Три этапа в развитии физики элементарных частиц — Гипермаркет знаний. Конспект урока физики на тему "Мир элементарных частиц" (11 класс) Урок элементарные частицы и их взаимодействия

Три этапа в развитии физики элементарных частиц — Гипермаркет знаний. Конспект урока физики на тему "Мир элементарных частиц" (11 класс) Урок элементарные частицы и их взаимодействия

1 слайд

Элементарные частицы Муниципальное бюджетное нетиповое общеобразовательное учреждение "Гимназия №1 имени Тасирова Г.Х. города Белово" Презентация к уроку физики в 11 классе (профильный уровень) Выполнила: Попова И.А., учитель физики Белово, 2012 г.

2 слайд

Цель: Ознакомление с физикой элементарных частиц и систематизация знаний по теме. Развитие абстрактного, экологического и научного мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях

3 слайд

Сколько элементов в таблице Менделеева? Всего лишь 92. Как? Там больше? Верно, но все остальные - искусственно полученные, они в природе не встречаются. Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества! Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры). Он был большим путешественником, и его любимым изречением было: "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

4 слайд

Античастица - частица, имеющая ту же массу и спин, но противоположные значения зарядов всех типов; Хронология физики частиц Для любой элементарной частицы есть своя античастица Дата Фамилия ученого Открытие (гипотеза) 400 лет до н.э. Демокрит Атом НачалоXXв. Томсон Электрон 1910 г. Э. Резерфорд Протон 1928 г. Дирак иАндерсон Открытие позитрона 1928 г. А. Эйнштейн Фотон 1929 г. П. Дирак Предсказание существованияантичастиц 1931 г Паули Открытие нейтрино и антинейтрино 1932 г. Дж. Чедвик Нейтрон 1932 г античастица - позитроне+ 1930 г. В. Паули Предсказание существованиянейтриноn 1935 г. Юкава Открытие мезона

5 слайд

Хронология физики частиц Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы). Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц Дата Открытие (гипотеза) Второй этап 1947 г. Открытиеπ-мезонаpв космических лучах До начала 1960-х гг. Было открыто несколько сотен новых элементарных частиц, имеющих массы в диапазоне от 140 МэВ до 2 ГэВ.

6 слайд

Хронология физики частиц Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц. Дата Фамилия ученого Открытие (гипотеза) Третий этап 1962 г. М.Гелл-Манни независимо Дж. Цвейг Предложили модель строения сильно взаимодействующих частиц из фундаментальных частиц - кварков 1995 г. Открытие последнего из ожидавшихся, шестого кварка

7 слайд

Как обнаружить элементарную частицу? Обычно изучают и анализируют следы (траектории или треки), оставленные частицами, по фотографиям

8 слайд

Классификация элементарных частиц Все частицы делятся на два класса: Фермионы, которые составляют вещество; Бозоны, через которые осуществляется взаимодействие.

9 слайд

Классификация элементарных частиц Фермионы подразделяются на лептоны кварки. Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.

10 слайд

Кварки Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г. Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином. М. Гелл-Манн на конференции в 2007 г.

11 слайд

Что такое спин? Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве; Спин (от англ. to spin – крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно! Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике; Спин (от англ. spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого

12 слайд

Спины некоторых микрочастиц Спин Ообщееназвание частиц Примеры 0 скалярные частицы π-мезоны,K-мезоны,хиггсовскийбозон, атомы и ядра4He, чётно-чётные ядра, парапозитроний 1/2 спинорные частицы электрон, кварки, протон, нейтрон, атомы и ядра3He 1 векторные частицы фотон, глюон, векторные мезоны, ортопозитроний 3/2 спин-векторные частицы Δ-изобары 2 тензорные частицы гравитон, тензорные мезоны

13 слайд

Кварки Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных. Заряды кварков дробные - от -1/3e до +2/3e (e - заряд электрона). Кварки в сегодняшней Вселенной существуют только в связанных состояниях - только в составе адронов. Например, протон - uud, нейтрон - udd.

14 слайд

Четыре вида физических взаимодействий гравитационные, электромагнитные, слабые, сильные. Слабое взаимодействие - меняет внутреннюю природу частиц. Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах. Ядерные Механизм взаимодействий один: за счет обмена другими частицами - переносчиками взаимодействия.

15 слайд

Электромагнитное взаимодействие: переносчик - фотон. Гравитационное взаимодействие: переносчики - кванты поля тяготения - гравитоны. Слабые взаимодействия: переносчики - векторные бозоны. Переносчики сильных взаимодействий: глюоны (от английского слова glue - клей), с массой покоя равной нулю. Четыре вида физических взаимодействий И фотоны, и гравитоны не имеют массы (массы покоя) и всегда движутся со скоростью света. Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является их массивность. Взаимодействие Радиус действия Конст.взаимдств. Гравитационное Бесконечно большой 6.10-39 Электромагнитное Бесконечно большой 1/137 Слабое Не превышает 10-16см 10-14 Сильное Не превышает 10-13см 1

16 слайд

17 слайд

Кварки имеют свойство, называемое цветовой заряд. Существуют три вида цветового заряда, условно обозначаемые как синий, зелёный Красный. Каждый цвет имеет дополнение в виде своего антицвета -антисиний, антизелёный и антикрасный. В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом. Свойства кварков: цвет

18 слайд

У кварков имеется два основных типа масс, несовпадающих по величине: масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и структурная масса (блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава. Свойства кварков: масса

19 слайд

Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как изоспин Iz, странность S, очарование C, прелесть (боттомность, красота) B′, истинность (топность) T. Свойства кварков: аромат

20 слайд

Свойства кварков: аромат Символ Название Заряд Масса рус. англ. Первое поколение d нижний down −1/3 ~ 5 МэВ/c² u верхний up +2/3 ~ 3 МэВ/c² Второе поколение s странный strange −1/3 95 ± 25 МэВ/c² c очарованный charm (charmed) +2/3 1,8 ГэВ/c² Третье поколение b прелестный beauty (bottom) −1/3 4,5 ГэВ/c² t истинный truth (top) +2/3 171 ГэВ/c²

21 слайд

22 слайд

23 слайд

Характеристики кварков Характеристика Тип кварка d u s c b t Электрический зарядQ -1/3 +2/3 -1/3 +2/3 -1/3 +2/3 Барионное числоB 1/3 1/3 1/3 1/3 1/3 1/3 СпинJ 1/2 1/2 1/2 1/2 1/2 1/2 ЧетностьP +1 +1 +1 +1 +1 +1 ИзоспинI 1/2 1/2 0 0 0 0 Проекция изоспинаI3 -1/2 +1/2 0 0 0 0 Странностьs 0 0 -1 0 0 0 Charm c 0 0 0 +1 0 0 Bottomness b 0 0 0 0 -1 0 Topness t 0 0 0 0 0 +1 Масса в составе адрона, ГэВ 0.31 0.31 0.51 1.8 5 180 Масса "свободного" кварка, ГэВ ~0.006 ~0.003 0.08-0.15 1.1-1.4 4.1-4.9 174+5

24 слайд

25 слайд

26 слайд

27 слайд

При каких ядерных процессах возникает нейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях

28 слайд

При каких ядерных процессах возникает антинейтрино? А. При α - распаде. Б. При β - распаде. В. При излучении γ - квантов. Г. При любых ядерных превращениях
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок проводится в 11 классе и рассчитан на 2 академических часа и разбит на несколько блоков:

  • характеристики, описывающие состояние электрона в атоме;

Каждый из этих блоков может рассматриваться как в отдельности, так и в совокупности. Так блок «Этапы развития физики элементарных частиц» (Слайды 1-5) может быть рассмотрен в 9 классе при изучении соответствующей темы на ознакомительном уровне. Так же в 9 классе можно использовать блок «Методы регистрации элементарных частиц» (Слайды 29-31) при организации работы учащихся с учебником. Блок «Виды взаимодействия и их свойства» (Слайды 11-15) может быть использован на первых уроках 10 класса.

Перед изучением темы в 11 классе (за неделю) учащиеся получают задание подготовить сообщения по следующим направлениям:

  • этапы развития физики элементарных частиц;
  • виды взаимодействий и их свойства;
  • методы регистрации элементарных частиц.

Эти темы ими уже изучены ранее (9-10 класс), поэтому подготовка не занимает много времени и обычно не вызывает вопросов. На уроке учащиеся делают записи в рабочих тетрадях, опираясь на сообщения и слайды презентации. Блок «Характеристики, описывающие состояние электрона в атомах» рассматривается лекционно. По ходу лекции учащиеся записывают только названия характеристик.

Используемая литература :

  1. Элементарный учебник физики под ред. акад. Г.С. Ландсберга. Том 3. М.: «Наука», 1975
  2. Б.М. Яворский, А.А. Детлаф Курс физики. Том 3. М.: «Высшая школа», 1971
  3. Б.М. Яворский, А.А. Детлаф Физика: Для школьников старших классов и поступающих в вузы. М.: «Дрофа», 2000
  4. Ваш репетитор. Физика. Интерактивные лекции. Диск 1. ООО «Мультимедиа Технологии и Дистанционное обучение», 2003
  5. Л.Я. Боревский Курс физики 21 века. М.: «МедиаХауз», 2003

Тема урока: «Элементарные частицы и их свойства»

Цель урока:

  • Образовательные : получить учащихся, усвоивших следующие знания:

    • в микромире выделяются три уровня, различающихся характерными масштабами и энергиями (молекулярно-атомный, ядерный, уровень элементарных частиц);
    • в природе существует около 400 различных элементарных частиц (вместе с античастицами);
    • различают 4 типа фундаментальных взаимодействий (сильное, электромагнитное, слабое, гравитационное)
    • сильное взаимодействие свойственно тяжелым частицам; в электромагнитном непосредственно участвуют только электрически заряженные частицы; слабое взаимодействие характерно для всех частиц, кроме фотонов; гравитационное взаимодействие присуще всем телам Вселенной, проявляясь в виде сил всемирного тяготения;
    • фундаментальные взаимодействия различаются интенсивностями, радиусами действия, характерными временами, а так же свойственными им законами сохранения;
    • все элементарные частицы делятся на лептоны (фундаментальные) и адроны (составные);
    • адроны делятся на мезоны и барионы;
  • Развивающие : получить учащихся, научившихся следующим видам деятельности:
    • распознавать различные виды фундаментальных взаимодействий по их характеристикам;
    • осуществлять классификацию элементарных частиц;
    • записывать реакции превращений элементарных частиц с учетом законов сохранения;
    • описывать устройство и принцип действия приборов для регистрации элементарных частиц;
  • Воспитательная : получить учащихся, убедившихся в том, что:
    • все элементарные частицы превращаются друг в друга, и эти взаимные превращения – главный факт их существования;
    • выявление общего (обменного) механизма всех фундаментальных взаимодействий дает надежду на возможность построения единой теории, объясняющей картину мира;
    • составными частями материи являются: 6 сортов кварков и 6 лептонов, взаимодействие между которыми осуществляется за счет обмена соответствующими переносчиками взаимодействий (фотон, 8 глюонов, 3 промежуточных бозона и гравитон)

Тип урока: комбинированный.

Оборудование: медиапроектор, экран, компьютер, таблица «Методы регистрации частиц», таблица «Фундаментальные взаимодействия», раздаточный материал (Приложение 1 , Приложение 2 )

План урока:

I. Активизация знаний

Вступительное слово учителя о необходимости познания научной картины мира.

II. Приобретение знаний

1) Сообщение учащегося «Этапы развития физики элементарных частиц» (Слайды 1-5)
2) Лекция «Состояние электрона в атоме» (Слайды 6-10)
3) Сообщение «Виды взаимодействий» (Слайды 11-15)
4) Лекция «Характеристики элементарных частиц» (Слайды 16-28)
5) Сообщение учащихся «Методы регистрации элементарных частиц» (Слайды 29-31)

3) Объясните возможность представленных реакций с точки зрения законов сохранения заряда (реакции подбираются на усмотрение учителя). Используйте данные таблицы (Приложение 1 )

4) Пользуясь законом сохранения заряда, таблицей 2 (Приложение 1 ) и Приложением 2 , объясните кварковый состав некоторых адронов (на усмотрение учителя)

IV. Контроль знаний

Задание 1.

По предложенным свойствам определите, к какому типу относятся представленные взаимодействия.

Тип взаимодействия Интенсивность Характерное время, с
1/137 ~10-20
~1 ~ 10-23
~ 10-38 ?
~ 10-10 ~

Задание 2.

Переносчиками какого типа взаимодействия являются:

  • Глюоны
  • Промежуточные бозоны
  • Фотоны
  • Гравитоны

Задание 3.

Каков радиус действия каждого из взаимодействий?

V. Домашнее задание

§§ 115, 116, краткие итоги гл.14

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УРОК 11/60

Тема. Элементарные частицы

Цель урока: дать понятие об элементарных частицах и их свойствах.

Тип урока: комбинированный урок.

ПЛАН УРОКА

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

· Этап первый. От электрона до позитрона: 1897-1932 pp . Элементарными мы считаем те частицы, которые с современной точки зрения не состоят из более простых.

Как заметил итальянский физик Энрико Ферми, понятие «элементарный» относится скорее к уровню наших знаний, чем к природе частиц. Согласно тому, как развивалась наука, много элементарных частиц переходили в разряд неелементарних.

· Этап второй. От позитрона до кварков: 1932-1964 гг .

Все элементарные частицы превращаются друг в друга, и эти взаимные превращения - главный факт их существования.

· Третий этап. От гипотезы о кварки (1964 г.) до наших дней. Большинство элементарных частиц имеет сложную структуру.

в 1964 году М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных (ядерных) взаимодействиях, построены из более фундаментальных частиц - кварков.

Мир элементарных частиц оказался очень сложным и запутанным. Но разобраться в нем все-таки удалось. И хотя окончательной теории элементарных частиц, которая объясняет все разнообразие их свойств, еще не разработан, много чего уже выяснилось. Поскольку молекулы, атомы и ядра можно подвергнуть расщеплению, они до элементарных частиц не принадлежат. Сказанное, однако, не означает, что элементарные частицы не могут состоять из каких-то других, еще более «мелких» образований. Кроме того, большинство из них имеет самое сложное строение. Но составляющие этих частиц удерживают такие силы, которые разорвать соответствующие связи, учитывая современные представления, принципиально несостоятельны.

Соответственно до этого все элементарные частицы делятся на два больших класса (см. рисунок): адроны (частицы, имеющие сложное строение) и фундаментальные (или истинно элементарные) частицы, которые сегодня относятся к безструктурних и поэтому претендуют на роль действительно первичных элементов материи.

Отличительной чертой всех адронов является их состав и способность к сильной взаимодействия, чем, собственно говоря, и обусловлено их название (греческое слово «хадрос» означает «большой», «сильный»). Никакие другие частицы в сильном взаимодействии участвовать не могут. Класс адронов самый многочисленный (более 300 частиц). В зависимости от кваркового состава все они делятся на две группы - барионы и мезоны.

Истинно элементарными частицами на сегодня считают переносчиков фундаментальных взаимодействий - лептоны и кварки.

Ø Согласно квантовой теории поля, все имеющиеся в природе фундаментальные взаимодействия (сильное, электромагнитное, слабое и гравитационное) имеют обменный характер.

Это означает, что как элементарные акты каждой из перечисленных взаимодействий выступают процессы, при которых частицы испускают и поглощают определенные кванты. Эти кванты и называются переносчиками соответствующих взаимодействий. Обмениваясь ими, частицы взаимодействуют друг с другом.

Английский физик П. Дирак в 1928 году создал релятивистскую теорию движения электрона. Из этой теории следовало, что электрон может иметь отрицательный и положительный заряд.

в 1932 году американский физик К. Андерсон, фотографируя следы космических частиц в камере Вильсона, обнаружил на одной из фотографий следует, что будто принадлежит электрону, но... с положительным зарядом. Частичку, которая дала странный след, Андерсон назвал позитроном. в 1933 году было открыто явление образования позитрона и электрона при взаимодействии γ-квантов с веществом:

1934 г. было обнаружено, что позитроны выпускают некоторые радиоактивные ядра (это связано с преобразованием ядерного протона в нейтрон):

Например, радиоактивное ядро изотопа Фосфора распадается на ядро Кремния, позитрон и нейтрино:

П. Дирак предполагал, что при встрече позитрона с электроном должно произойти обратный процесс: превращение этих частиц в два фотона. Вскоре после экспериментального обнаружения позитрона такой обратный процесс было установлено. Это процесс получил название аннигиляции.

Важно обратить внимание учащихся на то, что электрон и позитрон, которые имеют массу покоя, превращаются в два фотона, массы покоя не имеют. Из этого следует, что:

Ø на уровне элементарных частиц исчезает различие между веществом и полем.

Аннигиляция является причиной отсутствия на Земле позитронов: позитрон сразу же после своего появления встречается с электроном, и оба они превращаются в два фотона.

В свое время открытие рождения и аннигиляции электронно-позитронных пар было действительно сенсацией в науке. Впоследствии двойники - античастинки - были найдены во всех частиц.

1931 года В. Паулы предусмотрел, а в 1955 году экспериментально зарегистрировали нейтрино n и антинейтрино . Нейтрино появляется в ходе распада 1 0 n . в 1955 году было экспериментально получено антипротон во время столкновения быстрых протонов с ядром Купруму. в 1956 году открыт антинейтрон в реакции

Т.е. столкновение протона и антипротона приводит к появлению нейтрона и антинейтрона.

Античастинки могут отличаться от частиц знаком электрического заряда, направлением магнитного момента или иной характеристикой. Но основная особенность их такова:

Ø встреча античастинки с частичкой всегда приводит к их взаимной аннигиляции.

Атомы, ядра которых состоят из антинуклонів, а оболочка - из позитронов, образуют антивещество. в 1969 году впервые было получено антигелій.

При аннигиляции антивещества с веществом энергия покоя превращается в кинетическую энергию гамма-квантов, образующихся.

Энергия покоя - самый грандиозный и концентрированный резервуар энергии во Вселенной. И только во время аннигиляции она полностью высвобождается, превращаясь в другие виды энергии. Поэтому антивещество - самое совершенное источник энергии, самое калорийное «топливо». Ли способно будет человечество когда-нибудь это «горючее» использовать, сложно сейчас сказать.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Какие частицы называются элементарными?

2. Назовите частицы, которые в настоящее время считаются истинно элементарными.

3. Чем объясняются очень редкие случаи наблюдения позитрона?

4. Которые античастинки вы знаете?

5. Что понимают под антивеществом?

Второй уровень

1. Что такое фундаментальные частицы?

2. Какие виды фундаментальных взаимодействий вы знаете? Какие из них самые сильные? наиболее слабые?

3. Какие основные свойства кварков?

4. Существуют ли кварки в свободном состоянии?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

· Элементарными мы считаем те частицы, которые с современной точки зрения не состоят из более простых.

· На уровне элементарных частиц исчезает различие между веществом и полем.

· Встреча античастинки с частичкой всегда приводит к их взаимной аннигиляции.

Домашнее задание

Рів1 № 18.3; 18.4; 18.6; 18.10.

Рів2 № 18.11; 18.13; 18.14; 18.15.

Рів3 № 18.16, 18.17; 18.18; 18.19.

  • Развивающие:
  • Воспитательные:

Тип урока

Оборудование урока


«Bakotin»

Муниципальное казенное общеобразовательное учреждение

Хлебородненская средняя общеобразовательная школа

Бакотин Роман Владимирович

с. Хлебородное, 2015

Цели урока:

    Образовательные : систематизировать знания о строении атома, ввести понятия о новых элементарных частицах, обосновать взаимосвязь этапов развития физики элементарных частиц.

    Развивающие: проверить уровень самостоятельного мышления школьника при работе с учебником, справочником; сформировать элементы творческого поиска.

    Воспитательные: показать значение работ Э. Резерфорда, А.Ф. Иоффе для современной науки, воспитывать культуру логического мышления, формировать коммуникативные навыки работы в группах.

Тип урока : комбинированный (с использованием ИКТ)

Оборудование урока : компьютер, мультимедийный проектор, экран, мультимедийная презентация, портреты физиков (либо их фотографии в презентации).

Ход урока

    Введение в тему урока.

Слайд 1 (Приложение 1)

В.Я.Брюсов. Мир электрона

Быть может, эти электроны –

Миры, где пять материков,

И память сорока веков!

Вселенная, где сто планет;

Но также то, чего здесь нет.

Их меры малы, но все та же

Там та же мировая спесь…

Учитель: Давайте проанализируем стихотворение В. Я. Брюсова и ответим на вопросы

    О чем сегодня мы будем говорить?

    Как представляет поэт строение электрона?

    Как это согласуется с современными представлениями об электроне?

Учитель: Да, мы сегодня повторим наши знания о строении вещества, а также проведем сравнительный анализ этапов развития физики элементарных частиц.

    Проверка домашнего задания

1. 1. Устный опрос

Слайд 2 (Приложение 1)

    Из каких частиц состоит атом?

    Каков размер атома?

1.2 Работа с кроссвордом

Кроссворд (Приложение 2)

1.3 Работа с карточками

Каждая группа выбирает карточку с биографией ученых (сообщения о Резерфорде, Томсоне, Иоффе – Приложение 3, 4, 5 ). Необходимо сообщить, чем прославились данные ученые в области атомной физики.

    Изучение нового материала.

Учитель: Как нам уже известно, термин «АТОМ» был предложен Демокритом еще в глубокой древности. Современные исследования не только подтвердили его предположение, но и значительно расширили сведения о строении вещества.

Данные исследования в этой области можно разделить на три этапа. Каждый из них нес собой свою особенность и принципиальное значение.

      Работа с учебником

Каждая группа берет по одному этапу, знакомится с ним и маркером на большом листе бумаги составляют таблицу.

Примерная таблица может содержать следующие графы (на выбор учащихся)

      Работа с физическим словарем

Отдельно выписываем в словарь неизвестные термины, которые нужно будет объяснить для других групп (примерные термины СТРАННОСТЬ, АДРОНЫ, КВАРКИ, ЛЕПТОНЫ).

      Сообщения по изученному материалу (проводиться в порядке следования этапов)

На доске представляют три плаката с таблицами, о каждом из которых необходимо дать сообщение.

      Работа с тетрадью

    Необходимо рассмотреть предлагаемые таблицы.

    Скорректировать их.

    Записать в тетрадь.

Обобщенная (скорректированная) таблица может быть представлена на слайде.

Слайд 3 (Приложение 1)

ПРИМЕР таблицы.

Продолжительность этапа

Название этапа

Основное содержание

От электрона до позитрона

От позитрона до кварков

1964-….. до наших дней

    Рефлексия.

Слайд 4 (Приложение 1)

Вопросы для закрепления:

    Домашнее задание.

Параграф 93. Стр 224-227 Составить вопросы к параграфу

Просмотр содержимого документа
«Приложение 2»

1.Вещество, не проводящее электричество. 2 и 6. Ученые, опыты которых доказали существование и позволили измерить заряд электрона. 3. Сообщение телу электрического заряда. 4 и 5. Частицы, из которых состоит ядро атома. 7. Атом, потерявший или присоединивший один или несколько электронов. 8. Прибор, служащий для обнаружения заряда. 9. Одно из веществ, испускающих α-частицы.

По вертикали в выделенных клетках: ученый, опыт которого лежит в основе ядерной модели строения атома.

Ответы на кроссворд. По горизонтали: 1. Диэлектрик. 2.Милликен. 3. Электризация. 4.Нейрон. 5. Протон. 6. Иоффе. 7. Ион. 8. Электроскоп. 9.Радий. По вертикали: Резерфорд.

Просмотр содержимого документа
«Приложение 3»

Биография Эрнеста Резерфорда

Резерфорд Эрнест (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы.

Родился 30 августа 1871 г. в городе Спринг – Броув (Новая Зеландия) в семье шотландских эмигрантов. Отец работал механиком и фермером-льноводом, мать - учительницей. Эрнест был четвёртым из 12 детей Резерфордов и самым талантливым.

Уже при окончании начальной школы, как первый ученик, он получил премию в 50 фунтов стерлингов для продолжения образования. Благодаря этому Резерфорд поступил в колледж в Нельсоне (Новая Зеландия). После окончания колледжа юноша сдал экзамены в Кентерберийский университет и здесь серьёзно занялся физикой и химией.

Он участвовал в создании научного студенческого общества и сделал в 1891 г. доклад на тему «Эволюция элементов», где впервые прозвучала идея о том, что атомы - сложные системы, построенные из одних и тех же составных частей.

В период, когда в физике господствовала идея Дж. Дальтона о неделимости атома, эта мысль показалась абсурдной, и молодому учёному даже пришлось извиняться перед коллегами за «явную чепуху».

Правда, через 12 лет Резерфорд доказал свою правоту. После окончания университета Эрнест стал учителем средней школы, но это занятие было ему явно не по душе. К счастью, Резерфорду - лучшему выпускнику года - присудили стипендию, и он отправился в Кембридж - научный центр Англии - для продолжения занятий.

В Кавендишской лаборатории Резерфорд создал передатчик для радиосвязи в радиусе 3 км, но отдал приоритет на его изобретение итальянскому инженеру Г. Маркони, а сам приступил к изучению ионизации газов и воздуха. Учёный заметил, что урановое излучение имеет две составляющие - альфа- и бета-лучи. Это было открытием.

В Монреале при изучении активности тория Резерфорд открыл новый газ - радон. В 1902 г. в работе «Причина и природа радиоактивности» учёный впервые высказал мысль о том, что причиной радиоактивности является самопроизвольный переход одних элементов в другие. Он установил, что альфа-частицы заряжены положительно, их масса больше массы атома водорода, а заряд приблизительно равен заряду двух электронов, и это напоминает атомы гелия.

В 1903 г. Резерфорд стал членом Лондонского королевского общества, а с 1925 по 1930 г. занимал пост его президента.

В 1904 г. вышел фундаментальный труд учёного «Радиоактивные вещества и их излучения», который стал энциклопедией для физиков-ядерщиков. В 1908 г. Резерфорд стал нобелевским лауреатом за исследования радиоактивных элементов. Руководитель физической лаборатории в Манчестерском университете, Резерфорд создал школу физиков-ядерщиков, своих учеников.

Вместе с ними он занимался исследованием атома ив 1911 г. окончательно пришёл к планетарной модели атома, о чём написал в статье, вышедшей в майском номере «Философского журнала». Модель приняли не сразу, она утвердилась только после её доработки учениками Резерфорда, в частности Н. Бором.

Умер учёный 19 октября 1937 г. в Кембридже. Как и многие великие люди Англии, Эрнест Резерфорд покоится в соборе Святого Павла, в «Уголке науки», рядом с Ньютоном, Фарадеем, Дарённом, Гершелем.

Просмотр содержимого документа
«Приложение 4»

Биография Джорджа Томсона

Английский физик Джордж Паджет Томсон родился в Кембридже 3 мая 1892 г. в семье ученого-физика. Вступил в Тринити-Колледж 1910 г., он уже в следующем году стал старшекурсником и 1914 г. получил первые награды по математике и естественным наукам. Закончив тогда же университет со степенью бакалавра, он стал стипендиатом-исследователем и преподавателем математики в Корпус-кристи-колледже Кембриджа, работая здесь вплоть до 1922 г.

Во время войны Джордж Томсон служил во Франции лейтенантом, а потом вернулся в Англию, где на протяжении четырех лет работал над усовершенствованием самолетостроения. Научившись летать, Томсон написал свой первый учебник «Прикладная аэродинамика» (1919).

1922 г. Джордж Томсон стал профессором натурфилософии Абердинского университета Шотландии и пребывал в этой должности до 1930 г., когда его назначили профессором физики Империал колледжа Лондона. 1952 г. он возвращается в Кембридж как руководитель Корпус-кристи-колледжа, где и остается вплоть до выхода в отставку 1962 г. Именно в Абердине он сделал свой наиболее значительный взнос в теоретическую физику.

Основные работы Джорджа Томсона касаются атомной и ядерной физики, квантовой механики, аэродинамики, электрических разрядов в газах. Независимо от К.Девиссона он открыл явление дифракции электронов, чем экспериментально доказал волновую природу электрона. Джордж Томсон также исследовал геометрию электрономограм, теорию рассеяния.

Джордж Томсон и Девиссон поделили 1937 г. Нобелевскую премию по физике «за экспериментальное открытие дифракции электронов на кристаллах».

После 1937 г. Джордж Томсон неоднократно был научным советником британского Министерства авиации. 1941 г. возглавляемый им комитет передал британскому правительству вывод, в котором производство атомной бомбы признавалось осуществимым. Эта рекомендация повлияла на решение Великобритании принять участие в Манхеттенском проекте. После Второй мировой войны Джордж Томсон принимал активное участие в роботах по управляемому термоядерному синтезу. Он активно поддерживал международное сотрудничество по развитию атомной энергии в мирных целях. Свой последний взнос в физику он сделал 1951 г., когда исследовал космические частички в космических лучах.

Джорджу Томсону было 1943 г. предоставлено дворянство. Среди его многочисленных наград - медаль Хъюза (1939) и Королевская медаль (1949) Лондонского королевского общества, медаль Франклина (1960) и Фарадея (1960) Института инженеров электротехники и электроники. Он был иностранным членом Американской академии наук и искусств, Лиссабонской академии наук, а также членом-корреспондентом Австрийской академии наук.

Просмотр содержимого документа
«Приложение 5»

Биография Абрам Фёдорович Иоффе

А.Ф. Иоффе родился 29 октября 1980 г. в небольшом городке Ромны Полтавской губернии. В Ромнах не было гимназии - имелось лишь мужское реальное училище., в которое он и поступил. Примечательно, что его одноклассником оказался С.П. Тимошенко - впоследствии крупный механик, иностранный член АН СССР. Физикой Иоффе заинтересовался еще в училище. Он часто подчеркивал, что произошло это не благодаря влиянию учителей, а, скорее, ему вопреки: уровень преподавания в училище был очень низким, учителя были прежде всего вероподдаными чиновниками.

Как известно, до революции для поступления в университеты необходимо было знание древних языков, которые преподавались только в гимназиях. Поэтому по окончании реального училища А.Ф. Иоффе остановил свой выбор на Петербургском технологическом институте, в котором, по его мнению, в наибольшей степени можно было научиться физике. В этом институте преподавали выдающиеся ученые, в частности И.И. Боргман, Н.А. Гезехус, Б. Л. Розинг и др. Наряду с физикой, Иоффе много работал в области ее биологических приложений, что в конце ХІХ - начале ХХ в. Было более чем необычно. Хотя в научном плане эти исследования и не дали какого-либо существенного выхода, они укрепили его в убеждении о плодотворности приложения физики к проблемам биологии.

В Технологическом институте Иоффе занимался еще и чисто инженерными работами, в основном во время летней практики.

По окончании Технологического института (1902 г.) А.Ф. Иоффе, заручившись рекомендациями Н.А. Гезехуса и директора Палаты мер и весов профессора Н.Е. Егорова, направился в Мюнхен, где в те годы работал В.К. Рентген.

В годы работы в лаборатории Рентгена (1903-1906) А.Ф. Иоффе выполнил ряд крупных исследований. К их числу нужно отнести прецизионный эксперимент по определению «энергетической мощности» радия.

Работы А.Ф. Иоффе по механическим и электрическим свойствам кристаллов, выполненные в мюнхенские годы, носили систематический характер. В процессе их проведения на примере кристаллического кварца им был изучен и правильно объяснен эффект упругого последействия.

Изучение электрических свойств кварца, влияния на проводимость кристаллов рентгеновских лучей, ультрафиолетового и естественного света привели А.Ф. Иоффе к открытию внутреннего фотоэффекта, выяснению пределов применимости закона Ома для описания прохождения тока через кристалл и исследованию своеобразных явлений, разыгрывающихся в приэлектродных областях.

Все эти работы Иоффе закрепили за ним репутацию физика, глубоко вдумывающегося в механизмы изучаемых им процессов и с исключительной точностью проводящего опыты, расширяющие представления об атомно- электронных явлениях в твердых телах.

А.Ф. Иоффе, отказавшись от лестного предложения Рентгена остаться в Мюнхене - для продолжения исследований и преподавательской работе в Мюнхенском университете, после блестящей защиты там в 1905 г. Докторской диссертации.

С 1906 г. А.Ф. Иоффе начал работу в должности старшего лаборанта в Петербургском политехническом институте. В физической лаборатории института, которую возглавлял В.В. Скобельцын, Иоффе в 1906-1917 гг. Были выполнены блестящие работы по подтверждению эйнштейновской квантовой теории внешнего фотоэффекта, доказательству зернистой природы электронного заряда, определению магнитного поля катодных лучей (магистерская диссертация Петербургский университет, 1913 г.). Наряду с этим А.Ф. Иоффе продолжил и обобщал в докторской диссертации (Петроградский университет, 1915 г.) начатые еще в Мюнхене исследования по упругим и электрическим свойствам кварца и некоторых других кристаллов. Академия наук, в 1914 г. Наградила А.Ф. Иоффе премией им. С.А. Иванова.

К этим важнейшим циклам исследований А.Ф. Иоффе, добавим еще два: Одно из них - теоретическая работа ученого, посвященная тепловому излучению, в которой получили дальнейшее развитие классические исследования М. Планка.

Другая работа, также была выполнена им в физической лаборатории Политехнического института в соавторстве с преподавателем этого института М. В. Миловидовой-Кирпичевой. В работе исследовалась электропроводность ионных кристаллов. Результаты исследований по электропроводности ионных кристаллов были впоследствии, уже после окончания первой мировой войны, с блеском доложены А.Ф. Иоффе на сольвеевском конгрессе 1924 г., вызвали

оживленную дискуссию у его знаменитых участников, и получили их полное признание.

В 1926 г. Я.И. Френкель, основываясь на экспериментах А.Ф. Иоффе и М. В. Миловидовой-Кирпичевой о тепловой диссоциации решетки, развил кинетическую теорию явлений переноса в твердых телах и разработал в 1933 г. дырочную теорию электропроводности полупроводников.

Наряду с интенсивной исследовательской работой, А.Ф. Иоффе много сил и времени уделял преподаванию. Он читал лекции не только в Политехническом институте, профессором которого стал в 1915 г., но также на известных в городе курсах П.Ф. Лесгафта, в Горном институте и в университете. Однако самым главным в этой деятельности Иоффе била

организация в 1916 г. семинара по новой физике при Политехническом институте. Именно в эти годы А.Ф. Иоффе -сначала участник, а потом и руководитель семинара - выработал тот замечательный стиль ведения такого рода собраний, который создал ему заслуженную известность и характеризовал его как главу школы. Семинар Иоффе в Политехническом институте по праву считается важнейшим центром кристаллической физики.

Разработку планов физико-технического отдела будущего Государственного рентгенологического и радиологического института взял на себя А.Ф. Иоффе. Этот институт был создан 23 сентября 1918 г., а в 1921 г., его физико-технический отдел выделился в самостоятельный Государственный физико-технический рентгенологический институт (ФТИ), который более трех десятилетий и возглавлял А.Ф. Иоффе.

Наряду с созданием ФТИ, А.Ф. Иоффе принадлежит заслуга организации в 1919 г. при Политехническом институте факультета нового типа: физико-механического, деканом которого он также был более 30 лет.

Научная работа А.Ф. Иоффе была сосредоточена в стенах ФТИ, одной из лабораторий которого он неизменно заведовал, хотя тематика ее исследований, как и название, претерпели изменения. В 20-е годы основным направлением работы было изучение механических и электронных свойств твердого тела.

Начало 30-х годов ознаменовалось переходом ФТИ на новую тематику. Одним из основных направлений стала ядерная физика. А.Ф. Иоффе непосредственно ею и занимался, но наблюдая стремительный подъем этой области физики, быстро оценил ее грядущую роль в дальнейшем прогрессе науки и техники. Поэтому с конца 1932 г. физика ядра прочно вошла в тематику работ ФТИ.

С начала 30-х годов собственная научная работа А.Ф. Иоффе сосредоточилась на другой проблеме - проблеме физики полупроводников, и его лаборатория в ФТИ стала лабораторией полупроводников.

В 1950 г. А.Ф. Иоффе разработал теорию, на основе которой были сформулированы требования к полупроводниковым материалам, используемым в термобатареях и обеспечивающим получение максимального значения их КПД. Вслед за этим в 1951 г. Л.С. Стильбансом под руководством А.Ф. Иоффе и Ю.П. Маслаковца был разработан первый в мире холодильник. Это послужило началом развития новой области техники - термоэлектрического охлаждения. Соответствующие холодильники и термостаты широко применяются ныне во всем мире для решения ряда задач в радиоэлектронике, приборостроении, медицине, космической биологии и других областях науки и техники.

Последние годы жизни А.Ф. Иоффе прошли под знаком радостного творчества в стенах вновь созданного им Института полупроводников. Начиная с 1954 г. число публикаций маститого ученого в научных журналах, отражавшего его научную активность, резко возросло. Его работоспособность не могла не вызывать удивление и восхищение. Недаром одну из книг А.Ф. Иоффе на тему по термоэлектричеству назвали «библией по

термоэлектричеству».

Абрам Федорович скончался 14 октября 1960 г. , две недели не дожив до своего 80-летия. Но благодаря своим выдающимся способностям физика и организатора науки, благодаря высоким личным качествам Абрам Федорович Иоффе сумел создать в стенах ФТИ исключительно благоприятную почву для быстрого созревания талантов. В этом его непреходящая заслуга перед Родиной и наукой.

Просмотр содержимого презентации
«Приложение 1»


"Три этапа в развитии

физики

элементарных частиц"

Бакотин Роман Владимирович

с. Хлебородное, 2015


В.Я.Брюсов. Мир электрона

Быть может, эти электроны –

Миры, где пять материков,

Искусства, знанья, войны, троны

И память сорока веков!

Ещё, быть может, каждый атом –

Вселенная, где сто планет;

Там все, что здесь, в объеме сжатом,

Но также то, чего здесь нет.

Их меры малы, но все та же

Их бесконечность, как и здесь;

Там скорбь и страсть, как здесь, и даже

Там та же мировая спесь …


  • Какие частицы мы называем элементарными?
  • Назовите элементарные частицы?
  • Из каких частиц состоит атом?
  • Какие ученые давали свои прогнозы на строение атома?
  • Суть теории Томсона и Резерфорда?
  • Каков размер атома?

Продолжительность этапа

Название этапа

Основное содержание

От электрона до позитрона

Превращения в мире – это простая перестановка атомов. Все в мире изменяется кроме самих атомов, которые остаются неизменными. Открыто строение атомов, был выделен электрон, как составная часть атома.

От позитрона до кварков

1964-….. до наших дней

Все элементарные частицы превращаются друг в друга. Эти превращения главный факт их существования. Элементарные частицы- это первичные неделимые далее частицы, из которых построена вся материя. Но неделимость не означает отсутствие у них внутренней структуры.

От гипотезы о кварках до современности

Открытие группы «странных», «очарованных» частиц, резонансов. Открытие «кварков» их количества и дробности заряда.


  • Какие новые частицы вы сегодня узнали?
  • Сколько этапов в физике элементарных частиц можно выделить?
  • Существуют ли предпосылки к появлению четвертого этапа?


© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков