Теория электролитической диссоциации. Теория электрической диссоциации Сущность теории электролитической диссоциации

Теория электролитической диссоциации. Теория электрической диссоциации Сущность теории электролитической диссоциации

Проводимость веществами электрического тока или отсутствие проводимости можно наблюдать с помощью простого прибора.


Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара,то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия.


Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.


Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.


К электролитам относятся кислоты, основания и почти все соли.


К неэлектролитам относятся большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.


Электролиты - проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и протекает ток. Очевидно, чем больше ионов в растворе, тем лучше он проводит электрический ток. Чистая вода электрический ток проводит очень плохо.

Различают сильные и слабые электролиты.

Сильные электролиты при растворении вводе полностью диссоциируют на ионы.


К ним относятся:


1) почти все соли;


2) многие минеральные кислоты, например Н 2 SO 4 , HNO 3 , НСl, HBr, HI, НМnО 4 , НСlО 3 , НСlО 4 ;


3) основания щелочных и щелочноземельных металлов.


Слабые электролиты при растворении в воде лишь частично диссоциируют на ионы.


К ним относятся:


1) почти все органические кислоты;


2) некоторые минеральные кислоты, например H 2 СО 3 , Н 2 S, НNO 2 , HClO, H 2 SiO 3 ;


3) многие основания металлов (кроме оснований щелочных и щелочноземельных металлов), а также NH 4 OH, который можно изображать как гидрат аммиака NH 3 ∙H 2 O.


К слабым электролитам относится вода.


Слабые электролиты не могут дать большой концентрации ионов в растворе.

Основные положения теории электролитической диссоциации.

Распад электролитов на ионы при растворении их в воде называется элекролитической диссоциацией.


Так, хлорид натрия NaСl при растворении в воде полностью распадается на ионы натрия Na + и хлорид-ионы Cl - .

Вода образует ионы водорода Н + и гидроксид-ионы ОН - лишь в очень незначительных количествах.


Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи.


Современное содержание этой теории можно свести к следующим трем положениям:


1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.


Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na + , Mg 2+ , Аl 3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО 3 - , SO 2- 4 , РО З- 4 и т.д.).


2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.


Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.


3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).


Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К + и анион А - в общем виде записывается так:


КА ↔ K + + A -


Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.

Степень диссоциации.

Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.


Степенью диссоциации (а) называется отношение числа молекул, распавшихся на ионы (n"), к общему числу растворенных молекул (n):


Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.


Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается. Как правило, увеличивает степень диссоциации и повышение температуры. По степени диссоциации электролиты делят на сильные и слабые.


Рассмотрим смещение равновесия, устанавливающегося между недиссоциированными молекулами и ионами при электролитической диссоциации слабого электролита - уксусной кислоты:


СН 3 СООН ↔ СН 3 СОO - + Н +


При разбавлении раствора уксусной кислоты водой равновесие сместится в сторону образования ионов, - степень диссоциации кислоты возрастает. Наоборот, при упаривании раствора равновесие смещается в сторону образования молекул кислоты - степень диссоциации уменьшается.


Из этого выражения очевидно, что α может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.

Механизм диссоциации

Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды.


Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы:



Диссоциация полярных молекул может быть полной или частичной.


Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях.

Константа диссоциации.

Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.


Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:


A K → A - + K + .


Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как:



где К - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита.


Диапазон констант равновесия для разных реакций очень большой - от 10 -16 до 10 15 . Например, высокое значение К для реакции


означает, что если в раствор, содержащий ионы серебра Ag + ,внести металлическую медь, то в момент достижения равновесия концентрация ионов меди намного больше, чем квадрат концентрации ионов серебра 2 . Напротив, низкое значение К в реакции


говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.


Обратите особое внимание на форму записи выражений для константы равновесия. Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К 1).


Так, для реакции меди с серебром неправильным будет выражение:



Правильной будет следующая форма записи:


Это объясняется тем, что концентрации металлических меди и серебра введены в константу равновесия. Концентрации меди и серебра определяются их плотностью и не могут быть изменены. Поэтому эти концентрации нет смысла учитывать при расчете константы равновесия.


Аналогично объясняются выражения констант равновесия при растворении AgCl и AgI


Произведение растворимости. Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).


Для реакции диссоциации воды


выражение константы будет:




Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н 2 О] остается постоянной и вводится в константу равновесия.


Кислоты, основания и соли с позиций электролитической диссоциации.


С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.


Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода.


Например:


НCl ↔ Н + + С l - ;


СН 3 СООН ↔ Н + + СН 3 СОО -


Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени - по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами Н 3 РО 4 имеются ионы (в последовательно уменьшающихся количествах) Н 2 РО 2- 4 , НРО 2- 4 и РО 3- 4


Н 3 РО 4 ↔ Н + + Н 2 РО - 4 (первая ступень)


Н 2 РО - 4 ↔ Н + + НРO 2- 4 (вторая ступень)


НРО 2- 4 ↔ Н+ PО З- 4 (третья ступень)


Основностъ кислоты определяется числом катионов водорода, которые образуются при диссоциации.


Так, НCl, HNO 3 - одноосновные кислоты - образуется один катион водорода;


Н 2 S, Н 2 СО 3 , Н 2 SO 4 - двухосновные,


Н 3 РО 4 , Н 3 АsО 4 - трехосновные, так как образуются соответственно два и три катиона водорода.


Из четырех атомов водорода, содержащихся в молекуле уксусной кислоты СН 3 СООН, только один, входящий в карбоксильную группу - СООН, способен отщепляться в виде катиона Н + , - уксусная кислота одноосновная.


Двух - и многоосновные кислоты диссоциируют ступенчато (постепенно).


Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы.


Например:


KOH ↔ K + + OH - ;


NH 4 OH ↔ NH + 4 + OH -


Основания,растворимые в воде называются щелочами. Их немного. Это основания щелочных и щелочноземельных металлов: LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2 , а также NН 4 ОН. Большинство оснований в воде малорастворимо.


Кислотность основания определяется числом его гидроксильных групп (гидроксогрупп). Например, NН 4 ОН - однокислотное основание, Са(ОН) 2 - двухкислотное, Fе(ОН) 3 - трехкислотное и т. д. Двух- и многокислотные основания диссоциируют ступенчато


Ca(ОН) 2 ↔ Са(ОН) + + OH - (первая ступень)


Ca(OH) + ↔ Ca 2+ + OH - (вторая ступень)


Однако имеются электролиты, которые при диссоциации одновременно образуют катионы водорода, и гидроксид - ионы. Эти электролиты называются амфотерными или амфолитами. К ним относятся вода, гидроксиды цинка, алюминия, хрома и ряд других веществ. Вода, например, диссоциирует на ионы Н + и ОН - (в незначительных количествах):

Н 2 O ↔ Н + + ОН -


Следовательно, у нее в равной мере выражены и кислотные свойства, обусловленные наличием катионов водорода Н + , и щелочные свойства, обусловленные наличием ионов ОН - .


Диссоциацию амфотерного гидроксида цинка Zn(ОН) 2 можно выразить уравнением


2ОН - + Zn 2+ + 2Н 2 О ↔ Zn(ОН) 2 + 2Н 2 О ↔ 2- + 2Н +


Солями называются электролиты, при диссоциации которых образуются катионы металлов а также катион аммония (NH 4) и анионы кислотных остатков


Например:


(NH 4) 2 SO 4 ↔ 2NH + 4 + SO 2- 4 ;


Na 3 PO 4 ↔ 3Na + + PO 3- 4


Так диссоциируют средние соли. Кислые же и основные соли диссоциируют ступенчато. У кислых солей вначале отщепляются ионы металлов, а затем катионы водорода. Например:


KHSO 4 ↔ K + + HSO - 4



HSO - 4 ↔ H + + SO 2- 4


У основных солей вначале отщепляются кислотные остатки, а затем гидроксид-ионы.


Mg(OH)Cl ↔ Mg(OH) + + Cl -



Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электрической проводимости раствора можно рассчитать его осмотическое давление, а следовательно, и поправочный коэффициент L Значения i, вычисленные им из электрической проводимости, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой - ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации.

Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами, к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами : к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация HCl выразится уравнением:

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля, о которых говорилось в начале этой главы. В качестве примера мы приводили понижение температуры замерзания раствора NaCL Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na + и Cl - . При этом из одного моля NaCl получается не 6,02 IO 23 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению

осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем если бы хлорид бария находился в нем в виде молекул BaCl 2 .

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И.А. Каблукову , впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

  • Иван Алексеевич Каблуков (1857-1942) занимался изучением электрическойпроводимости растворов. Его работа «Современные теории растворов (Вант-Гоффаи Аррениуса) в связи с учением о химическом равновесии» оказала большое влияние наразвитие физической химии в России и способствовала углублению теории электролитической диссоциации.

Электролитическая диссоциация - процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблукови В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс.

Вещества, распадающиеся на ионы, называют электролитами. Электролиты – вещества с ионной или сильно ковалентной связью: кислоты, основания, соли. остальные вещества – неэлектролиты; к ним относятся вещества с неполярной или слабо полярной ковалентной связью; например, многие органические соединения.

Основные положения ТЭД (Теории электролитической диссоциации):

Молекулы распадаются на положительно и отрицательно заряженные ионы (простые и сложные).

Под действием электрического тока катионы (положительно заряженные ионы движутся к катоду(-), а анионы (отрицательно заряженные ионы) к аноду(+)

Степень диссоциации зависит от природы вещества и растворителя, концентрации, температуры.

Если степень диссоциации зависит от природы вещества, то можно судить, что существует разграничение между определёнными группами веществ.

Большая степень диссоциации присуща сильным электролитам (большинству оснований, солям, многим кислотам). Стоит учесть, что распад на ионы – обратимая реакция. Так же стоит сказать, что в данной теме не будут разобраны примеры диссоциации двойных и основных солей, их диссоциация описана в теме “соли”.
Примеры сильных электролитов:
NaOH, K 2 SO 4 , HClO 4
Уравнения диссоциации:
NaOH⇄Na + +OH -

K 2 SO 4 ⇄2K + +SO 4 2-

HClO 4 ⇄H + +ClO 4 -

Количественной характеристикой силы электролитов является степень диссоциации (α) – отношение молярной концентрации продиссоциировавшего электролита к его общей молярной концентрации в растворе.

Степень диссоциации выражается в долях единицы или в процентах. Интервал значений – от 0 до 100%.

α = 0% относится к неэлектролитам (диссоциация отсутствует)

0% <α < 100% относится к слабым электролитам (диссоциация неполная)
α = 100% относится к сильным электролитам (полная диссоциация)

Так же стоит помнить про количество ступеней диссоциации, например:
Диссоциация раствора H 2 SO 4

H 2 SO 4 ⇄H + +HSO 4 -

HSO 4 - ⇄H + +SO 4 2-

У каждой ступени диссоциации своя степень диссоциации.
Например, диссоциация солей CuCl 2 , HgCl 2:
CuCl 2 ⇄Cu 2+ +2Cl - диссоциация протекает полностью

А в случае с хлоридом ртути диссоциация идёт неполностью и то не до конца.

HgCl 2 ⇄HgCl + +Cl -

Возвращаясь же к раствору серной кислоты, стоит сказать, что степень диссоциации обеих ступеней разбавленной кислоты гораздо больше, чем у концентрированной. При диссоциации концентрированного раствора очень много молекул вещества и большая концентрация гидроанионов HSO 4 - .

У многоосновных кислот и многокислотных оснований диссоциация идёт в несколько ступеней (в зависимости от основности).

Перечислим сильные и слабые кислоты и приступим к уравнениям ионного обмена:
Сильные кислоты (HCl, HBr, HI, HClO 3 , HBrO 3 , HIO 3 , HClO 4 , H 2 SO 4 , H 2 SeO 4 ,HNO 3 , HMnO 4 , H 2 Cr 2 O 7)

Слабые кислоты (HF, H 2 S, H 2 Se, HClO, HBrO, H 2 SeO 3 , HNO 2 ,H 3 PO 4 , H 4 SiO 4 , HCN, H 2 CO 3 , CH 3 COOH)

Химические реакции в растворах и расплавах электролитов протекают с участием ионов. В таких реакциях степени окисления элементов не изменяются, и сами реакции называются реакциями ионного обмена .

Реакции ионного обмена будут протекать до конца (необратимо) , если образуются малорастворимые или практически нерастворимые вещества (они выпадают в осадок), летучие вещества (выделяются в виде газов) или слабые электролиты (например, вода).

Реакции ионного обмена принято писать в три стадии:
1. Молекулярное уравнение
2. Полное ионное уравнение
3. Сокращенное ионное уравнение
При написании обязательно указывать осадки и газы, а так же руководствоваться таблицей растворимости.

Реакции, где все реагенты и продукты получились растворимые в воде, не протекают.


Несколько примеров:
Na 2 CO 3 +H 2 SO 4 →Na 2 SO 4 +CO 2 +H 2 O

2Na + +CO 3 2- +2H + +SO 4 2- →2Na + +SO 4 2- +CO 2 +H 2 O

CO 3 2- +2H + →CO 2 +H 2 O

Сокращённое ионное уравнение получается с помощью вычёркивания одинаковых ионов из обеих частей полного ионного уравнения.

Если реакция ионного обмена идёт между двумя солями с образованием осадка, то следует брать два хорошо растворимых реагента. То есть, реакция ионного обмена пойдёт если растворимость реагентов будет выше, чем у одного из продуктов.

Ba(NO 3) 2 +Na 2 SO 4 →BaSO 4 ↓+2NaNO 3

Иногда при написании реакций ионного обмена пропускают полное ионное уравнение и сразу пишут сокращенное.

Ba 2+ +SO 4 2- →BaSO 4 ↓

Для получения осадка малорастворимого вещества всегда надо выбирать хорошо растворимые реагенты в их концентрированных растворах.
Например:
2KF+FeCl 2 →FeF 2 ↓+2KCl

Fe 2+ +2F - →FeF 2 ↓

Данные правила подбора реагентов для осаждения продуктов справедливы только для солей.

Примеры реакций с выпадением осадков:
1.Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

Ba 2+ +SO 4 2- →BaSO 4 ↓

2. AgNO 3 +KI→AgI↓+KNO 3

Ag + +I - →AgI↓

3.H 2 S+Pb(NO 3) 2 →PbS↓+2HNO 3

H 2 S+Pb 2+ →PbS↓+2H +

4. 2KOH+FeSO 4 →Fe(OH) 2 ↓+K 2 SO 4

Fe 2+ +2OH - →Fe(OH) 2 ↓

Примеры реакций с выделением газов:
1.CaCO 3 +2HNO 3 →Ca(NO 3) 2 +CO 2 +H 2 O

CaCO 3 +2H + →Ca 2+ +CO 2 +H 2 O

2. 2NH 4 Cl+Ca(OH) 2 →2NH 3 +CaCl 2 +2H 2 O

NH 4 + +OH - →NH 3 +H 2 O

3. ZnS+2HCl→H 2 S+ZnCl 2

ZnS+2H + →H 2 S+Zn 2+

Примеры реакций с образованием слабых электролитов:
1.Mg(CH 3 COO) 2 +H 2 SO 4 →MgSO 4 +2CH 3 COOH

CH 3 COO - +H + →CH 3 COOH

2. HI+NaOH→NaI+H 2 O

H + +OH - →H 2 O

Рассмотрим применение изученного материала на конкретных заданиях, встречающихся на экзаменах:
№1 .Среди веществ: NaCl, Na 2 S, Na 2 SO 4 – в реакцию с раствором Cu(NO3) 2 вступает(-ют)

1) толькоNa 2 S

2) NaCl и Na 2 S

3) Na 2 Sи Na 2 SO 4

4) NaCl и Na 2 SO 4

Под словом “вступают” подразумевается “протекает реакция”, а как было сказано выше, реакция протекает если образовалось нерастворимое или малорастворимое вещество, выделился газ или образовался слабый электролит (вода).

Разберём варианты по очереди.
1) Cu(NO 3) 2 +Na 2 S→CuS↓+2NaNO 3 образовался осадок.
2)NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Протекает только реакция с Na 2 S с образованием осадка

3)С Na 2 S так же будет образование осадка как и в первых двух примерах.
Na 2 SO 4 +Cu(NO 3) 2 ↛CuSO 4 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

4) С Na 2 SO 4 реакция не протекает как в прошлом варианте ответа
NaCl+Cu(NO 3) 2 ↛CuCl 2 +2NaNO 3

Все продукты являются хорошо растворимыми электролитами, это не газы, следовательно, реакция не протекает.

Следовательно, подходит 1 вариант ответа.

№2 . Газ выделяется при взаимодействии

1) MgCl 2 и Ba(NO 3) 2

2) Na 2 CO 3 и CaCl 2

3) NH 4 ClиNaOH

4) CuSO 4 и KOH

Слово “газ” в таких заданиях обозначает именно газы и легколетучие соединения.

В заданиях в качестве таких соединений обычно встречаются NH 3 ·H 2 O, H 2 CO 3 (в нормальных условиях проведения реакции разлагается на CO 2 и H 2 O, принято не писать полную формулу угольной кислоты, а сразу расписывать на газ и воду), H 2 S.

Из представленных веществ выше мы не сможем получить H 2 S, потому что отсутствует сульфид-ион во всех веществах. Так же не сможем получить углекислый газ, ибо для его получения из соли нужно добавить кислоту, а в паре с карбонатом натрия находится другая соль.
Мы можем получить газ в 3 варианте ответа.
NH 4 Cl+NaOH→NH 3 +NaCl+H 2 O

Выделился газ с резким запахом.

Следовательно, подходит 3 вариант ответа.

№3 .В реакцию с соляной кислотой вступает

1) нитрат серебра

2) нитрат бария

3) серебро

4) оксид кремния

Среди реагентов есть два электролита, чтобы прошла реакция, нужно, чтоб выделился осадок.
С оксидом кремния соляная кислота не прореагирует, а серебро не вытеснит водород из соляной кислоты.
Ba(NO 3) 2 +2HCl→BaCl 2 +2HNO 3 реакция не будет протекать, так как все продукты – растворимые электролиты
AgNO 3 +HCl→AgCl↓+NaNO 3

Выпадет белый творожистый осадок нитрата серебра
Следовательно, подходит 1 вариант ответа.

Следующий пример задания, в отличие от первых трёх, взят из КИМа ЕГЭ 2017.
Первые три взяты из КИМа ОГЭ 2017

Установите соответствие между формулами веществ и реагентом, с помощью которого можно различить их водные растворы: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
ФОРМУЛЫ ВЕЩЕСТВ РЕАГЕНТ
А) HNO 3 и H 2 O 1) CaCO 3
Б)KClи NaOH 2) KOH

В)NaClи BaCl 2 3) HCl

Г) AlCl 3 и MgCl 2 4) KNO 3

Чтобы выполнить это задание, следует сначала понять, что под каждой буквой указаны два вещества, которые находятся в одном растворе и нужно подобрать вещество так, чтоб хотя бы одно из них вступило в качественную реакцию с веществом-реагентом, который дан под цифрой.

К раствору азотной кислоты добавим карбонат кальция, углекислый газ станет признаком реакции:
2HNO 3 +CaCO 3 →Ca(NO 3) 2 +CO 2 +H 2 O
Ещё, по логике, карбонат кальция не растворяется в воде, значит, во всех остальных растворах тоже не растворится, следовательно, к признакам реакции можно добавить растворение карбоната кальция, помимо выделения газа.

Раствор под буквой Б можно было бы различить с помощью соляной кислоты под цифрой 3, но только в случае, если было бы разрешено воспользоваться индикатором (фенолфталеин), который бы обесцветился после реакции, ибо произойдёт нейтрализация щёлочи .

Поэтому, можем различитьв растворе OH - ион только при помощи 5 раствора (CuSO 4)
2NaOH+CuSO 4 →Cu(OH) 2 ↓+Na 2 SO 4

Образовались кристаллики голубого цвета на две раствора.

Раствор под буквой В можем различить так же с помощью реактива под номером 5, ибо сульфат-ионы, соединяясь с барием сразу выпадут в белый кристаллический осадок, который не растворим в избытке даже самых сильных кислот.
BaCl 2 +CuSO 4 →CuCl 2 +BaSO 4 ↓

Раствор под буквой Г нетрудно различить с помощью любой щелочи, т.к основания магния и алюминия при протекании реакции сразу выпадут в осадок. Щелочь представлена под цифрой 2

AlCl 3 +3KOH→Al(OH) 3 ↓+3KCl

MgCl 2 +2KOH→Mg(OH) 2 ↓+2KCl

Редактор: Харламова Галина Николаевна

В 1887 году шведским химиком Аррениусом была сформулирована теория электролитической диссоциации. Теория объясняет, почему водные растворы солей, кислот, щелочей проводят электрический ток.

Электролитическая диссоциация

Аррениус, исследуя растворы, заметил, что некоторые из них проводят электрический ток. Чтобы разобраться, как именно это происходит, следует вспомнить определение электрического тока. Это упорядоченное движение заряженных частиц. Следовательно, в растворе должны присутствовать эти частицы.

Заряженными частицами, которые переносят электрический ток, являются ионы. Они делятся на положительно заряженные катионы и отрицательно заряженные анионы.

Рис. 1. Катионы и анионы в воде.

Ионы образуются в результате распада (расщепления) молекул веществ. Это может произойти в растворе под действием молекул воды или при высокой температуре в расплаве. Распад молекул на ионы называется электролитической диссоциацией.

Электролиты и неэлектролиты

Не все вещества распадаются на ионы под воздействием воды. Поэтому выделяют две группы веществ:

  • электролиты - молекулы распадаются на ионы;
  • неэлектролиты - молекулы не распадаются на ионы.

К электролитам относятся сложные неорганические вещества:

  • кислоты;
  • основания;
  • расплавы и растворы солей;
  • твёрдые соли;
  • некоторые твёрдые оксиды;
  • гидроксиды.

Неэлектролиты - большинство органических веществ. К ним относятся:

  • альдегиды;
  • кетоны;
  • углеводороды;
  • углеводы.

Сущностью электролитической диссоциации является распад ковалентных полярных или ионных связей. Молекулы воды оттягивают полярные молекулы, увеличивая полярность, и разрывают их на ионы. В расплавах при высокой температуре ионы в кристаллической решётке начинают совершать колебания, которые приводят к разрушению кристалла. Ковалентные неполярные связи, присутствующие в простых веществах, достаточно прочны и не разрываются молекулами воды или при нагревании.

Рис. 2. Молекулы воды образуют ионы натрия и хлора.

Виды электролитов

Электролитическая диссоциация характеризуется степенью диссоциации. Это величина, отражающая отношение числа распавшихся молекул к общему количеству молекул вещества. Степень диссоциация показывает долю молекул вещества, распавшихся на ионы. Выражается формулой

где n - количество распавшихся молекул, N - общее количество молекул.

По степени диссоциации выделяют две группы электролитов:

  • сильные - распадаются практически полностью в ненасыщенных растворах (сильные кислоты, соли, щёлочи);
  • слабые - распадаются частично или не распадаются (слабые кислоты, малорастворимые соли, нерастворимые основания, гидроксид аммония).

Рис. 3. Сильные и слабые электролиты.

Ненасыщенный раствор содержит небольшую концентрацию растворённого вещества. Это значит, в раствор можно добавить ещё некоторое количество вещества.

Положения теории

Исследовав электролиты, Аррениус сформулировал основные положения теории электролитической диссоциации:

  • вещества при взаимодействии с водой распадаются на ионы - катионы и анионы;
  • электрический ток заставляет двигаться катионы к катоду, а анионы - к аноду;
  • диссоциация - обратимый процесс для слабых электролитов.
Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 192.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков