Зависимость между моментами инерции при повороте координатных осей. Геометрические характеристики координатных осей Изменение моментов инерции при повороте осей

Зависимость между моментами инерции при повороте координатных осей. Геометрические характеристики координатных осей Изменение моментов инерции при повороте осей

Положим, что для произвольного сечения (рис. 1.13) моменты инерции относительно координатных осей z и y известны, а также известен центробежный момент инерции Izy. Требуется установить зависимости для моментов инерции относительно осей 11 zy, повернутых на угол по отношению к исходным осям z и y (рис. 1.13). Будем считать угол положительным, если поворот координатной системы происходит против хода часовой стрелки. Пусть для данного сечения IzI. yДля решения поставленной задачи найдем зависимость между координатами площадки dA в исходных и повернутых осях. Из рис.1.13 следует: Из треугольника из треугольника С учетом этого получаем Аналогично для координаты y1 получаем Учитывая, что окончательно имеем 1Воспользовавшись полученными зависимостями (1.23), (1.24) и выражениями для моментов инерции сечения (1.8), (1.9) и (1.11), определяем момент инерции относительно новых (повернутых) осей z1 и y1: Аналогично Центробежный момент инерции I относительно повернутых осей определится зависимостью После раскрытия скобок получим Складывая, получаем Сумма моментов инерции относительно взаимно перпендикулярных осей не меняется при их повороте и равна полярному моменту инерции сечения. Вычитая (1.27) из (1.26) получаем Формула (1.30) может служить для вычисления центробежного момента инерции относительно осей z и y , по известным моментам инерции относительно осей z , y и z1, y1, а формула (1.29) – для проверки вычислений моментов инерции сложных сечений. 1.8. Главные оси и главные моменты инерции сечения С изменением угла (см. рис. 1.13) меняются и моменты инерции. При некоторых значениях угла 0 моменты инерции имеют экстремальные значения. Осевые моменты инерции, имеющие максимальные и минимальные значения называются главными осевыми моментами инерции сечения. Оси, относительно которых осевые моменты инерции имеют максимальные и минимальные значения, являются главными осями инерции. С другой стороны, как уже отмечалось выше, главные оси, это оси относительно которых центробежный момент инерции сечения равен нулю. Для определения положения главных осей для сечений произвольной формы возьмём первую производную по от I и приравняем ее нулю: Откуда Эта формула определяет положения двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой – минимален. Необходимо заметить, что формула (1.31) может быть получена из (1.28), приравняв ее нулю. Если подставить значения угла, определяемого из выражения (1.31), в (1.26) и (1.27), то после преобразования получим формулы, определяющие главные осевые моменты инерции сечения По своей структуре эта формула аналогична формуле (4.12), определяющей главные напряжения (см. разд. 4.3). Если IzI, yто, исходя из исследований второй производной, вытекает, что максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси z, а минимальный момент инерции – относительно другой главной оси, расположенной под углом 0 Если II, yто все меняется наоборот. Значения главных моментов инерции Imax и I могут быть вычислены и по зависимостям (1.26) и (1.27), если подставить в них вместо значения. При этом сам собой решается вопрос: относительно какой главной оси получается максимальный момент инерции и относительно какой оси – минимальный? Необходимо обратить внимание, что если для сечения главные центральные моменты инерции относительно осей z и y равны, то у этого сечения любая центральная ось является главной и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний треугольник и др.). Это легко устанавливается из зависимостей (1.26), (1.27) и (1.28). Действительно, предположим, что для какого-то сечения оси z и y ─ главные центральные оси и кроме того I. yТогда из формул (1.26) и (1.27) получим, что Izy , 1а из формулы (1.28) убедимся, что 11 е. любые оси являются главными центральными осями инерции такой фигуры. 1.9. Понятие о радиусе инерции Момент инерции сечения относительно какой-либо оси можно представить в виде произведения площади сечения на квадрат некоторой величины, называемой радиусом инерции площади сечения где iz ─ радиус инерции относительно оси z . Тогда из (1.33) следует: Главным центральным осям инерции соответствуют главные радиусы инерции: 1.10. Моменты сопротивления Различают осевые и полярные моменты сопротивления. 1. Осевым моментом сопротивления называется отношение момента инерции относительно данной оси к расстоянию до наиболее удаленной точки поперечного сечения от этой оси. Осевой момент сопротивления относительно оси z: а относительно оси y: max где ymax и zmax─ соответственно расстояния от главных центральных осей z и y до точек наиболее удаленных от них. При расчетах используются главные центральные оси инерции и главные центральные моменты, поэтому под Iz и Iy в формулах (1.36) и (1.37) будем понимать главные центральные моменты инерции сечения. Рассмотрим вычисление моментов сопротивления некоторых простых сечений. 1. Прямоугольник (см. рис. 1.2): 2. Круг (см. рис. 1.8): 3. Трубчатое сечение кольцевое (рис. 1.14): . Для прокатных профилей моменты сопротивления приводятся в таблицах сортамента и в их определении нет необходимости (см. прил. 24 – 27). 2. Полярным моментом сопротивления называется отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения max 30 В качестве полюса обычно принимается центр тяжести сечения. Например, для круглого сплошного сечения (рис. 1.14): Для трубчатого круглого сечения. Осевые моменты сопротивления Wz и Wy характеризуют чисто с геометрической стороны сопротивляемость стержня (балки) деформации изгиба, а полярный момент сопротивления W сопротивляемость кручению.

Вычислим моменты инерции фигуры произвольной формы относительно осей, повернутых относительно заданных осей и
на угол(Рис.4.14)

Пусть моменты инерции относительно осей
и
известны. Выберем произвольную площадку
и выразим ее координаты в системе осей
и
через координаты в прежних осях
и
:

Найдем осевые и центробежный моменты инерции фигуры относительно повернутых осей
и
:

Принимая во внимание, что

;
и
,

Таким же образом установим:

Центробежный момент инерции принимает вид:

. (4.30)

Выразим осевые моменты через синус и косинус двойного угла. Для этого введем следующие функции:

. (4.31)

Подставляя (4.31) в формулы (4.27) и (4.28), получим:

Если сложить выражения для осевых моментов инерции (4.32) и (4.33), то получим:

Условие (4.34) представляет условие инвариантности суммы осевых моментов инерции относительно двух взаимно перпендикулярных осей, т.е. сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от величины угла поворота осей и является величиной постоянной. Ранее это условие было получено на том основании, что сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей равнялась величине полярного момента инерции относительно точки пересечения этих осей.

Исследуем уравнение для момента инерции на экстремум и найдем такое значение угла, при котором момент инерции достигнет экстремальной величины. Для этого возьмем первую производную от момента инерциипо углу(выражение (4.32)) и результат приравняем нулю. При этом положим
.

(4.35)

Выражение в скобках представляет собой центробежный момент инерции относительно осей, наклоненных к оси
под углом. Относительно этих осей центробежный момент инерции равен нулю:

, (4.36)

а это означает, что новые оси являются главными осями.

Ранее было определено, что главными осями инерции являются оси, относительно которых центробежный момент инерции равен нулю. Сейчас это определение можно расширить – это оси, относительно которых осевые моменты инерции имеют экстремальные значения . Моменты инерции относительно этих осей называютсяглавными моментами инерции .

Найдем положение главных осей инерции. Из выражения (4.36) можно получить:

. (4.37)

Полученная формула дает для угла два значения:и
.

Следовательно, существуют две взаимно перпендикулярные оси, относительно которых моменты инерции имеют экстремальные значения. Как уже отмечалось выше, такие оси называются главными осями инерции. Остается установить, относительно какой из осей момент инерции достигает максимального значения, а относительно какой – минимального значения. Решить эту задачу можно путем исследования второй производной от выражения (4.32) по углу . Подставив в выражение для второй производной значение углаили
и исследуя знак второй производной, можно судить о том, какой из углов соответствует максимальному моменту инерции, какой – минимальному. Ниже будут приведены формулы, которые дадут однозначное значение угла.

Найдем экстремальные значения для моментов инерции. Для этого преобразуем выражение (4.32) , вынося за скобку
:

Используем известную из тригонометрии функцию и подставим в нее выражение (4.37), получим:

. (4.39)

Подставляя в формулу (4.38) выражение (4.39) и производя необходимые вычисления, получаем два выражения для экстремальных моментов инерции, которые не включают в себя угол наклона осей :

; (4.40)

. (4.41)

Из формул (4.40) и (4.41) видно, что величины главных моментов инерции определяются непосредственно через моменты инерции относительно осей
и
. Поэтому их можно определять, не зная положения самих главных осей.

Зная экстремальные значения моментов инерции
и
можно помимо формулы (4.37) определять положение главных осей инерции.

Приведем без вывода формулы, позволяющие находить углы имежду осью
и главными осями:

;
(4.42)

Угол определяет положение оси, относительно которой момент инерции достигает максимальной величины (
), уголопределяет положение оси, относительно которой момент инерции достигает минимальной величины (
).

Введем еще одну геометрическую характеристику, которая называется радиусом инерции сечения. Обозначается эта характеристика буквой и может быть вычислена относительно осей
и
следующим образом:

;
(4.43)

Радиус инерции находит широкое применение в задачах сопротивления материалов и его применение будет рассмотрено в следующих разделах курса.

Рассмотрим несколько примеров расчетов конструкций с учетом поворота осей и с использованием радиуса инерции сечения.

Пример 4.7. Моменты инерции сечения прямоугольной формы относительно главных осей равны соответственно
см 4 ,
см 4 . При повороте на 45 0 моменты инерции относительно новых осей оказались одинаковыми. Чему равна их величина?

Для решения задачи воспользуемся выражением (4.28) с учетом того, что центробежный момент инерции относительно главных осей равен нулю:

Подставим в формулу (а) численные значения для моментов инерции и угла поворота осей:

Пример 4.8. У которой из фигур (Рис.4.15), имеющих одинаковую площадь, радиус инерции относительно оси , будет наибольшим? Определить наибольший радиус инерции сечения относительно оси .

1. Найдем площадь каждой из фигур и размеры сечений. Площадь фигур равняется для третьей фигуры см 2 .

Диаметр первого сечения найдем из выражения:

см.

Размер стороны квадрата:

Основание треугольника:

см.

2. Находим моменты и радиусы инерции каждого из сечений относительно центральной оси .

Для сечения круглой формы:

см 4 ;
см.

Для сечения квадратной формы:

см 4 ;
см.

Для сечения прямоугольной формы:

;

Для сечения треугольной формы:

см 4 ;
см.

Наибольший радиус инерции оказался у сечения прямоугольной формы и равен он
см.

Главные оси и главные моменты инерции

При повороте осей координат центробежный момент инерции меняет знак, а следовательно, существует такое положение осей, при котором центробежный момент равен нулю.

Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями , а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения .

Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I1 и I2 причем I1>I2 . Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.

Предположим, что оси u и v главные. Тогда

Отсюда

.

(6.32)

Уравнение (6.32) определяет положение главных осей инерции сечения в данной точке относительно исходных осей координат. При повороте осей координат изменяются также и осевые момента инерции. Найдем положение осей, относительно которых осевые моменты инерции достигают экстремальных значений. Для этого возьмем первую производную от Iu по α и приравняем ее нулю:

отсюда

.

К тому же результату приводит и условие dIv / dα. Сравнивая последнее выражение с формулой (6.32), приходим к заключению, что главные оси инерции являются осями, относительно которых осевые моменты инерции сечения достигают экстремальных значений.

Для упрощения вычисления главных моментов инерции формулы (6.29) - (6.31) преобразовывают, исключая из них с помощью соотношения (6.32) тригонометрические функции:

.

(6.33)

Знак плюс перед радикалом соответствует большему I1 , а знак минус - меньшему I2 из моментов инерции сечения.

Укажем на одно важное свойство сечений, у которых осевые моменты инерции относительно главных осей одинаковы. Предположим, что оси y и z главные (Iyz =0), а Iy = Iz . Тогда согласно равенствам (6.29) - (6.31) при любом угле поворота осей α центробежный момент инерции Iuv =0, а осевые Iu=Iv.

Итак, если моменты инерции сечения относительно главных осей одинаковы, то все оси, проходящие через ту же точку сечения, являются главными и осевые моменты инерции относительно всех этих осей одинаковы: Iu=Iv=Iy=Iz. Этим свойством обладают, например, квадратные, круглые, кольцевые сечения.

Формула (6.33) аналогична формулам (3.25) для главных напряжений. Следовательно, и главные моменты инерции можно определять графическим способом методом Мора.

Изменение моментов инерции при повороте осей координат

Предположим, что задана система осей координат и известны моменты инерции Iz , Iy и Izy фигуры относительно этих осей. Повернем оси координат на некоторый угол α против часовой стрелки и определим моменты инерции той же фигуры относительно новых осей координат u и v.

Рис. 6.8.

Из рис. 6.8 следует, что координаты какой-либо точки в обеих системах координат связаны между собой соотношениями

Момент инерции

Следовательно,

(6.29)

(6.30)

Центробежный момент инерции

.

(6.31)

Из полученных уравнений видно, что

,

т. е. сумма осевых моментов инерции при повороте осей координат остается величиной постоянной. Поэтому, если относительно какой-либо оси момент инерции достигает максимума, то относительно перпендикулярной ей оси он имеет минимальное значение.



Вычислим моменты инерции J u , J v и J uv :

Сложив первые две формулы (3.14), получим J u + J v = J z + J y , т.е. при любом повороте взаимно перпендикулярных осей сумма осевых моментов инерции остается величиной постоянной (инвариантом).

Главные оси и главные моменты инерции

Исследуем функцию J u (a) на экстремум. Для этого приравняем нулю производную J u (a) по a.

Ту же самую формулу получим, приравнивая нулю центробежный момент инерции

.

Главными осями называют оси, относительно которых осевые моменты инерции принимают экстремальные значения, а центробежный момент инерции равен нулю.

Главных осей инерции можно провести бесчисленное множество, взяв в качестве начала координат любую точку на плоскости. Для решения задач сопротивления материалов нас интересуют только главные центральные оси инерции. Главные центральные оси инерции проходят через центр тяжести сечения.

Формула (3.17) дает два решения, отличающихся на 90°, т.е. позволяет определить два значения угла наклона главных осей инерции относительно первоначальных осей. Относительно какой из осей получается максимальный осевой момент инерции J 1 = J max , а относительно какой – минимальный J 2 = J min , придется решать по смыслу задачи.

Более удобными оказываются другие формулы, которые однозначно определяют положение главных осей 1 и 2 (даются без вывода). При этом положительный угол отсчитывается от оси Оz против часовой стрелки.

В формуле (3.19) знак «+» соответствует максимальному моменту инерции, а знак «–» минимальному.

Замечание. Если сечение имеет хотя бы одну ось симметрии, то относительно этой оси и любой другой, ей перпендикулярной, центробежный момент инерции равен нулю. В соответствии с определением главных осей инерции можно заключить, что эти оси являются главными осями инерции, т.е. ось симметрии – всегда главная центральная ось.

Для симметричных профилей, представленных в сортаменте, швеллера или двутавра, главными центральными осями инерции будут вертикальная и горизонтальная оси, пересекающиеся на половине высоты профиля.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков