Какое скрещивание называется моногибридным. Моногибридное скрещивание

Какое скрещивание называется моногибридным. Моногибридное скрещивание

Все живые организмы на Земле при половом размножении способны передавать часть своих внешних и внутренних признаков потомкам. Австрийский биолог и ботаник, основоположник учения о наследственности Г. Мендель установил, что передача этих признаков происходит по определенной закономерности, которая всегда повторяется при соблюдении определенных условий.

Понятие про гены и аллели

Микробиология установила, что в состав клеток организмов входит сложная молекула ДНК, которая отвечает за то, чтобы клетки всегда получались одинаковыми. Эта молекула имеет двойную скрученную цепочку, при частичном расщеплении которой можно считать наследственную информацию. Такие участки называются генами. Один ген отвечает за один конкретный признак, который имеет внешнее проявление. Клетки, в которых находится целостная наследственная информация, называются зиготами. Но в половых клетках присутствует не полный набор генов, а лишь их половина. Они называются гаметами. Только две гаметы дают полноценную зиготу, в которой встречаются оба гена из одной пары по определенному признаку. Но один из них может иметь более сильный характер и влиять на тот, что слабее. Такие варианты генов называются аллелями.

Доминирование генов

Ученые установили, что один ген из пары может быть более сильным относительно другого. Это влияние хорошо проявляется на фенотипном уровне, то есть заметно при внешнем анализе невооруженным глазом. Такими фенотипными признаками выступают цвет и форма цветка, цвет и размер семян, время созревания урожая, рост растения. Именно эти признаки использует моногибридное скрещивание, чтобы получить растения или животных определенного цвета или размера. Путем опытов генетики и селекционеры определяют, какой признак считается более сильным, и его называют доминантным. Противоположное ему проявление гена называется рецессивным. Чтобы признак во всех поколениях проявлял себя одинаково, необходимо, чтобы изначальные родители были носителем чистого гена.

Условные обозначения

Чтобы решать задачи на моногибридное скрещивание, необходимо использовать некоторые условные обозначения. Еще Г. Мендель предложил доминантный аллель обозначать заглавной буквой (А), а рецессивный - строчной (а). Организмы с одинаковыми аллелями называются - гомозиготными, а с разными, соответственно, гетерозиготными. На конкретном примере это выглядит так: алая окраска цветка гороха - доминантный признак, а белый - рецессивный. Гомозиготный организм будет иметь аллели АА или аа. В каждом из них проявится либо алый, либо белый цвет. Родительские клетки обозначаются буквой Р. Все следующие поколения будут иметь обозначения F1, F2, F3 и далее, где цифра указывает на последовательность поколений относительно изначальной пары родителей. Но на практике большого количества поколений не определяют, поскольку каждое предыдущее выступает родительским для скрещивания, а зная его законы, совсем несложно выбрать те образцы, которые несут гомозиготный ген.

Законы скрещивания

Благодаря опытам Г. Менделя сегодня мы знаем, что моногибридное скрещивание - это размножение растений и животных, которые отличаются друг от друга по одному явному признаку, выраженному разными аллелями одного гена. Если взять гомозиготных родителей, к примеру коров, у которых черный цвет шерсти - доминантный признак (А), а красный - рецессивный (а), то в первом поколении получим всех особей черного цвета (Аа). Это объясняется тем, что более сильный аллель гена не дал проявиться фенотипному признаку более слабого. Но уже в следующем поколении будут представители как гомо-, так и гетерозиготных особей. По фенотипу они проявятся как 3:1, но на уровне генотипа они будут представлены в соотношении 1:2:1, то есть 1(АА):2(Аа):1(аа). Результаты дальнейших скрещиваний будут зависеть от того, особи с каким генотипом участвуют в процессе.

Промежуточное доминирование

Не всегда моногибридное скрещивание дает однозначный результат. Иногда на уровне фенотипа можно наблюдать промежуточный результат по обоим признакам. К примеру, гетерозиготные растения с признаками красный-белый цветок довольно часто дают гетерозиготный розовый цвет. Ученые объясняют это тем, что один ген отвечает за абсолютное проявление цвета, а второй - за полное его отсутствие. В результате скрещивания оба они пытаются добиться своего результата, но в конце концов получается промежуточный цвет. Промежуточное доминирование дает нестойкий результат, который в последующих поколениях сохраняется только у 50% особей, в соответствии с законом Г. Менделя 1:2:1.

Расщепление при моногибридном скрещивании

Процесс, в результате которого из однотипных по фенотипу родительских особей получаются разнотипные, называется расщеплением. Как уже описывалось выше, гетерозиготные организмы в следующих поколениях обязательно дают гомозиготных и гетерозиготных потомков. Генетики используют эти данные, чтобы в будущем отсеивать особей с нежелательными признаками. Это достигается путем скрещивания гетерозиготного организма с гетерозиготным. На схеме это выглядит так: АА + Аа дает все организмы с доминантным признаком на уровне фенотипа. Следовательно, никакого расщепления не происходит. Именно по этой причине селекционеры проводят скрещивание, казалось бы, совсем не похожих организмов. На самом деле они обогащают генотип доминантными генами.

Дигибридное скрещивание

В чистом виде моногибридное скрещивание используется не всегда. Это связано с тем, что часто селекционерам необходимо стабильно сочетать два и более признака в одном экземпляре. Г. Мендель проводил эксперименты и с дигибридным скрещиванием. Для примера: у него был горох желтого и зеленого цвета, с гладкой и морщинистой кожурой. При этом виде скрещивания необходимо учитывать две пары алеллей, что дает большее разнообразие результатов, чем при моногибридном скрещивании. Но и здесь есть свои закономерности. Зная их, можно спрогнозировать, какие результаты даст дигибридное скрещивание. Задачи такого рода учатся решать на старших курсах специализированных университетов.

Примеры генетических задач

А вот моногибридные задачи решаемы даже при малейшем понимании законов генетики. К примеру, у морских свинок гладкая шерсть является доминантным признаком (А), кудрявая шерсть - рецессивным (а). Промежуточное доминирование по этому признаку не проявляется. Какой будет шерсть потомства первого и второго поколений, если скрещивать чистопородную свинку с кудрявой? Ответ прост: в первом поколении все особи будут с гладкой шерстью, поскольку все они получаются с гетерозиготным фенотипным признаком. Во втором же поколении на каждые 3 морские свинки с гладкой шерстью родится одна с кудрявой. На генотипном уровне получатся две монозиготные особи с доминантным и рецессивным признаком, и две гетерозиготные с проявлением доминантной структуры шерсти. Второй пример, однотонный цвет кожуры арбуза - рецессивный признак (а). Как получить в первом поколении арбузы без полосочек (аа)? Ответ: чтобы точно добиться такого результата, необходимо скрещивать арбуз с гетерозиготным полосатым растением. В таком случае половина первого поколения будет иметь монозиготные признаки (аа). Вот так на практике проявляется и используется моногибридное скрещивание в селекции.

Учебник соответствует базовому уровню Федерального компонента государственного стандарта общего образования по биологии и рекомендован Министерством образования и науки РФ.

Учебник адресован учащимся 10-11 классов и завершает линию Н. И. Сонина. Однако особенности изложения материала позволяют использовать его на завершающем этапе изучения биологии после учебников всех существующих линий.

Книга:

<<< Назад
Вперед >>>

Вспомните!

Что такое ген?

Какой набор хромосом содержат половые клетки?

Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку. Поскольку горох – самоопыляющееся растение, в пределах одного сорта не существует изменчивости по конкретному признаку: на растениях, выросших из желтых семян, всегда созревают желтые семена, а на растениях, выросших из зеленых, – зеленые. Учитывая это свойство, Мендель скрестил растения гороха, отличающиеся по цвету семян (рис. 67). Гибридные семена первого поколения все оказались желтого цвета. Аналогичные результаты Мендель получил, изучая наследование остальных пар признаков. Следовательно, у гибридов первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, – рецессивным.

В результате такого скрещивания была установлена важнейшая закономерность наследования, получившая название закона единообразия гибридов первого поколения, или закона доминирования (первый закон Менделя): при скрещивании двух гомозиготных организмов, обладающих альтернативными признаками, все гибриды первого поколения будут иметь признак одного из родителей, т. е. будут единообразны по фенотипу. Впоследствии было установлено, что явление доминирования широко распространено и является общей закономерностью для наследования многих признаков у большинства организмов.

Закон расщепления. Из гибридных семян гороха Мендель вырастил растения, которые в результате самоопыления произвели семена второго поколения (рис. 67). Среди них оказались не только желтые, но и зеленые семена, т. е. произошло расщепление потомства на две группы, одна из которых обладала доминантным признаком, а вторая – рецессивным. Причем это расщепление не было случайным, а подчинялось строгим количественным закономерностям: 3 / 4 семян оказались желтыми и 1 / 4 – зелеными. Таким образом, Мендель установил, что во втором поколении гибридов появляются особи с доминантными и рецессивными признаками, причем их соотношение 3:1. Эта закономерность была названа законом расщепления, а впоследствии вторым законом Менделя (рис. 68).


Рис. 67. Моногибридное скрещивание

Последующие исследования позволили установить, что законы Менделя имеют всеобщий характер для диплоидных организмов, размножающихся половым путем.

Аллельные гены. Мендель не ограничился изучением второго поколения гибридов. Чтобы выяснить, как будут наследоваться признаки в третьем поколении, он вырастил гибриды второго поколения и проанализировал потомство, которое получилось в результате самоопыления. Оказалось, что все растения, выросшие из зеленых семян, производят только зеленые семена, 1 / 3 растений, развивающихся из желтых семян, образуют только желтые, а оставшиеся 2 / 3 растений, выросших из желтых семян, дают желтые и зеленые семена в соотношении 3:1.


Рис. 68. Моногибридное скрещивание. Результаты работы Г. Менделя

Чтобы объяснить закономерности наследования признаков у гороха, Мендель предположил, что развитие каждого признака определяется неким наследственным фактором, который впоследствии был назван геном. Мендель ввел буквенные обозначения, которыми мы пользуемся и в настоящее время. Доминантные признаки и гены обычно обозначают прописными латинскими буквами (А, В, С ), а рецессивные – строчными (а, b, с ). В данном опыте желтая окраска – доминантный признак (А), а зеленая – рецессивный (а). Пару генов (А и а), которые определяют альтернативные признаки, называют аллельными генами, а каждый член пары – аллелем. Аллели (от греч. allelon – взаимно) – это различные состояния гена, определяющие различные формы одного и того же признака. В данном примере ген, отвечающий за цвет семени, может находиться в двух аллельных вариантах: желтая окраска (А ) или зеленая окраска (а).

В результате анализа третьего поколения Мендель обнаружил, что организмы, одинаковые по внешнему виду, могут различаться по наследственным задаткам. Организмы, не дающие расщепления в следующем поколении, были названы гомозиготными (от греч. gomo – равный, zygota – оплодотворенная яйцеклетка), а организмы, в потомстве которых обнаруживается расщепление, назвали гетерозиготными (от греч. getero – разный). Гомозиготные организмы имеют одинаковые аллели одного гена – оба доминантных (АА ) или оба рецессивных (аа ).

Следует отметить, что, разбирая сейчас результаты скрещиваний, полученные Менделем, мы находимся в гораздо более выигрышном положении, чем был сам ученый в середине XIX в. В то время никто не знал о мейозе, локализации наследственной информации в хромосомах, гаплоидности и диплоидности организмов. Тем большую ценность имеют выводы, сделанные Менделем.

Закон чистоты гамет. Мендель предположил, что каждая клетка организма содержит по два наследственных фактора, причем при образовании гибридов эти факторы не смешиваются, а сохраняются в неизменном виде. Исчезновение одного из родительских признаков в первом поколении гибридов и появление его вновь во втором поколении подтверждало предположение Менделя, что наследственные факторы – это некие дискретные единицы, которые не «растворяются» и не «смешиваются», а сохраняются в неизменном виде из поколения в поколение.

При половом размножении связь между поколениями осуществляется через половые клетки – гаметы. Поэтому Мендель логично предположил, что каждая гамета должна содержать только один фактор из пары, чтобы при их слиянии восстанавливался двойной набор. Если при оплодотворении встретятся две гаметы, несущие рецессивный фактор, сформируется организм с рецессивным признаком (аа ), а если хотя бы одна из двух гамет будет содержать доминантный фактор, образуется особь с доминантным признаком (АА, Аа ). Основываясь на результатах своих экспериментов, Мендель сделал вывод, что наследственные факторы (т. е. в современном понимании – гены) в гибриде не смешиваются, не сливаются и передаются гаметам в «чистом» виде. В этом и состоит смысл закона чистоты гамет , который в настоящее время можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из каждой пары.

Для того чтобы понять, почему и как это происходит, надо вспомнить основные явления, происходящие в мейозе. В каждой клетке тела содержится диплоидный (2n ) набор хромосом. В результате мейоза образуются клетки, несущие гаплоидный набор хромосом (1n), т. е. содержащие по одной хромосоме из каждой пары гомологичных хромосом. В дальнейшем слияние гаплоидных гамет вновь приводит к образованию диплоидного организма. В свете современных знаний представления Менделя о парности наследственных факторов, чистоте гамет и закономерностях расщепления легко объясняются присутствием у диплоидных организмов гомологичных хромосом, их расхождением в мейозе и восстановлением двойного набора при оплодотворении.

Цитологические основы моногибридного скрещивания. Давайте схематично представим результаты скрещиваний, осуществленные Менделем, используя современные знания (рис. 69).

Р (от лат. parenta – родители) обозначает родительское поколение, F 1 (от лат. filii – дети) – гибриды первого поколения, F 2 – гибриды второго поколения, символ

– женскую особь, символ

– мужскую, знак? – скрещивание, А – доминантный ген, отвечающий за формирование желтой окраски семян, а – рецессивный ген, отвечающий за зеленую окраску. Исходные родительские растения в рассматриваемом опыте были гомозиготными, т. е. содержали в обеих гомологичных хромосомах одинаковые аллели гена. Следовательно, первое скрещивание можно записать так: Р (

Вспомните!

Что такое ген?

Отрезок ДНК, ген – это признак организма.

Какой набор хромосом содержат половые клетки?

Гаплоидный набор – это половинный набор хромосом, одинарный (нечетное число), такой набор содержится в половых клетках (гаметах) обозначается n.

Вопросы для повторения и задания

1. Какое скрещивание называют моногибридным?

Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку.

2. Что такое доминирование? Какой признак называют рецессивным?

Явление преобладания у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный признак, не проявляющийся у гибридов, т. е. подавляемый, - рецессивным.

3. Охарактеризуйте понятия «гомозиготный» и «гетерозиготный» организм.

Организмы, не дающие расщепления в следующем поколении, были названы гомозиготными (от греч. gomo - равный, zygota - оплодотворённая яйцеклетка), а организмы, в потомстве которых обнаруживается расщепление, назвали гетерозиготными (от греч. getero - разный). Гомозиготные организмы имеют одинаковые аллели одного гена - оба доминантных (АА) или оба рецессивных (аа).

4. Сформулируйте закон расщепления. Почему он так называется?

Из гибридных семян гороха Мендель вырастил растения, которые в результате самоопыления произвели семена второго поколения (см. рис. 75). Среди них оказались не только жёлтые, но и зелёные семена, т. е. произошло расщепление потомства на две группы, одна из которых обладала доминантным признаком, а вторая - рецессивным. Причём это расщепление не было случайным, а подчинялось строгим количественным закономерностям:

3/4 семян оказались жёлтыми и 1/4 - зелёными. Таким образом, Мендель установил, что во втором поколении гибридов появляются особи с доминантными и рецессивными признаками, причём их соотношение 3: 1. Эта закономерность была названа законом расщепления, а впоследствии вторым законом Менделя. Последующие исследования позволили установить, что законы Менделя имеют всеобщий характер для диплоидных организмов, размножающихся половым путём.

5. Что такое чистота гамет? На каком явлении основан закон чистоты гамет?

При половом размножении связь между поколениями осуществляется через половые клетки - гаметы. Поэтому Мендель логично предположил, что каждая гамета должна содержать только один фактор из пары, чтобы при их слиянии восстанавливался двойной набор. Если при оплодотворении встретятся две гаметы, несущие рецессивный фактор, сформируется организм с рецессивным признаком (аа), а если хотя бы одна из двух гамет будет содержать доминантный фактор, образуется особь с доминантным признаком (АА, Аа). Основываясь на результатах своих экспериментов, Мендель сделал вывод, что наследственные факторы (т. е. в современном понимании - гены) в гибриде не смешиваются, не сливаются и передаются гаметам в «чистом» виде. В этом и состоит смысл закона чистоты гамет, который в настоящее время можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из каждой пары.

6. У человека длинные ресницы - доминантный признак. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения у них ребёнка с длинными ресницами? Какие генотипы могут быть у детей этой супружеской пары?

Ответ: вероятность рождения 50%, генотипы Аа и аа.

Ответ: родители гетерозиготы Аа, вероятность такого ребенка 25%.

Подумайте! Вспомните!

Скрестили горох с желтыми семенами и горох с зелеными семенами, в результате получилось поколение одинаковое по цвету семян поколение. Составьте схему скрещивания. какой закон проявляется при данном скрещивании?

Р – родители ♂- мужская особь, ♀- женская особь

G – гаметы (половые клетки, обводятся в круг для обозначения клетки)

F1 – первое поколение гибридов (потомков)

АА – доминантная желтая гомозигота

аа – рецессивная зеленая гомозигота

Ответ: в данном скрещивании проявился тип полного доминирования признаков, I закон Менделя – единообразия всех гибридов F1.

2. Применимы ли законы Менделя к наследованию признаков у бактерий? Докажите свою точку зрения.

Нет. Образование половых клеток – гамет не происходит у бактерий.

3. Сформулируйте определения гетерозиготного и гомозиготного организмов, используя в качестве критерия сравнения число типов гамет, которые они способны формировать.

Гомозиготы – это особи, образующие один сорт гамет, содержащие либо доминантные (если гомозигота доминантная «АА»), либо рецессивные признаки (если гомозигота рецессивная «аа»). Гетерозиготы – это особи, образующие два сорта гамет, содержащие и доминантные и рецессивные признаки одновременно «Аа».

Вопрос 1. Какое скрещивание называют моногибридным?
Моногибридное скрещивание - тип скрещивания, при котором родительские особи отличаются друг от друга по одному изучаемому признаку, т. е. у них имеется различие только по одной паре аллелей. Классическим примером является скрещивание сортов гороха, отличающихся только цветом семян. Напомним, что аллелями называют различные состояния гена, определяющие различные проявления одного и того же признака. Один ген может находиться в двух аллельных вариантах (цвет семян гороха), трех (группы крови человека) и более. В чистых линиях все организмы имеют одинаковые аллели изучаемого гена.
Также моногибридным скрещиванием называют такое скрещивание, при котором прослеживают наследование только одной пары альтернативных признаков.

Вопрос 2. Что такое доминирование?
Доминирование - это явление преобладания у гибрида одного родительского признака над другим. Примером доминирования является желтая окраска всех семян гороха в первом поколении при скрещивании чистых линий с желтыми и зелеными семенами. Генетической основой доминирования является преобладание эффектов одного варианта (аллеля) гена над другим его вариантом. Так, например, в гене, отвечающем за окраску семян, закодирована структура фермента, в норме (аллель А) управляющего синтезом желтого красящего вещества - пигмента. Если такой ген «сломан» (аллель а), то фермент не функционирует, пигмент не образуется, и формируется зеленая окраска семян. Однако даже одного работающего аллеля из двух, находящихся в гомологичных хромосомах, достаточно, чтобы семена приобрели желтую окраску, т.е. аллель А доминирует над аллелем а.

Вопрос 3. Какой признак называют доминантным, а какой - рецессивным?
Доминантным называют признак, проявляющийся у гибридов первого поколения и подавляющий развитие другого признака. В примере с окраской семян гороха доминантный признак - желтая окраска. Рецессивным является признак родительского организма, подавляемый доминантным признаком и отсутствующий у гибридов первого поколения (зеленая окраска семян гороха).

Вопрос 4. Охарактеризуйте с генетических позиций понятия «гомозиготный» и «гетерозиготный» организм.
Гомозиготным называют организм, гомологичные хромосомы которого несут одинаковые аллели одного гена - два доминантных или два рецессивных. Гомозиготные организмы при скрещивании внутри чистой линии не дают в последующих поколениях расщепления по признаку, кодируемому данным геном.
гетерозиготнм называют организм Гомологичные хромосомы, которого несут разные (доминантный и рецессивный) аллели. Гетерозиготные организмы при взаимном скрещивании дают расщепление по признаку в последующих поколениях.
Потомки, у которых проявляется рецессивный фенотип, гомозиготны (аа). Потомки, у которых проявляется доминантный фенотип, могут быть как гомозиготными (АА), так и гетерозиготными (Аа).

Вопрос 5. Сформулируйте закон расщепления. Почему он так называется?
При скрещивании гибридов 1-го поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, и происходит расщепление по фенотипу в соотношении 3:1 и 1:2:1 по генотипу.
В результате скрещивания гибридов между собой получились особи, как с доминантными признаками, так и с рецессивными.
Такое расщепление возможно при полном доминировании. Этот закон имеет всеобщий характер для диплоидных организмов, размножающихся половым путем.
Закон называется так потому, что потомство однородных по рассматриваемому признаку гибридов первого поколения демонстрирует неоднородность (расщепление) в проявлении этого признака.

Вопрос 6. Что такое чистота гамет? На каком явлении основан закон чистоты гамет?
Закон расщепления можно объяснить гипотезой "чистоты" гамет. Явление несмешивания аллелей, альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал гипотезой "чистоты" гамет.
"Чистота" гамет - это наличие в гамете только одного наследственного фактора - гена из пары. При слиянии гамет число генов удваивается (восстанавливается двойной набор). Если происходит слияние гамет, несущих рецессивный аллель, то формируется организм с рецессивным признаком, при любом другом варианте слияния (рецессивный и доминантный или доминантный и доминантный) образуется организм с доминантным признаком. В основе закона чистоты гамет лежит мейоз. При мейозе из диплоидных клеток, содержащих пары гомологичных хромосом, образуются гаплоидные гаметы, несущие лишь по одной хромосоме из каждой пары.
Вопрос 7. У человека аллель длинных ресниц доминирует над аллелем коротких. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчину с короткими ресницами. Какова вероятность рождения в данной семье ребенка с длинными ресницами? Какие генотипы могут быть у детей этой супружеской пары?
Решение:
Так как у отца женщины были короткие ресницы (рецессивный признак), то его генотип аа и его дочь получила от него рецессивный аллель а. Однако женщина имеет длинные ресницы, значит, в ее генотипе также обязательно есть аллель А и ее генотип Аа. У ее мужа короткие ресницы, следовательно, его генотип аа. В этом браке у жены с равной вероятностью образуются гаметы двух типов, несущие доминантный аллель А и рецессивный аллель а, а у мужа все гаметы содержат аллель а. Поэтому их дети могут с 50% -и вероятностью быть гетерозиготны (генотип Аа, длинные ресницы) и с 50% - и вероятностью - гомозиготны и рецессивны (генотип аа, короткие ресницы).

Проработав эти темы, Вы должны уметь:

  1. Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
  2. С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
  3. Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
  4. Объяснить как мутации могут повлиять на белок, кодируемым тем или иным геном.
  5. Указать возможные генотипы людей с группами крови А; В; АВ; О.
  6. Привести примеры полигенных признаков.
  7. Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
  8. Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
  9. Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
  10. Назвать особенности методов селекции растений, животных.
  11. Указать основные направления биотехнологии.
  12. Уметь решать по данному алгоритму простейшие генетические задачи:

    Алгоритм решения задач

    • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный.
    • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
    • Запишите генотип гибридов F1.
    • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
    • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Схема оформления задач.

Буквенные обозначения:
а) доминантный признак _______________
б) рецессивный признак _______________

Гаметы

F1 (генотип первого поколения)

гаметы
? ?

Решетка Пеннета

F2
гаметы ? ?
?
?

Соотношение фенотипов в F2: _____________________________
Ответ:_________________________

Примеры решения задач на моногибридное скрещивание.

Задача. "В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз - моногенный аутосомный признак".

Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в ТОМслучае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын - аа.

Задача. "Петух с розовидным гребнем скрещен с двумя курицами, тоже имеющими розовидный гребень. Первая дала 14 цыплят, все с розовидным гребнем, а вторая - 9 цыплят, из них 7 с розовидным и 2 с листовидным гребнем. Форма гребня - моногенный аутосомный признак. Каковы генотипы всех трех родителей?"

До определения генотипов родителей необходимо выяснить характер наследования формы гребня у кур. При скрещивании петуха со второй курицей появились 2 цыпленка с листовидным гребнем. Это возможно при гетерозиготности родителей, следовательно, можно предположить, что розовидный гребень у кур доминирует над листовидным. Таким образом, генотипы петуха и второй курицы - Аа.

При скрещивании этого же петуха с первой курицей расщепления не наблюдалось, следовательно, первая курица была гомозиготной - АА.

Задача. "В семье кареглазых праворуких родителей родились разнояйцевые близнецы, один из которых кареглазый левша, а другой голубоглазый правша. Какова вероятность рождения следующего ребенка, похожим на своих родителей?"

Рождение у кареглазых родителей голубоглазого ребенка свидетельствует о рецессивности голубой окраски глаз, соответственно рождение у праворуких родителей леворукого ребенка указывает на рецессивность лучшего владения левой рукой по сравнению с правой. Введем обознанения аллелей: А - карие глаза, а - голубые глаза, В - правша, в - левша. Определим генотипы родителей и детей:

Р АаВв х АаВв
F, А_вв, ааВ_

А_вв - фенотипический радикал, который показывает, что данный ребенок с левша с карими глазами. Генотип этого ребенка может быть - Аавв, ААвв.

Дальнейшее решение этой задачи осуществляется традиционным способом, путем построения решетки Пеннета.

АВ Ав аВ Ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ АаВв
ав АаВв Аавв ааВв Аавв

Подчеркнуты 9 вариантов потомков, которые нас интересуют. Всего возможных вариантов 16, поэтому вероятность рождения ребенка, похожим на своих родителей равна 9/16.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 10. "Моногибридное и дигибридное скрещивание." §23-24 стр. 63-67
  • Тема 11. "Генетика пола." §28-29 стр. 71-85
  • Тема 12. "Мутационная и модификационная изменчивость." §30-31 стр. 85-90
  • Тема 13. "Селекция." §32-34 стр. 90-97


© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков