Тягово скоростные характеристики автомобиля. Тягово-скоростные свойства

Тягово скоростные характеристики автомобиля. Тягово-скоростные свойства

Тягово-скоростные свойства автомобиля существенно зависят от конструктивных факторов. Наибольшее влияние на тягово-скоростные свойства оказывают тип двигателя, коэффициент полез­ного действия трансмиссии, передаточные числа трансмиссии, масса и обтекаемость автомобиля.

Тип двигателя. Бензиновый двигатель обеспечивает лучшие тя­гово-скоростные свойства автомобиля, чем дизель, при анало­гичных условиях и режимах движения. Это связано с формой внеш­ней скоростной характеристики указанных двигателей.

На рис. 5.1 представлен график мощностного баланса одного и того же автомобиля с различными двигателями: с бензиновым (кривая N" т) и дизелем (кривая N" т). Значения максимальной мощ­ности N max и скорости v N при максимальной мощности для обоих двигателей одинаковы.

Из рис. 5.1 видно, что бензиновый двигатель имеет более вы­пуклую внешнюю скоростную характеристику, чем дизель. Это обеспечивает ему больший запас мощности (N" з > N" з ) при одной и той же скорости, например при скорости v 1 . Следовательно, автомобиль с бензиновым двигателем может развивать большие ускорения, преодолевать более крутые подъемы и буксировать при­цепы большей массы, чем с дизелем.

КПД трансмиссии. Этот коэф­фициент позволяет оценить по­тери мощности в трансмиссии на трение. Снижение КПД, вызванное ростом потерь мощности на трение вследствие ухудшения технического состояния механизмов трансмиссии в процессе экс­плуатации, приводит к уменьшению тяговой силы на ведущих колесах автомобиля. В результате снижаются максимальная ско­рость движения автомобиля и сопротивление дороги, преодоле­ваемое автомобилем.

Рис. 5.1. График мощностного ба­ланса автомобиля с разными дви­гателями:

N" т – бензиновый двигатель; N" т - ди­зель; N" з, N" з соответствующие значения запаса мощности при скорости автомобиля v 1 .

Передаточные числа трансмиссии. От передаточного числа глав­ной передачи существенно зависит максимальная скорость авто­мобиля. Оптимальным считается такое передаточное число глав­ной передачи, при котором автомобиль развивает максимальную скорость, а двигатель - максимальную мощность. Увеличение или уменьшение передаточного числа главной передачи по сравне­нию с оптимальным приводит к снижению максимальной скоро­сти автомобиля.

Передаточное число I передачи коробки передач влияет на то, какое максимальное сопротивление дороги может преодолеть автомобиль при равномерном движении, а также на передаточные числа промежуточных передач коробки передач.

Увеличение числа передач в коробке передач приводит к более полному использованию мощности двигателя, росту средней ско­рости движения автомобиля и повышению показателей его тягово-скоростных свойств.

Дополнительные коробки передач. Улучшение тягово-скоростных свойств автомобиля может быть достигнуто также примене­нием совместно с основной коробкой передач дополнительных коробок передач: делителя (мультипликатора), демультипликатора и раздаточной коробки. Обычно дополнительные коробки пе­редач являются двухступенчатыми и позволяют увеличить число передач вдвое. При этом делитель только расширяет диапазон пе­редаточных чисел, а демультипликатор и раздаточная коробка уве­личивают их значения. Однако при чрезмерно большом числе пе­редач возрастают масса и сложность конструкции коробки пере­дач, а также затрудняется управление автомобилем.

Гидропередача. Эта передача обеспечивает легкость управления, плавность разгона и высокую проходимость автомобиля. Однако она ухудшает тягово-скоростные свойства автомобиля, так как ее КПД ниже, чем у механической ступенчатой коробки передач.

Масса автомобиля. Увеличение массы автомобиля приводит к возрастанию сил сопротивления качению, подъему и разгону. В результате ухудшаются тягово-скоростные свойства автомобиля.

Обтекаемость автомобиля . Обтекаемость оказывает значительное влияние на тягово-скоростные свойства автомобиля. При ее ухудшении уменьшается запас тяговой силы, который мо­жет быть использован на разгон автомобиля, преодоление подъе­мов и буксировку прицепов, возрастают потери мощности на со­противление воздуха и снижается максимальная скорость автомо­биля. Так, например, при скорости, равной 50 км/ч, потери мощ­ности у легкового автомобиля, связанные с преодолением сопро­тивления воздуха, почти равны потерям мощности на сопротив­ление качению автомобиля при его движении по дороге с твер­дым покрытием.

Хорошая обтекаемость легковых автомобилей достигается незначительным наклоном крыши кузова назад, применением бо­ковин кузова без резких переходов и гладкого днища, установкой ветрового стекла и облицовки радиатора с наклоном и таким раз­мещением выступающих деталей, при котором они не выходят за внешние габариты кузова.

Все это позволяет уменьшить аэродинамические потери, осо­бенно при движении на высоких скоростях, а также улучшить тягово-скоростные свойства легковых автомобилей.

У грузовых автомобилей сопротивление воздуха уменьшают, применяя специальные обтекатели и покрывая кузов брезентом.

ТОРМОЗНЫЕ СВОЙСТВА.

Определения.

Торможение – создание искусственного сопротивления с целью снижения скорости или удержание в неподвижном состоянии.

Тормозные свойства – определяют максимальное замедление автомобиля и предельные значения внешних сил, которые удерживают автомобиль на месте.

Тормозной режим – режим, при котором к колесам приводят тормозные моменты.

Тормозной путь – путь, проходимый автомобилем от обнаружения помехи водителем до полной остановки автомобиля.

Тормозные свойства – важнейшие определяющие безопасности движения.

Современные тормозные свойства нормируются правилом №13 комитета по внутреннему транспорту Европейской Экономической Комиссии при ООН (ЕЭК ООН).

Национальные стандарты всех стран участниц ООН составляют на основании этих Правил.

Автомобиль должен иметь несколько тормозных систем, выполняющих различные функции: рабочую, стояночную, вспомогательную и запасную.

Рабочая тормозная система является основной тормозной системой, обеспечивающей процесс торможения в нормальных условиях функционирования автомобиля. Тормозными механизмами рабочей тормозной системы являются колесные тормоза. Управление этими механизмами осуществляется посредством педали.

Стояночная тормозная система предназначена для удержания автомобиля в неподвижном состоянии. Тормозные механизмы этой системы располагают либо на одном из валов трансмиссии, либо в колесах. В последнем случае используются тормозные механизмы рабочей тормозной системы, но с дополнительным приводом управления стояночной тормозной системы. Управление стояночной тормозной системой ручное. Привод стояночной тормозной системыдолжен быть только механическим .

Запасная тормозная система используется при отказе рабочей тормозной системы. У некоторых автомобилей функции запасной выполняет стояночная тормозная система или дополнительный контур рабочей системы.

Различают следующие виды торможений : экстренное (аварийное), служебное, торможение на уклонах.

Экстренное торможение осуществляется посредством рабочей тормозной системы с максимальной для данных условий интенсивностью. Количество экстренных торможений составляет 5…10% от общего числа торможений.

Служебное торможение применяют для плавного снижения скорости автомобиля или остановки в заранее намеченном мес

Оценочные показатели.

Существующими стандартами ГОСТ 22895-77, ГОСТ 25478-91 предусмотрены следующие показатели тормозных свойств автомобиля:

j уст. – установившееся замедление при постоянном усилии на педаль;

S т – путь, проходимый от момента нажатия на педаль до остановки (остановочный путь);

t ср – время срабатывания – от нажатия на педаль до достижения j уст. ;

Σ Р тор. – суммарная тормозная сила.

– удельная тормозная сила;

– коэффициент неравномерности тормозных сил;

Установившаяся скорость на спуске V т.уст. при торможении тормозом – замедлителем;

Максимальный уклон h т max , на котором автомобиль удерживается стояночным тормозом;

Замедление, обеспечиваемое запасной тормозной системой.

Нормативы показателей тормозных свойств АТС, предписываемые стандартом, приведены в таблице. Обозначения категорий АТС:

М – пассажирские: М 1 – легковые автомобиля и автобусы не более 8 мест, М 2 – автобусы более 8 мест и лонной массой до 5 т, М 3 – автобусы полной массой более 5 т;

N – грузовые автомобили и автопоезда: N 1 – полной массой до 3,5 т, N 2 - свыше 3,5 т, N 3 – свыше 12 т;

О – прицепы и полуприцепы: О 1 – полной массой до 0,75 т, О 2 – полной массой до 3,5 т, О 3 – полной массой до 10 т, О 4 – полной массой свыше 10 т.

Нормативные (количественные) значения оценочных показателей для новых (разрабатываемых) автомобилей назначают в соответствии с категориями.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И

ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНО ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ МЕХАНИЗАЦИИ СЕЛЬСКОГО

ХОЗЯЙСТВА

Кафедра « Трактора и автомобили»

КУРСОВОЙ ПРОЕКТ

По дисциплине: Основы теории и расчета трактора и автомобиля.

На тему: Тягово-скоростные свойства и топливная экономичность

автомобиля.

Студента 5 курса 45 группы

Снопкова А.А.

Руководитель КП

Минск 2002.
Введение.

1.Тягово-скоростные свойства автомобиля.

Тягово-скоростными свойствами автомобиля называют совокупность свойств определяющих возможные по характеристикам двигателя или сцепления ведущих колес с дорогой диапазоны изменения скоростей движения и предельные интенсивности разгона и торможения автомобиля при его работе на тяговом режиме работы в различных дорожных условиях.

Показатели тагово-скоростных свойств автомобиля (максимальная скорость, ускорение при разгоне или замедлении при торможении, сила тяги на крюке, эффективная мощность двигателя, подъем, преодолеваемый в различных дорожных условиях, динамический фактор, скоростная характеристика) определяются проектировочным тяговым расчетом. Он предполагает определение конструктивных параметров, которые могут обеспечить оптимальные условия движения, а также установление предельных дорожных условий движения для каждого типа автомобиля.

Тягово-скоростные свойства и показатели определяются при тяговом расчете автомобиля. В качестве объекта расчета выступает грузовой автомобиль малой грузоподъемности.

1.1. Определение мощности двигателя автомобиля.

В основу расчета кладется номинальная грузоподъемность автомобиля

в кг (масса установленной полезной нагрузки + масса водителя и пассажиров в кабине) или автопоезда , она равняется из задания – 1000 кг.

Мощность двигателя

, необходимая для движения полностью груженого автомобиля со скоростью в заданных дорожных условиях, характеризующих приведенным сопротивлением дороги , определяют из зависимости: , где собственная масса автомобиля, 1000 кг; сопротивление воздуха(в Н) – 1163,7 при движении с максимальной скоростью = 25 м/с; -- КПД трансмиссии = 0,93. Номинальная грузоподъемность указана в задании; = 0,04 с учетом работы автомобиля в сельском хозяйстве (коэффициент дорожного сопротивления). (0,04*(1000*1352)*9,8+1163,7)*25/1000*0,93=56,29 кВт.

Собственная масса автомобиля связана в его номинальной грузоподъемностью зависимостью:

1000/0,74=1352 кг. -- коэффициент грузоподъемности автомобиля – 0,74.

У автомобиля особо малой грузоподъемности =0,7…0,75.

Коэффициент грузоподъемности автомобиля существенно влияет на динамические и экономические показатели автомобиля: чем он больше, тем лучше эти показатели.

Сопротивление воздуха зависит от плотности воздуха, коэффициент

обтекаемости обводов и днища (коэффициент парусности), площади лобовой поверхности F (в ) автомобиля и скоростного режима движения. Определяется зависимостью: , 0.45*1.293*3.2*625= 1163.7 Н. =1,293 кг/ -- плотность воздуха при температуре 15…25 С.

Коэффициент обтекаемости у автомобиля

=0,45…0,60. Принимаю = 0,45.

Площадь лобовой поверхности может быть подсчитана по формуле:

Где: В – колея задних колес, принимаю её = 1,6м, величина Н = 2м. Величины В и Н уточняют при последующих расчетах при определении размеров платформы.

= максимальная скорость движения по дороге с улучьшеным покрытием при полной подаче топлива, по заданию она равна 25 м/с. автомобиля развивает, как правило, на прямой передаче, то , 0,95…0,97 – 0,95 КПД двигателя на холостом ходу; =0,97…0,98 – 0,975.

КПД главной передачи.

0,95*0,975=0,93.

1.2. Выбор колесной формулы автомобиля и геометрических параметров колес.

Количество и размеры колес (диаметр колеса

и масса, передаваемая на ось колеса) определяются исходя из грузоподъемности автомобиля.

При полностью груженом автомобиле 65…75% от общей массы машины приходиться на заднюю ось и 25…35% -- на переднюю. Следовательно, коэффициент нагрузки передних и задних ведущих колес составляют соответственно 0.25…0.35 и –0.65…0.75.

; 0,65*1000*(1+1/0,45)=1528,7 кг.

на переднюю:

. 0,35*1000*(1+1/0,45)=823,0 кг.

Принимаю следующие значения: на задней оси –1528,7 кг, на одно колесо задней оси – 764,2 кг; на передней оси – 823,0 кг, на колесо передней оси – 411,5кг.

Исходя из нагрузки

и давления в шинах, по таблице 2 выбираются размеры шин, в м (ширина профиля шины и диаметр посадочного обода ). Тогда расчетный радиус ведущих колес (в м); .

Расчетные данные: наименование шины -- ; её размеры –215-380 (8,40-15) ; расчетный радиус.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И

ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙГОСУДАРСТВЕННЫЙ

АГРАРНОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТМЕХАНИЗАЦИИ СЕЛЬСКОГО

ХОЗЯЙСТВА

Кафедра« Трактора и автомобили»

КУРСОВОЙ ПРОЕКТ

По дисциплине: Основы теориии расчета трактора и автомобиля.

На тему: Тягово-скоростныесвойства и топливная экономичность

автомобиля.

Студента 5 курса 45 группы

Снопкова А.А.

Руководитель КП

Минск2002.
Введение.

1.Тягово-скоростныесвойства автомобиля.

Тягово-скоростнымисвойствами автомобиля называют совокупность свойств определяющих возможные похарактеристикам двигателя или сцепления ведущих колес с дорогой диапазоныизменения скоростей движения и предельные интенсивности разгона и торможенияавтомобиля при его работе на тяговом режиме работы в различных дорожныхусловиях.

Показателитагово-скоростных свойств автомобиля (максимальная скорость, ускорение приразгоне или замедлении при торможении, сила тяги на крюке, эффективная мощностьдвигателя, подъем, преодолеваемый в различных дорожных условиях, динамическийфактор, скоростная характеристика) определяются проектировочным тяговымрасчетом. Он предполагает определение конструктивных параметров, которые могутобеспечить оптимальные условия движения, а также установление предельныхдорожных условий движения для каждого типа автомобиля.

Тягово-скоростныесвойства и показатели определяются при тяговом расчете автомобиля. В качествеобъекта расчета выступает грузовой автомобиль малой грузоподъемности.

1.1. Определение мощности двигателя автомобиля.

В основу расчета кладется номинальная грузоподъемностьавтомобиля />в кг (масса установленнойполезной нагрузки + масса водителя и пассажиров в кабине) или автопоезда />, она равняется из задания –1000 кг.

Мощность двигателя />, необходимая для движенияполностью груженого автомобиля со скоростью />взаданных дорожных условиях, характеризующих приведенным сопротивлением дороги />, определяют из зависимости:

/>собственная масса автомобиля, 1000 кг;

/>сопротивление воздуха(в Н) – 1163,7 при движении смаксимальной скоростью />= 25 м/с;

/> - КПД трансмиссии = 0,93. Номинальнаягрузоподъемность />указана в задании;

/>= 0,04 с учетом работы автомобиля в сельском хозяйстве(коэффициент дорожного сопротивления).

/>(0,04*(1000*1352)*9,8+1163,7)*25/1000*0,93=56,29кВт.

Собственная массаавтомобиля связана в его номинальной грузоподъемностью зависимостью:/>

/>1000/0,74=1352 кг.

где:/> - коэффициентгрузоподъемности автомобиля – 0,74.

У автомобиля особомалой грузоподъемности =0,7…0,75.

Коэффициентгрузоподъемности автомобиля существенно влияет на динамические и экономическиепоказатели автомобиля: чем он больше, тем лучше эти показатели.

Сопротивлениевоздуха зависит от плотности воздуха, коэффициент /> обтекаемостиобводов и днища (коэффициент парусности), площади лобовой поверхности F (в />) автомобиля и скоростногорежима движения. Определяется зависимостью: />,

/>0.45*1.293*3.2*625= 1163.7 Н.

где:/>=1,293 кг//> -- плотность воздуха притемпературе 15…25 С.

Коэффициентобтекаемости у автомобиля/> =0,45…0,60.Принимаю = 0,45.

Площадьлобовой поверхности может быть подсчитана по формуле:

F= 1.6*2=3.2 />

Где: В – колея задних колес,принимаю её = 1,6м, величина Н = 2м. Величины В и Н уточняют при последующихрасчетах при определении размеров платформы.

/>= максимальная скоростьдвижения по дороге с улучьшеным покрытием при полной подаче топлива, по заданиюона равна 25 м/с.

Так как />автомобиля развивает, какправило, на прямой передаче, то

где: />0,95…0,97 – 0,95 КПДдвигателя на холостом ходу; />=0,97…0,98– 0,975.

КПДглавной передачи.

/>0,95*0,975=0,93.

1.2. Выбор колесной формулы автомобиля игеометрических параметров колес.

Количество иразмеры колес (диаметр колеса /> и масса,передаваемая на ось колеса) определяются исходя из грузоподъемности автомобиля.

При полностьюгруженом автомобиле 65…75% от общей массы машины приходиться на заднюю ось и25…35% - на переднюю. Следовательно, коэффициент нагрузки передних и заднихведущих колес составляют соответственно 0.25…0.35 и –0.65…0.75.

/>/>; />0,65*1000*(1+1/0,45)=1528,7кг.

на переднюю: />. />0,35*1000*(1+1/0,45)=823,0кг.

Принимаю следующиезначения: на задней оси –1528,7 кг, на одно колесо задней оси – 764,2 кг; напередней оси – 823,0 кг, на колесо передней оси – 411,5кг.

Исходя из нагрузки />и давления в шинах, потаблице 2 выбираются размеры шин, в м (ширина профиля шины />и диаметр посадочного обода />). Тогда расчетный радиусведущих колес (в м);

Расчетные данные:наименование шины -- ; её размеры –215-380 (8,40-15) ; расчетныйрадиус.

/>(0,5*0,380)+0,85*0,215=0,37м.

1.3. Определение вместимости игеометрических параметров платформы.

По грузоподъемности/> (в т) выбираетсявместимость платформы /> в куб. м., изусловия:

/> />0,8*1=0,8 />/>

Для бортовогоавтомобиля />принимается = 0.7…0.8 м.,выбираю 0,8 м.

Определив объемподбираю внутренние размеры платформы автомобиля в м: ширину, высоту и длину.

Ширину платформыдля грузовых автомобилей принимаю (1.15…1.39) от колеи автомобиля, то есть =1,68 м.

Высоту кузоваопределяю по размерам похожего автомобиля – УАЗа. Она равна – 0,5 м.

Длину платформыпринимаю – 2,6 м.

По внутренней длине/>определяю базу Lавтомобиля (расстояние между осями передних и задних колес):

принимаю базуавтомобиля = 2540 м.

1.4. Тормозные свойства автомобиля.

Торможение –процесс создания и изменения искусственного сопротивления движению автомобиля сцелью уменьшения его скорости или удержания неподвижным относительно дороги.

1.4.1. Установившееся замедление при движенииавтомобиля.

Замедление />=/>,

Где g – ускорениесвободного падения =9,8 м/с; />--коэффициент сцепления колес с дорогой, значения которого для различных дорожныхпокрытий берутся из таблицы 3; /> --коэффициент учета вращающихся масс. Значения его для проектируемого автомобиляравны 1.05…1.25, принимаю = 1,12.
Чем лучше дорога, тем больше может быть замедление машины при торможении.На твердых дорогах замедление может достигать 7 м/с. Плохие дорожные условиярезко снижают интенсивность торможения.

1.4.2. Минимальный тормозной путь.

Длина минимальноготормозного пути />/>может быть определена из условия,что работа совершенная машиной за время торможения, должна быть равна кинетическойэнергии, потерянной ею за то время. Тормозной путь будет минимальным принаиболее интенсивном торможении, то есть когда она имеет максимальное значение.Если торможение осуществляется на горизонтальной дороге с постояннымзамедлением, то путь до остановки равен:

Определяю тормознойпуть для различных значений />, трехразличных скоростей 14,22 и 25 м/с, и занесу их в таблицу:

Таблица№ 1.

Опорная поверхность.

Замедление на дороге. Тормозная сила. Минимальный тормозной путь. Скорость движения. 14 м/с 22 м/с

1.Асфальт 0,65 5,69 14978 17.2 42.5 54.9 2. Гравийка. 0,6 5,25 13826 18.7 46.1 59.5 3. Булыжник. 0,45 3,94 10369 24.9 61.4 79.3 4. Сухая грунтовка. 0,62 5,43 14287 18.1 44.6 57.6 5. Грунтовка после дождя. 0,42 3,68 9678 26.7 65.8 85.0 6. Песок 0,7 6,13 16130 16.0 39.5 51.0 7. Снежная дорога. 0,18 1,58 4148 62.2 153.6 198.3 8. Обледенение дороги. 0,14 1,23 3226 80.0 197.5 255.0

1.5.Динамические свойства автомобиля.

Динамическиесвойства автомобиля в значительной степени определяются правильным выборомколичества передач и скоростным режимом движения на каждой из выбранныхпередач.

Количество передачиз задания – 5. Прямую передачу выбираю –4, пятая – экономичная.

Таким образом,одной из важнейших задач при выполнении курсовой работы по автомобилям являетсяправильный выбор количества передач.

1.5.1.Выбор передач автомобиля.

Передаточное число />=/>,

Где: /> - передаточное числокоробки передач; /> - передаточноечисло главной передачи.

Передаточное числоглавной передачи находиться по уравнению:

где: /> -- расчетный радиусведущих колес, м; принимается из предыдущих расчетов; /> -- частота вращениядвигателя при номинальной частоте вращения.

Передаточное числотрансмиссии на первой передаче:

где /> -- максимальныйдинамический фактор, допустимый по условиям сцепления ведущих колес автомобиля.Величина его находиться в пределах – 0,36…0,65, она не должна превышатьвеличины:

/>=0.7*0.7=0.49

где: /> -- коэффициент сцепленияведущих колес с дорогой, в зависимости от дорожных условий = 0.5…0.75; /> -- коэффициент нагрузкиведущих колес автомобиля; рекомендуемые значения = 0.65…0.8; максимальныйкрутящий момент двигателя, в Н*м, берется из скоростной характеристики длякарбюраторных двигателей; G – полный вес автомобиля, Н; - КПД трансмиссииавтомобиля на первой передаче, подсчитывается по формуле:

0.96 – КПДдвигателя при холостом прокручивании коленчатого вала; />=0.98 – КПД цилиндрическойпары шестерен; />=0.975 –КПДконической пары шестерен; - соответственно количество цилиндрическихи конических пар, участвующих в зацеплении на первой передаче. Их количествовыбирается, ориентируясь на схемы трансмиссий.

В первомприближении при предварительных расчетах передаточные числа грузовыхавтомобилей подбираются по принципу геометрической прогрессии, образуяряд, где q – знаменатель прогрессии; он подсчитывается поформуле:

где: z – числопередач, указываемых в задании.

Передаточное числопостоянно включенной главной передач автомобиля берется, сообразуясь спринятыми у прототипа = .

По передаточнымчислам трансмиссии подсчитывается максимальные скорости движения автомобиля наразных передачах. Полученные данные сводятся в таблицу.

Таблица № 1.

Передача Передаточное число Скорость, м/с. 1 30 6,1 2 19 9,5 3 10,5 17,1 4 7,2 25 5 5,8 31

1.5.2. Построение теоретической (внешней) скоростнойхарактеристики карбюраторного двигателя.

Теоретическаяскоростная внешняя характеристика /> = f(n) строитсяна листе миллиметровой бумаги. Расчет и построение внешней характеристикипроизводят в такой последовательности. На оси абсцисс откладываем в принятоммасштабе значение частот вращения коленчатого вала: номинальной, максимальнойхолостого хода, при максимальном крутящем моменте, минимальной, соответствующейработе двигателя.

Номинальная частотавращения задается в задании, частота />,

Частота />. Частота вращениямаксимальная принимается на основании справочных данных двигателя прототипа –4800 об/мин.

Промежуточные точкизначений мощности карбюраторного двигателя находят из выражения, задаваясьзначениями />(не менее 6 точек).

Значения крутящегомомента />подсчитывается позависимости:

Текущие значения />и/>берутиз графика />. Удельный эффективныйрасход топлива карбюраторного двигателя подсчитывают по зависимости:

/>, г/(кВт, ч),

где: /> удельный эффективныйрасход топлива при номинальной мощности, заданный в задании = 320 г/кВт*ч.

Часовой расходтоплива определяется по формуле:

Значения />и /> берут из построенныхграфиков, по результатам расчета теоретической внешней характеристикисоставляется таблица.

Данные дляпостроения характеристики. Таблица№ 2.

1 800 13,78 164,5 4,55 330,24 2 1150 20,57 170,86 6,44 313,16 3 1500 27,49 175,5 8,25 300 4 1850 34,30 177,06 9,97 290,76 5 2200 40,75 176,91 11,63 285,44 6 2650 48,15 173,52 13,69 284,36 7 3100 54,06 166,54 15,66 289,76 8 3550 57,98 155,97 17,49 301,64 9 4000 59,40 141,81 19,01 320 10 4266 58,85 131,75 19,65 333,90 11 4532 57,16 120,44 20,01 350,06 12 4800 54,17 107,78 19,97 368,64 /> /> /> /> /> /> /> /> /> />

1.5.4. Универсальнаядинамическая характеристика автомобиля.

Динамическаяхарактеристика автомобиля иллюстрирует его тягово-скоростные свойства приравномерном движении с разными скоростями на разных передачах и в различныхдорожных условиях.

Из уравнениятягового баланса автомобиля при движении без прицепа на горизонтальной опорнойповерхности, следует, что разность сил />(касательнойсилы тяги и сопротивления воздуха при движении автомобиля) в этом уравнении представляетсобой силу тяги, расходуемую на преодоление всех внешних сопротивлений движениюавтомобиля, за исключением сопротивления воздуха. Поэтому отношение />характеризует запас силытяги, приходящийся на единицу веса автомобиля. Этот измеритель динамических, вчастности, тягово-скоростных, свойств автомобиля, называется динамическим факторомD автомобиля.

Таким образом,динамический фактор автомобиля.

Динамический факторавтомобиля определяется на каждой передаче в процессе работы двигателя с полнойнагрузкой при полной подаче топлива.

Между динамическимфактором и параметрами, характеризующими сопротивление дороги (коэффициент />) и инерционные нагрузкиавтомобиля, существуют следующие зависимости:

/>/>--при неустановившемся движении;

/>при установившемся движении.

Динамический факторзависит от скоростного режима автомобиля – частоты вращения двигателя (его крутящегомомента) и включенной передачи (передаточное число трансмиссии). Графическоеизображение и называют динамической характеристикой. Её величина зависит такжеот веса автомобиля. Поэтому характеристику строят сначала для порожнегоавтомобиля без груза в кузове, а потом путем дополнительных построенийпреобразуют ее в универсальную, позволяющую находить динамический фактор для любоговеса автомобиля.

Дополнительныепостроения для получения универсальной динамической характеристики.

Наносим напостроенной характеристике сверху вторую ось абсцисс, на коэффициентторойоткладываю значения коэффициента нагрузки автомобиля.

На крайней слеваточке верхней оси абсцисс коэффициент Г=1, что соответствует порожнемуавтомобилю; на крайней точке справа откладываем максимальное значение,указанное в задании, величина которого зависит от максимального веса груженогоавтомобиля. Затем наносим на верхней оси абсцисс ряд промежуточных значенийкоэффициента нагрузки и проводим из них вниз вертикали до пересечения с нижнейосью абсцисс.

Вертикаль,проходящую через точку Г=2, принимаю за вторую ось ординат характеристики.Поскольку динамический фактор при Г=2 вдвое меньше, чем у порожнего автомобиля,то масштаб динамического фактора на второй оси ординат должен быть в два разабольше, чем на первой оси, проходящей через точку Г=1. Соединяю однозначныеделения на обеих ординатах наклонными линиями. Точки пересечения этих прямых состальными вертикалями образуют на каждой вертикали масштабную шкалу для соответствующегозначения коэффициента нагрузки автомобиля.

Результаты расчетовпоказателей заносятся в таблицу.

Таблица№3.

Передача V, м/с.

Крутящий момент, Нм.

D Г=1 Г=2.5 1 1,22 800 164,50 12125 2,07 0,858 0,394 2,29 1500 175,05 12903 7,29 0,912 0,420 3,35 2200 176,91 13040 15,69 0,921 0,424 4,72 3100 166,54 12275 31,15 0,866 0,398 6,10 4000 141,81 10453 51,86 0,736 0,338 6,91 4532 120,44 8877 66,27 0,623 0,286 7,3 4800 107,78 7944 66,03 0,557 0,255 2 1,90 800 164,50 7766 5,06 0,549 0,291 3,57 1500 175,05 8264 17,78 0,583 0,309 5,23 2200 176,91 8352 38,24 0,588 0,312 7,38 3100 166,54 7862 75,93 0,551 0,292 9,52 4000 141,81 6695 126,41 0,464 0,246 10,78 4532 120,44 5686 162,27 0,390 0,207 11,45 4800 107,78 5088 182,03 0,346 0,184 3 3,44 800 164,50 4292 16,56 0,302 0,160 6,46 1500 175,05 4567 58,26 0,317 0,168 9,47 2200 176,91 4615 125,21 0,319 0,169 13,35 3100 166,54 4345 248,61 0,289 0,154 17,22 4000 141,81 3700 413,92 0,231 0,123 19,51 4532 120,44 3142 531,34 0,183 0,098 20,64 4800 107,78 2812 596,04 0,155 0,083

5,02 800 164,50 2943 35,21 0,206 0,094 9,42 1500 175,05 3131 123,79 0,212 0,096 13,81 2200 176,91 3165 266,29 0,204 0,090 19,46 3100 166,54 2979 528,73 0,172 0,071 25,11 4000 141,81 2537 880,30 0,144 0,04 28,45 4532 120,44 2154 1130,03 0,069 0,015 30,12 4800 107,78 1928 1267,63 0,043 0,001 5 6,23 800 164,50 2370 54,26 0,164 0,087 11,69 1500 175,05 2522 190,77 0,164 0,088 17,15 2200 176,91 2549 410,36 0,150 0,080 24,16 3100 166,54 2400 814,78 0,110 0,060 31,17 4000 141,81 2043 1356,56 0,044 0,026 35,32 4532 120,44 1735 1741,40 0,001 37,42 4800 107,78 1553 1953,53 /> /> /> /> /> /> /> /> /> />
1.5.5. Краткий анализ полученных данных.

1.Определить,на каких передачах будет работать автомобиль в заданных дорожных условиях,характеризуемых приведенным коэффициентом />дорожныхсопротивлений (не менее 2…3 значений) и какие максимальные скорости сможет онразвивать при равномерном движении с различными значениями (не менее 2-х) коэффициентаГ нагрузки автомобиля, обязательно включая при этом Г макс.

Задаюсьследующими значениями дорожных сопротивлений: 0,04, 0,07, 0,1 (асфальт, грунтоваядорога, грунтовка после дождя). При коэффициенте =1 автомобиль может двигатьсяпри />= 0,04 со скоростью 31,17м/с на 5 передаче; />=0,07 – 28 м/с, 5передача; />= 0,1 – 24 м/с, 5 передача. При коэффициенте = 2,5 (максимальная нагрузка) автомобиль может двигаться при />= 0,04 – скорость 25 м/с, 4передача; />= 0,07 – скорость 19 м/с, 4передача; />= 0,1 – скорость 17 м/с, 3 передача.

2.Определить по динамической характеристике наибольшие дорожные сопротивления,которые сможет преодолевать автомобиль, двигаясь на каждой передаче с равномернойскоростью (на точках перегиба кривых динамического фактора).

Полученные данныепроверить с точки зрения возможности их реализации по условиям сцепления сдорожным покрытием. Для автомобиля с задними ведущими колесами:

где:/> - коэффициент нагрузкиведущих колес.

Таблица№ 4.

№ передачи Преодолеваемое дорожное сопротивление Сила сцепления с дорожным покрытием (асфальт). Г=1 Г=2,5 Г=1 Г=2,5 1 передача 0,921 0,424 0,52 0,52 2 передача 0,588 0,312 0,51 0,515 3 передача 0,319 0,169 0,51 0,51 4 передача 0,204 0,09 0,5 0,505 5 передача 0,150 0,08 0,49 0,5

По табличным даннымвидно что на 1 передаче автомобиль может преодолевать песок; на 2 –ой снежнуюдорогу; на 3-ей обледенелую дорогу; на 4 – ой сухую грунтовую дорогу; на 5–ой асфальт

3. Определить углыподъема, которые автомобиль способен преодолеть в различных дорожных условиях(не менее 2…3-х значений) на различных передачах, и скорости какие он при этомбудет развивать.

Таблица№5.

Дорожные сопротивления. № передачи Угол подъема Скорость Г=1 Г=2,5 0,04 1 передача 47 38 3,35 2 передача 47 27 5,23 3 передача 27 12 9,47 4 передача 16 5 13,8 5 передача 11 4 17,15 0,07 1 передача 45 35 3,35 2 передача 45 24 5,23 3 передача 24 9 9,47 4 передача 13 2 13,8 5 передача 8 17,15 0,1 1 передача 42 32 3,35 2 передача 42 21 5,23 3 передача 22 7 9,47 4 передача 10 13,8 5 передача 5 17,15

4.Определить:

Максимальнуюскорость при установившемся движении в наиболее типичных для данного видаавтомобиля дорожных условиях (асфальтированное покрытие). Значения f приэтом для различных дорожных условий принимаются из соотношения:

При заданныхдорожных условиях т.е. асфальтированном шоссе сопротивление принимает значение– 0,026 и скорость равна 26,09 м/с;

Динамическийфактор на прямой передаче при наиболее употребительной для данного видаавтомобиля скорости движения (обычно берется скорость, равная половинемаксимальной) – 12 м/с;

n максимальное значениединамического фактора на прямой передаче и значение скорости – 0,204 и 11,96м/с;

n максимальное значениединамического фактора на низшей передаче – 0,921;

n максимальное значениединамического фактора на промежуточных передачах; 2 передача – 0,588; 3передача – 0,317; 5 передача – 0,150;

5. сравнитьполученные данные со справочными по автомобилю, имеющему близкие к прототипуосновные показатели. Данные полученные при расчете практически похожи на данныеавтомобиля УАЗ.

2.Топливная экономичность автомобиля.

Одним из основныхтопливная экономичность как эксплутационного свойства принято считатьколичество топлива, расходуемое на 100 км пути при равномерном движении сопределенной скоростью в заданных дорожных условиях. На характеристике наноситьсяряд кривых, каждая из которых соотвествует определенным дорожным условиям; привыполнении работы рассматривается три коэффициента дорожного сопротивления:0,04, 0,07, 010.

Расход топлива,л/100 км:

где: /> - мгновенный расход топливадвигателем автомобиля, л;

где /> - время прохождения 100 кмпути, =/>.

Отсюда приучитывании мощности двигателя затрачиваемую на преодоление сопротивления дорогии воздуха получаем:

Для наглядногопредставления о экономичности строится характеристика. На оси ординатоткладывается расход топлива, на оси абсцисс скорость движения.

Порядок построенияследующий. Для различных скоростных режимов движения автомобиля из зависимости

определяют значение частотывращения коленчатого вала двигателя.

Зная частотувращения двигателя из соответствующих скоростных характеристик определяютзначения g.

По формуле 17определяют мощность двигателя (выражение в квадратных скобках), требуемую длядвижения автомобиля с разными скоростями на одной из заданных дорог,характеризуемых соответствующим значением сопротивления: 0,04, 0,07, 0,10 .

Расчеты ведутся до скорости,при которой двигатель загружается на максимальную мощность. Переменнойвеличиной при этом является только скорость движения и сопротивление воздуха,все остальные показатели берутся из предыдущих расчетов.

Подставляянайденные для разных скоростей подсчитывают искомые значения расхода топлива.

Таблица№ 6.

/>л/100 км

5,01 800 940,54 46,73 5,36 330,24 5,5 13,1 9,39 1500 940,54 164,2 11,26 300 3,0 13,31 11,59 1850 940,54 250,11 14,97 290,76 2,4 13,91 13,78 2200 940,54 253,39 19,33 285,44 2,0 14,84 19,41 3100 940,54 701,68 34,58 289,76 1,4 19,12 22,23 3550 940,54 920,11 44,86 301,64 1,2 22,55 25 4000 940,54 1168 59,35 320,00 1,0 28,08

Сухой грунт

5,01 800 1654,8 46,73 9,20 330,24 5,5 22,46 7,20 1150 1654,8 96,55 13,61 313,16 3,9 21,92 9,39 1500 1654,8 164,28 18,44 300 3,0 21,82 11,59 1850 1654,8 249,90 23,83 290,76 2,4 22,15 13,78 2200 1654,8 353,39 29,88 285,44 2,0 22,93 16,59 2650 1654,8 512,75 38,84 284,36 1,7 24,66 19,41 3100 1654,8 701,68 49,43 289,76 1,4 27,33 0,1 5,01 800 2351,4 46,73 13,03 330,24 5,5 31,81 7,20 1150 2351,4 96,55 19,12 313,16 3,9 30,79 9,39 1500 2351,4 164,28 25,62 300 3,0 30,32 11,59 1850 2351,4 249,90 32,70 290,76 2,4 30,39 13,78 2200 2351,4 353,39 40,43 285,44 2,0 31,02 4000 4532 4800 /> /> /> /> /> /> /> /> /> /> /> /> /> /> />

Дляанализа экономической характеристики на ней проводится две резюмирующие кривые:огибающая кривая а-а максимальных скоростей движения на разных дорогах, повеличине полного использования установленной мощности двигателя и кривая с-снаиболее экономичных скоростей.

2.1. Анализ экономической характеристики.

1. Определить на каждом дорожномпокрытии (почвенном фоне) наиболее экономичные скорости движения. Указать ихзначения и величины расхода топлива. Наиболее экономичная скорость, как иследовало ожидать на твердом покрытии, на скорости равной половине максимальнойрасход топлива равен 14,5 л/100 км.

2. Объяснить характер измененияэкономичности при отклонении от экономической скорости вправо и влево. Приотклонении вправо увеличивается удельный расход топлива на кВт, при отклонениивлево возрастает весьма резко воздушное сопротивление.

3. Определитьконтрольный расход топлива. 14,5 л/100 км.

4. Сравнитьполученный контрольный расход топлива с аналогичным показателемавтомобиля-прототипа. У прототипа контрольный расход равен полученному.

5. Исходя из запасахода автомобиля (суточного), пройденного по дороге с улучьшеным покрытием,определить ориентировочную вместимость />топливногобака (в л) по зависимости:

На прототипеемкость баков – 80 литров, принимаю такую емкость (ее удобно заправлять изканистр).

Послезавершения расчетов результаты сводятся в таблицу.

Таблица№ 7.

Показатели 1.Тип. Малый грузовой автомобиль. 2. коэффициент нагрузки автомобиля (по заданию). 2,5 3. Грузоподъемность, кг. 1000 4. Максимальная скорость движения, м/с. 25 5. Масса снаряженного автомобиля, кг. 1360 6. Число колес. 4

7. Распределение снаряженной массы по осям автомобиля, кг

Через задний мост;

Через передний мост.

8. Полная масса груженого автомобиля, кг. 2350

9. Распределение полной массы по осям автомобиля, кг,

Через задний мост;

Через передний мост.

10. Размеры колес, мм.

Диаметр (радиус),

Ширина профиля шины;

Внутреннее давление воздуха в шинах, Мпа.

11. Размеры грузовой платформы:

Вместимость, м/куб;

Длина, мм;

Ширина, мм;

Высота, мм.

12.База автомобиля, мм. 2540 13. Установившееся замедление при торможении, м/с. 5,69

14. Тормозной путь, м при торможении со скоростью:

Скорость максимальная.

15. Максимальные значения динамического фактора по передачам:

16. Наименьшее значение расхода топлива на почвенных фонах, л/100 км:

17. Наиболее экономичные скорости движения (м/с) на почвенных фонах:

18. Вместимость топливного бака, л. 80 19. Запас хода автомобиля, км. 550 20. Контрольный расход топлива, л/100 км (примерный). 14.5 Двигатель: Карбюраторный 21. Максимальная мощность, кВт. 59,40 22. Частота вращения коленчатого вала при максимальной мощности, об/мин. 4800 23. Максимальный вращающий момент, Нм. 176,91 24. Частота вращения коленчатого вала при максимальном моменте, об/мин. 2200

Список литературы.

1. Скотников В.А., Мащенский А.А.,Солонский А.С. Основы теории и расчета трактора и автомобиля. М.: Агропромиздат,1986. – 383с.

2. Методические пособия по выполнениюкурсовой работы, старое и новое издание.

ВВЕДЕНИЕ

В методических указаниях приводится методика расчета и анализа тягово-скоростных свойств и топливной экономичности карбюраторных автомобилей с ступенчатой механической трансмиссией. В работе содержатся параметры и технические характеристики отечественных автомобилей, которые необходимы для выполнения расчетов динамичности и топливной экономичности, указывается порядок расчета, построения и анализа основных характеристик указанных эксплуатационных свойств, даются рекомендации по выбору ряда технических параметров, отражающих особенности конструкции различных автомобилей, режима и условий их движения.

Использование данных методических указаний дает возможность определить значения основных показателей динамичности и топливной экономичности и выявить их зависимость от основных факторов конструкции автомобиля, его загрузки, дорожных условий и режима работы двигателя, т.е. решить те задачи, которые ставятся перед студентом в курсовой работе.

ОСНОВНЫЕ ЗАДАЧИ РАСЧЕТА

При анализе тягово-скоростных свойств автомобиля производится расчет и построение следующих характеристик автомобиля:

1) тяговой;

2) динамической;

3) ускорений;

4) разгона с переключением передач;

5) наката.

На их основе производится определение и оценка основных показателей тягово-скоростных свойств автомобиля.

При анализе топливной экономичности автомобиля производится расчет и построение ряда показателей и характеристик, в том числе:

1) характеристики расхода топлива в процессе разгона;

2) топливно-скоростной характеристики разгона;

3) топливной характеристики установившегося движения;

4) показателей топливного баланса автомобиля;

5) показателей эксплуатационного расхода топлива.

ГЛАВА 1. ТЯГОВО-СКОРОСТНЫЕ СВОЙСТВА АВТОМОБИЛЯ

1.1. Расчет сил тяги и сопротивления движению

Движение автотранспортного средства определяется действием сил тяги и сопротивления движению. Совокупность всех сил, дейс­твующих на автомобиль, выражает уравнения силового баланса:

Р i = Р д + Р о + P тр + Р + P w + P j , (1.1)

где P i - индикаторная сила тяги, H;

Р д, Р о, P тр, P , P w , P j - соответственно силы сопротивления двигателя, вспомогательного оборудования, трансмиссии, дороги, воздуха и инерции, H.

Значение индикаторной силы тяги можно представить в виде суммы двух сил:

Р i = Р д + Р е, (1.2)

где P е - эффективная сила тяги, H.

Значение P е рассчитывается по формуле:

где M е - эффективный крутящий момент двигателя, Нм;

r - радиус колес, м

i - передаточное число трансмиссии.

Для определения значений эффективного крутящего момента карбюраторного двигателя при той или иной подаче топлива используется его скоростные характеристики, т.е. зависимости эффективного момента от частоты вращения коленчатого вала при различных положениях дроссельной заслонки. При ее отсутствии может быть использована так называемая единая относительная скоростная характеристика карбюраторных двигателей (рис.1.1).


Рис.1.1. Единая относительная частичная скоростная характеристика карбюраторных автодвигателей

Указанная характеристика дает возможность определить приб­лиженное значения эффективного крутящего момента двигателя при различных значениях частоты вращения коленчатого вала и положе­ниях дроссельной заслонки. Для этого достаточно знать значения эффективного крутящего момента двигателя (M N) и частоты враще­ния его вала при максимальной эффективной мощности (n N).

Значение крутящего момента, соответствующее максимальной мощности (M N), можно рассчитать по формуле:

, (1.4)

где N е мах - максимальная эффективная мощность двигателя, кВт.

Принимая ряд значений частоты вращения коленчатого вала (табл.1.1), рассчитывают соответствующий ряд относительных частот (n е /n N). Используя последний, по рис. 1.1 определяют соответствующий ряд значений относительных величин крутящего момен­та (θ = M е /M N), после чего вычисляют искомые значения по формуле: M е = M N θ. Значения M е сводятся в табл. 1.1.

Технические характеристики Hundai Solaris, Лада Гранта, KIA Rio, КамАЗ 65117.

ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА АВТОМОБИЛЯ

Эксплуатационные свойства автомобиля это группа свойств, определяющих возможность его эффективного использования, а также степень его приспособленности к эксплуатации в качестве транспортного средства.
Они включают следующие групповые свойства, обеспечивающие движение:

  • информативность
  • тягово-скоростные
  • тормозные
  • топливную экономичность
  • проходимость
  • маневренность
  • устойчивость
  • надежность и безопасность

Эти свойства закладываются и формируются на этапе конструирования и изготовления автомобиля. Водитель может, исходя из этих свойств, подобрать себе тот автомобиль, который более всего удовлетворяет его запросам и нуждам.

ИНФОРМАТИВНОСТЬ

Информативность автомобиля - это его свойство обеспечивать необходимой информацией водителя и других участников движения. В любых условиях объем и качество воспринимаемой информации имеют решающее значение для безопасного управления автомобилей. Информация об особенностях транспортного средства, характере поведения и намерениях его водителя во многом предопределяет безопасность в действиях других участников движения и уверенность в реализации их намерений. В условиях недостаточной видимости, особенно ночью, информативность в сравнении с другими эксплуатационными свойствами автомобиля оказывает главное влияние на безопасность движения.

Различают внутреннюю, внешнюю и дополнительную информативность автомобиля.

Свойства автомобиля, обеспечивающие возможность воспринимать водителем информацию, необходимую для управления автомобилем в любой момент времени, называются внутренней информативностью . Она зависит от конструкции и обустройства кабины водителя. Важнейшими для внутренней информативности являются обзорность, панель приборов, система внутренней звуковой сигнализации, рукоятки и кнопки управления автомобилем.

Обзорность должна позволять водителю своевременно и без помех воспринимать фактически всю необходимую информацию о любых изменениях дорожной обстановки. Она зависит, прежде всего, от размера окон и стеклоочистителей; ширины и расположения стоек кабины; конструкции омывателей, системы обдува и обогрева стекол; расположения, размеров и конструкции зеркал заднего вида. Обзорность также зависит от удобства сиденья.

Панель приборов должна располагаться в кабине таким образом, чтобы водитель для наблюдения за ними и восприятия их показаний расходовал минимальное время, не отвлекаясь от наблюдения за дорогой. Расположение и конструкция рукояток, кнопок и клавишей управления должны позволять легко их находить, особенно ночью, и обеспечивать водителя посредством тактильных и кинетостатических ощущений обратной связью, необходимой для контроля точности управляющих действий. Наибольшая точность сигналов обратной связи требуется от рулевого колеса, педалей тормоза и газа, а также рычага переключения передач.



Конструкция и обустройство кабины должны отвечать требованиям не только внутренней информативности, но и эргономичности рабочего места водителя - свойства, характеризующего приспособленность кабины психофизиологическим и антропологическим особенностям человека. Эргономичность рабочего места зависит, прежде всего, от удобства сидения, расположения и конструкции органов управления, а также от отдельных физико-химических параметров среды в кабине.

Неудобные поза водителя и расположение органов управления, равно как и чрезмерный шум, тряска и вибрация, чрезмерно высокая или низкая температура, плохая вентиляция воздуха ухудшают условия для водителя, снижают его работоспособность, точность восприятия и управляющих действий.

Внешняя информативность - свойство, от которого зависит возможность других участников движения получать информацию от автомобиля, необходимую для правильного взаимодействия с ним в любое время. Она определяется размерами, формой и окраской кузова, характеристиками и расположением световозвращателей, системы внешней световой сигнализации, а также звуковым сигналом.

Информативность транспортных средств с небольшими габаритами зависит от их контрастности относительно дорожного покрытия. Автомобили, окрашенные в черный, серый, зеленый, синий цвета, в 2 раза чаще попадают в ДТП, чем окрашенные в светлый и яркий цвет, из-за трудности их различения. Наиболее опасными такие автомобили становятся в условиях недостаточной видимости и ночью.

ТЯГОВО-СКОРОСТНЫЕ СВОЙСТВА АВТОМОБИЛЯ

Тягово-скоростные свойства автомобиля - эти свойства определяют динамику разгона автомобиля, возможность развивать им максимальную скорость, и характеризуются временем (в сек.), необходимым для разгона автомобиля до скорости 100 км/ч, мощностью двигателя и максимальной скоростью, которую может развить автомобиль.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков