи горючего, маслонасос, гидравлический насос для системы управления ЛА. В отличие от предыдущего двигателя GE90, у которого было 11 осей и 8 вспомогательных агрегатов, новый GE9X оснащен 10 осями и 9 агрегатами.
Уменьшение количества осей не только снижает вес, но и уменьшает количество деталей и упрощает логистическую цепочку. Второй двигатель GE9X планируется подготовить для проведения испытаний в следующем году



В конструкции двигателя GE9X использовано множество деталей и узлов, изготовленных из легковесных и термоустойчивых композитных керамических материалов (ceramic matrix composites, CMC). Эти материалы способны выдерживать температуры до 1400 градусов Цельсия и это позволило значительно поднять температуру в камере сгорания двигателя.
"Чем большую температуру можно получить в недрах двигателя, тем большую эффективность он демонстрирует" - рассказывает Рик Кеннеди (Rick Kennedy), представитель компании GE Aviation, - "При более высокой температуре происходит более полное сгорание топлива, оно меньше расходуется и уменьшаются выбросы вредных веществ в окружающую среду".
Большое значение при изготовлении некоторых узлов двигателя GE9X сыграли современные технологии трехмерной печати. При их помощи были созданы некоторые детали, включая инжекторы топлива, столь сложной формы, которую невозможно получить путем традиционной механической обработки.
"Сложнейшая конфигурация топливных каналов - это тщательно охраняемая нами коммерческая тайна" - рассказывает Рик Кеннеди, - "Благодаря этим каналам топливо распределяется и распыляется в камере сгорания наиболее равномерным способом".



Следует отметить, что недавние испытания являются первым разом, когда двигатель GE9X был запущен в его полностью собранном виде. А разработка этого двигателя, сопровождавшаяся стендовыми испытаниями отдельных узлов, производилась в течение нескольких последних лет.
И в заключении следует отметить, что несмотря на то, что двигатель GE9X носит титул самого большого в мире реактивного двигателя, он не является рекордсменом по силе создаваемой им реактивной тяги. Абсолютным рекордсменом по этому показателю является двигатель предыдущего поколения GE90-115B, способный развивать тягу в 57.833 тонны (127 500 фунтов).
  • Физика
  • Ракетные двигатели - одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги - это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос.

    К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?

    Мощнее

    Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла.

    Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству.

    Второе место по тяге держит отечественный жидкостной двигатель РД-171М - 793 тонны.


    Четыре камеры сгорания - это один двигатель. И человек для масштаба

    Казалось бы - вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 - целых 416 тонн? Странно. Непонятно.

    Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?

    Эффективнее

    Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра. В баллистике для оценки такой эффективности есть специальный параметр - удельный импульс.
    Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива

    Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP


    Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником...

    Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.

    Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд.


    Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»?

    Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках.

    Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?

    С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 - успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

    Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше ~460, физика запрещает). Были проекты атомных двигателей ( , ), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?

    Напряженней

    Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР - в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).


    Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления

    Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя - РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.

    Надежней

    Каким бы ни был многообещающим по характеристикам двигатель, если он взрывается через раз, пользы от него немного. Сравнительно недавно, например, компания Orbital была вынуждена отказаться от использования хранившихся десятилетиями двигателей НК-33 с очень высокими характеристиками, потому что авария на испытательном стенде и феерический по красоте ночной взрыв двигателя на РН Antares поставили под сомнение целесообразность использования этих двигателей дальше. Теперь Antares будут пересаживать на российский же РД-181.


    Большая фотография по ссылке

    Верно и обратное - двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.

    Доступней

    Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США - в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.


    Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно

    TWR

    Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX - тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) - это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.

    Цена

    Этот параметр во многом связан с доступностью. Если вы делаете двигатель сами, то себестоимость вполне можно подсчитать. Если же покупаете, то этот параметр будет указан явно. К сожалению, по этому параметру не построить красивую таблицу, потому что себестоимость известна только производителям, а стоимость продажи двигателя тоже публикуется далеко не всегда. Также на цену влияет время, если в 2009 году РД-180 оценивался в $9 млн, то сейчас его оценивают в $11-15 млн.

    Вывод

    Как вы уже, наверное, догадались, введение было написано несколько провокационно (простите). На самом деле, у ракетных двигателей нет одного параметра, по которому их можно выстроить и четко сказать, какой самый лучший. Если же пытаться вывести формулу лучшего двигателя, то получится примерно следующее:
    Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить , при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания ), что его цена не станет неподъемной для вас.

    Скучно? Зато ближе всего к истине.

    И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими:


    Семейство РД-170/180/190 . Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса.


    Be-3 и RocketMotorTwo . Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой - это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.

    F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту.



    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков