Регулировка 6 цилиндрового двигателя. Как работают цилиндры двигателя

Регулировка 6 цилиндрового двигателя. Как работают цилиндры двигателя

Итак, с теоретическим положением о влиянии интервала воспламенения на равномерность работы, мы познакомились. Рассмотрим традиционный порядок работы цилиндров в двигателях с разной схемой расположения цилиндров.

· порядок работы 4 цилиндрового двигателя со смещением шеек коленвала 180° (интервал между воспламенениями) : 1-3-4-2 или 1-2-4-3;

· порядок работы 6 цилиндрового двигателя (рядного) с интервалом между воспламенениями 120°: 1-5-3-6-2-4;

· порядок работы 8 цилиндрового двигателя (V-образный) с интервалом между воспламенениями 90°: 1-5-4-8-6-3-7-2

Во всех схемах производителей двигателей. Порядок работы цилиндров всегда начинается с главного цилиндра №1.

Знание порядка работы цилиндров двигателя вашего автомобиля, без сомнения, несомненно, будут вам полезны для того, чтобы контролировать порядок зажигания при выполнении определенных ремонтных работ при регулировке зажигания или ремонте головки блока цилиндров. Или, например, для установки (замены) высоковольтных проводов, и подключении их к свечам и трамблёру.

Общее сведения, условия работы шатунов шатун служит связующим звеном между поршнем и кривошипом коленчатого вала. Так как поршень совершает прямолинейное возвратно-поступательное движение, а коленчатый вал - вращательное, то шатун совершает сложное движение и подвергается действию знакопеременных, носящих ударный характер нагрузок от газовых сил и сил инерции.

Шатуны автомобильных массовых двигателей изготовляют мето­дом горячей штамповки из среднеуглеродистых сталей марок: 40, 45, марганцевистой 45Г2, а в особенно напряженных двигателях из хромо-никеле­вой 40ХН, хромо-молибдено­вой улучшенной ЗОХМА и дру­гих легированных качествен­ных сталей.

Общий вид шатуна в сборе с поршнем и элементы его конструкции показаны на рис. 1. Основными элемен­тами шатуна являются: стер­жень 4, верхняя 14 и ниж­няя 8 головки. В комплект шатуна входят также: под­шипниковая втулка 13 верх­ней головки, вкладыши 12 нижней головки, шатунные болты 7 с гайками 11 и шплин­тами 10.

Рис. 1. Шатунно-поршневая группа в сборе с гильзой цилиндра; элементы конструкции шатуна:

1 - поршень; 2 - гильза цилиндра; 3 - уплотнительные резиновые кольца; 4 - стер­жень шатуна; 5 - запорное кольцо; б - порш­невой палец; 7 - шатунный болт; 8 - нижняя головка шатуна; 9- крышка нижней головки шатуна; 10 - шплинт; 11 - гайка шатунного болта; 12 - вкладыши нижней головки шату­на; 13 - втулка верхней головки шатуна; 14 - верхняя головка шатуна

Стержень шатуна, подвер­женный продольному изгибу, чаще всего имеет двутавровое сечение, но применяют иногда крестообразные, круглые, трубчатые и Другие профили (рис. 2). Наиболее рациональными являются двутавровые стержни, обладающие большой жесткостью при малом весе. Крестообразные профили нуждаются в более развитых головках шатуна, что приводит к переутяжелению его. Круглые профили отличаются простой геометрией, но требуют повышенного качества механической обработки, так как наличие у них следов обработки приводит к увеличению местной концентра­ции напряжений и возможной поломке шатуна.

Для массового автомобильного производства удобными и наибо­лее приемлемыми являются стержни двутаврового сечения. Пло­щадь поперечного сечения стержня обычно имеет переменную величину, причем минимальное сечение находится у верхней голов­ки 14, а максимальное - у нижней головки 8 (см. рис. 1). Это обеспечивает необходимую плавность перехода от стержня к ниж­ней головке и способствует повышению общей жесткости шатуна. С этой же целью и для уменьшения габаритов и веса шатунов

Рис. 2. Профили стержня шатуна: а) двутавровый; б) крестообразный; в) трубчатый; г) круглый

в быстроходных двигателях автомобильного типа обе головки, как правило, отковываются за одно целое со стержнем.

Верхняя головка обычно имеет форму, близкую к цилиндриче­ской, но особенности ее конструкции в каждом конкретном случае


Рис. 3. Верхняя головка шатуна

выбираются в зависимости от методов фиксации поршневого пальца и его смазки. Если поршневой палец закрепляется в поршневой головке шатуна, то ее делают с разрезом, как показано на рис. 3, а. Под действием стяжного болта стенки головки несколько деформируются и обеспечивают глухую затяжку поршневого паль­ца. Головка при этом не работает на износ и выполняется с относи­тельно небольшой длиной, равной примерно ширине наружной полки стержня шатуна. С точки зрения выполнения монтажно-демонтажных работ предпочтительнее боковые разрезы, но использование их приводит к определенному увели­чению размеров и веса головкиу Верхние головки с креплением в них поршневых пальцев применялись на шатунах старых моделей рядных двигателей ЗИЛ, например, на 5 и 101 моделях.

При других методах фиксации поршневых пальцев в верхнюю головку шатуна в качестве подшипника запрессовывают втулки из оловянистой бронзы с толщиной стенок от 0,8 до 2,5 мм (см. рис. 3, б, в, г). Тонкостенные втулки изготовляют свертными из листовой бронзы и обрабатывают под заданный размер поршне­вого пальца после запрессовки в головку шатуна. Свертные втулки применяют на всех двигателях автомобилей ГАЗ, ЗИЛ-130, МЗМА и др.



Втулки верхней головки шатунов смазывают разбрызгиванием или под давлением. В автомобильных двигателях широкое распро­странение получила смазка разбрызгиванием. Капельки масла при такой простейшей системе смазки попадают в головку через одно или несколько больших с широкими фасками на входе масло-улавливающих отверстий (см. рис. 3, б) или через глубокую прорезь, сделанную фрезой со стороны, противоположной стержню. Подачу масла под давлением применяют только в двигателях, рабо­тающих с повышенной нагрузкой на поршневые пальцы. Масло подводится из общей системы смазки через канал, просверленный в стержне шатуна (см. рис. 3, б), или по специальной трубке, уста­навливаемой на стержне шатуна. Смазка под давлением применяется в двух- и четырехтактных дизелях ЯМЗ.

Двухтактные дизели ЯМЗ, работающие со струйным охлажде­нием днища поршней, имеют на верхней головке шатуна специаль­ные форсунки для подачи и распыливания масла (см. рис. 3, г). Малая головка шатуна снабжается здесь двумя толстостенными литыми бронзовыми втулками, между которыми образуется коль­цевой канал для подвода масла к форсунке-распылителю из канала в стержне шатуна. Для более равномерного распределения смазоч­ного масла на поверхностях трения втулок нарезаются спираль­ные канавки, а дозирование масла осуществляют с помощью калиб­рованного отверстия в пробочке 5, которую запрессовывают в канал стержня шатуна, как показано на рис. 4, б.

Нижние головки шатунов двигателей автомобильного и трак­торного типов обычно делают разъемными, с упрочняющими прили­вами и ребрами жесткости. Типичная конструкция разъемной голов­ки показана на рис. 1. Основная ее половина откована совместно со стержнем 4, а отъемная половина 9, называемая крышкой ниж­ней головки, или просто крышкой шатуна, скрепляется с основной двумя шатунными болтами 7. Иногда крышка крепится четырьмя и даже шестью болтами или шпильками. Отверстие в большой головке шатуна обрабатывают в собранном состоянии с крышкой (см. рис. 4), поэтому ее нельзя переставлять на другой шатун или изменять принятое положение на 180° относительно шатуна, с которым она была спарена до расточки. Чтобы предотвратить возможную путаницу на основной половине головки и на крышке, у плоскости их разъема выбивают порядковые номера, соответ­ствующие номеру цилиндра. При сборке кривошипно-шатунного механизма надо следить за правильной постановкой шатунов на ме­сто, строго руководствуясь инструкцией завода-изготовителя.

Рис. 4. Нижняя головка шатуна:

а) с прямым разъемом; б) с косым разъемом; 1 - половина головки, отковы­ваемая совместно со стержнем 7; 2 - крышка головки; 3 - болт шатуна; 4 - треугольные шлицы; 5 - втулочка с калиброванным отверстием; 6 - канал в стержне для подвода масла к поршневому пальцу

Для двигателей автомобильного типа с характерной совместной отливкой цилиндра и картера в одном блоке и Ессбще при наличии блок-картерной отливки остова двигателя желательно, чтсбы боль­шая головка шатуна свободно проходила через цилиндры и не за­трудняла выполнение монтажно-демонтажных работ. Когда габа­риты этой головки развиты так, что она не проходит в отверстие цилиндровой гильзы 2 (см. рис. 1), то комплект шатуна в сборе с поршнем 1 (см. рис. 1) можно свободно установить на место только при снятом коленчатом вале, что создает крайние неудобства при ремонте(Иногда поршень без уплотнительных колец, но собранный с шатуном удается просунуть за смонтированный коленчатый вал и вставить его в цилиндр со стороны картера (или, наоборот, вынуть из цилиндра через картер), а потом завершать сборку поршневой группы и шатуна, затрачивая на все это непроизводительно много времени). Поэтому развитые нижние головки выполняют с косым разъемом, как сделано это в дизеле ЯМЗ-236 (см. рис. 4, б).

Плоскость косого разъема головки обычно располагают под углом 45° к продольной оси стержня шатуна (в отдельных случаях возможен угол разъема 30 или 60°). Габариты таких головок после удаления крышки резко уменьшаются. При косом разъеме крышки чаще всего крепятся болтами, которые ввертываются в основную

половину головки. Реже для этой цели применяют шпильки. В отли­чие от нормальных разъемов, выполняемых под углом 90° к оси стержня шатуна (см. рис. 4, а), косые разъемы головок (см. рис. 4, б) позволяют несколько разгружать шатунные болты от разрывающих усилий, а возникающие при этом боковые усилия воспринимаются буртиками крышки или треугольными шлицами, сделанными на стыкующихся поверхностях головки. У разъемов (нормальных или косых), а также под опорными плоскостями шатунных болтов и гаек стенки нижней головки обычно снабжают упрочняющими приливами и утолщениями.

В головках автомобильных шатунов с нормальной плоскостью разъема в подавляющем большинстве случаев шатунные болты одновременно являются установочными, точно фиксирующими поло­жение крышки относительно шатуна. Такие болты и отверстия под них в головке обрабатывают с высокой чистотой и точностью, как установочные штифты или втулки. Шатунные болты или шпиль­ки являются исключительно ответственными деталями. Обрыв их связан с аварийными последствиями, поэтому они изготовляются из высококачественных легированных сталей с плавными перехо­дами между элементами конструкции и подвергаются термообра­ботке. Стержни болтов выполняются иногда с проточками в местах перехода к резьбовой части и около головок. Проточки делают без подрезов с диаметром, равным примерно внутреннему диаметру резьбы болта (см. рис. 1 и 4).

Шатунные болты и гайки к ним у ЗИЛ-130 и некоторых других автомобильных двигателей изготовляются из хромо-никелевой ста­ли марки 40ХН. Применяются для этих целей также стали 40Х, 35ХМА и аналогичные им материалы.

Чтобы предотвратить возможное проворачивание шатунных болтов при затягивании гаек, их головки делают с вертикальным срезом, а в зоне сопряжения кривошипной головки шатуна со стерж­нем выфрезеровывают площадки или углубления с вертикальным уступом, удерживающим болты от проворачивания (см. рис. 1 и 4). В тракторных и других двигателях шатунные болты фикси­руются иногда специальными штифтами. С целью уменьшения габаритов и веса головки шатунов болты размещают по возмож­ности ближе к отверстиям под вкладыши. Допускаются даже небольшие выемки в стенках вкладышей, предназначенные для прохода шатунных болтов. Затяжка шатунных болтов строго нор­мируется и контролируется с помощью специальных динамометри­ческих ключей. Так, в двигателях ЗМЗ-66, ЗМЗ-21 момент затяжки составляет 6,8-7,5 кГ·м (≈68-75 н-м), в двигателе ЗИЛ-130 - 7-8кГ·м (≈70-80 н-м), а в двигателях ЯМЗ - 16-18 кГ·м (≈160-180 н-м). После затяжки корончатые гайки тщательно шплинтуются, а обычные (без прорезей под шплинты) фиксируются каким-либо другим способом (специальными контргайками, отштам­пованными из тонкой листовой стали, замковыми шайбами и т. д.).

Чрезмерная затяжка шатунных болтов или шпилек недопустима, гак как может привести к опасной вытяжке у них резьбы.

Нижние головки шатунов автомобильных двигателей обычно снабжаются подшипниками скольжения, для которых применяют сплавы, обладающие высокими антифрикционными свойствами и необходимой механической стойкостью. Только в редких случаях применяют подшипники качения, причем наружными и внутрен­ними обоймами (кольцами) для их роликов служат сама головка шатуна и шейка вала. Головка в этих случаях делается неразъем­ной, а коленчатый вал - составным или разборным. Так как вместе с изношенным роликовым подшипником приходится иногда заменять весь шатунно-кривошипный узел, то широкое применение подшипники качения находят лишь в сравнительно дешевых двига­телях мотоциклетного типа.

Из антифрикционных подшипниковых сплавов в двигателях внутреннего сгорания чаще всего применяют баббиты на оловянной или свинцовой основах, алюминиевые высокооловянистые сплавы и свинцовистую бронзу. На оловянной основе в автомобильных двигателях применяют сплав баббит Б-83, содержащий 83% олова. Это качественный, но довольно дорогой подшипниковый сплав. Более дешевым является сплав на свинцовой основе СОС-6-6, содержащий по 5-6% сурьмы и олова, остальное - свинец. Его называют также малосурьмянистым сплавом. Он обладает хоро­шими антифрикционными и механическими свойствами, стоек против коррозии, отлично прирабатывается и по сравнению со спла­вом Б-83 способствует меньшему износу шеек коленчатого вала. Сплав СОС-6-6 применяется для большинства отечественных карбю­раторных двигателей (ЗИЛ, МЗМА и др.). В двигателях с повы­шенными нагрузками па шатунные подшипники применяют высокооловянистый алюминиевый сплав, содержащий 20% олова, 1% меди, остальное - алюминий. Такой сплав используется, напри­мер, для подшипников V-образных двигателей ЗМЗ-53, ЗМЗ-66 и др.

Для шатунных подшипников дизелей, работающих с особенно высокими нагрузками, применяют свинцовистую бронзу Бр.С-30, содержащую 30% свинца. Как подшипниковый материал, свинцо­вистая бронза обладает повышенными механическими свойствами, но сравнительно плохо прирабатывается и подвержена коррозии под воздействием кислотных соединений, накапливающихся в мас­ле. При использовании свинцовистой бронзы картерное масло должно содержать поэтому специальные присадки, предохраняю­щие подшипники от разрушения.

В старых моделях двигателей антифрикционный сплав зали­вали непосредственно по основному металлу головки, как говори­лось «по телу». Заливка по телу не оказывала заметного влияния на габариты и вес головки. Хорошо обеспечивала отвод тепла от шатунной шейки вала, но так как толщина слоя заливки состав­ляла более 1 мм, то в процессе работы вместе с износом сказывалась заметная усадка антифрикционного сплава, вследствие чего отно­сительно быстро увеличивались зазоры в подшипниках и возни­кали стуки. Чтобы устранить или предупредить стуки подшипни­ков, их периодически приходилось подтягивать, т. е. устранять излишне большие зазоры за счет уменьшения числа тонких латун­ных прокладок, которые с этой целью (около 5 штук) ставились в разъем нижней головки шатуна.

Метод заливки по телу в современных быстроходных транспорт­ных двигателях не применяется. Нижние головки их снабжаются сменными взаимозаменяемыми вкладышами, форма которых точно соответствует цилиндру, состоящему из двух половин (полуколец). Общий вид вкладышей показан на рис. 1. Два вкладыша 12,поставленные в головку, образуют ее подшипник. Вкладыши имеют стальную, реже бронзовую, основу, с нанесенным на пей слоем антифрикционного сплава. Различают вкладыши толстостен­ные и тонкостенные. Вкладыши несколько увеличивают габариты и вес нижней головки шатуна, особенно толстостенные, имеющие толщину стенок более 3-4 мм. Поэтому последние применяются только для сравнительно тихоходных двигателей.

Шатуны быстроходных автомобильных двигателей, как правило, снабжаются тонкостенными вкладышами, выполненными из сталь­ной ленты толщиной 1,5-2,0 мм,покрытой антифрикционным сплавом, слой которого составляет всего 0,2-0,4 мм.Такие двух­слойные вкладыши называются биметаллическими. Они применяют­ся на большинстве отечественных карбюраторных двигателей. В настоящее время получили распространение трехслойные так называемые триметаллические тонкостенные вкладыши, у которых на стальную ленту сначала наносится подслой, а потом уже анти­фрикционный сплав. Триметаллические вкладыши толщиной 2 мм применяются, например, для шатунов двигателя ЗИЛ-130. На сталь­ную ленту таких вкладышей наносится медно-никелевый подслой, покрытый малосурьмянистым сплавом СОС-6-6. Трехслойные вкла­дыши применяются также для шатунных подшипников дизелей. Слой свинцовистой бронзы, толщина которого обычно составляет 0t3-0,7 мм, сверху покрывают еще тонким слоем свинцово-оловянистого сплава, что улучшает прирабатываемость вкладышей и пре­дохраняет их от коррозии. Трехслойные вкладыши допускают большие удельные давления на подшипники, чем биметаллические.

Гнездам под вкладыши и самим вкладышам придают строго цилиндрическую форму, а поверхности их обрабатывают с высокой точностью и чистотой, обеспечивая полную взаимозаменяемость для данного двигателя, что значительно упрощает ремонт. Под­шипники с тонкостенными вкладышами не нуждаются в периоди­ческой подтяжке, так как имеют малую толщину антифрикционного слоя, не дающего усадки. Они ставятся без регулировочных про­кладок, а изношенные заменяются новым комплектом.

С целью получения надежного прилегания вкладышей и улучшения их контакта со стенками головки шатуна они изготовляются так, чтобы при затягивании шатунных болтов обеспечивался неболь­шой гарантированный натяг. От проворачивания тонкостенные вкладыши удерживаются фиксирующим усом, который отгибается у одной из кромок вкладыша. Фиксирующий ус входит в специаль­ную пазовую канавку, выфрезерованную в стенке головки у разъема (см. рис. 4). Вкладыши с толщиной стенок 3 мм и более толстые, фиксируются штифтами (дизели В-2, ЯМЗ-204 и др.).

Шатунные подшипниковые вкладыши современных автомобиль­ных двигателей смазываются маслом, поступающим под давлением через сверление в кривошипе из общей системы смазки двигателя. Для поддержания давления в смазочном слое и увеличения его несущей способности рабочую поверхность шатунных вкладышей рекомендуется выполнять без маслораспределительных дуговых или продольных сквозных канавок. Диаметральный зазор между вкладышами и шатунной шейкой вала обычно составляет 0 025- 0,08 мм.

В тронковых двигателях внутреннего сгорания применяют шатуны двух типов: одинарные и сочлененные.

Одинарные шатуны, конструкция которых подробно рассмат­ривалась выше, получили большое распространение. Они приме­няются во всех однорядных двигателях и широко используются в двухрядных автомобильных двигателях. В последнем случае на каждую кривошипную шейку вала рядом друг с другом устанав­ливают два обычных одинарных шатуна. Вследствие этого один ряд цилиндров смещается относительно другого вдоль оси вала на величину, равную ширине нижней головки шатуна. Чтобы уменьшить такое смещение цилиндров, нижнюю головку изготов­ляют с возможно меньшей шириной, а иногда шатуны выполняют с асимметричным стержнем. Так, в V-образных двигателях автомо­билей ГАЗ-53, ГАЗ-66 стержни шатунов смещены относитель­но оси симметрии нижних головок на 1 мм. Смещение осей цилин­дров левого блока относительно правого составляет в них 24 мм.

Использование обычных одинарных шатунов в двухрядных дви­гателях приводит к увеличению длины шатунной шейки вала и общей длины двигателя, но в целом такая конструкция является самой простой и экономически целесообразной. Шатуны имеют одинаковую конструкцию, создаются и одинаковые условия работы для всех цилиндров двигателя. Шатуны можно полностью унифи­цировать также с шатунами однорядных двигателей.

Сочлененные шатунные узлы представляют единую конструк­цию, состоящую из двух спаренных между собой шатунов. Их обыч­но используют в многорядных двигателях. По характерным призна­кам конструкции различают вильчатые, или центральные, и кон­струкции с прицепным шатуном (рис. 5).

Рис. 5. Сочлененные шатуны: а) вильчатой конструкции, б) с прицепным шатуном

У вильчатых шатунов (см. рис. 5, а), используемых иногда в двухрядных двигателях, оси больших головок совпадают с осью шейки вала, в связи с чем их называют также центральными. Большая головка главного шатуна 1 имеет вильчатую конструкцию; а головка вспомогательного шатуна 2 устанавливается в развилку главного шатуна. Его называют поэтому внутренним, или средним, шатуном. Оба шатуна имеют разъемные нижние головки и снаб­жаются общими для них вкладышами 3, которые от проворачивания чаще всего фиксируются штифтами, расположенными в крышках 4вильчатой головки. У зафиксированных таким образом вкладышей внутренняя поверхность, соприкасающаяся с шейкой вала, пол­ностью покрывается антифрикционным сплавом, а наружная - только в средней части, т. е. в зоне размещения вспомогательного шатуна. Если вкладыши не фиксируются от проворачивания, то поверхности их с обеих сторон полностью покрываются анти­фрикционным сплавом. В этом случае вкладыши изнашиваются более равномерно.

Центральные шатуны обеспечивают одинаковую величину хода поршней во всех цилиндрах V-образного двигателя, как и обычные одинарные шатуны. Однако комплект их довольно сложен в про­изводстве, а вилке не всегда удается придать нужную жест­кость.

Конструкции с прицепным шатуном проще в производстве и обладают надежной жесткостью. Примером такой конструкции может служить шатунный узел дизеля В-2, показанный на рис. 5, б. Он состоит из главного 1 и вспомогательного прицепного 3шатунов. Главный шатун имеет верхнюю головку и двутавровый стержень обычной конструкции. Нижняя его головка снабжена тонкостен­ными вкладышами, залитыми свинцовистой бронзой, и выполнена с косым разъемом относительно стержня главного шатуна; иначе ее нельзя скомпоновать, так как под углом 67° к оси стержня на ней размещают две проушины 4, предназначенные для крепления при­цепного шатуна 3.Крышка главного шатуна крепится шестью шпильками 6, завернутыми в тело шатуна, причем от возможного проворачивания они фиксируются штифтами 5.

Прицепной шатун 3 имеет двутавровое сечение стержня; обе головки его неразъемны и поскольку условия их работы аналогич­ны, то они снабжены бронзовыми подшипниковыми втулками. Сочленение прицепного шатуна с главным осуществляется при помощи полого пальца 2, закрепленного в проушинах 4.

В конструкциях V-образных двигателей с прицепным шатуном последний располагают относительно стержня главного шатуна справа по вращению вала, чтобы уменьшить боковое давление на стенки цилиндра. Если при этом угол между осями отверстий в проушинах крепления прицепного шатуна и стержня главного шатуна больше угла развала между осями цилиндров, то ход порш­ня прицепного шатуна будет больше хода поршня главного шатуна.

Объясняется это тем, что нижняя головка прицепного шатуна опи­сывает не окружность, как головка главного шатуна, а эллипс, большая ось которого совпадает с направлением оси цилиндра, поэтому у поршня прицепного шатуна 5 > 2г, где 5 - величина хода поршня, а г - радиус кривошипа. Например, у дизеля В-2 оси цилиндров расположены под углом 60°, а оси отверстий в про­ушинах 4 пальца нижней (большой) головки прицепного шатуна и стержня главного шатуна - под углом 67°, вследствие чего раз­ница в величине хода поршней составляет в нем 6,7 мм.

Сочлененные шатуны с прицепивши и особенно с вильчатыми конструкциями кривошипных готовок вследствие относительной их сложности в двухрядных автомобильных двигателях применяют­ся очень редко. Наоборот, использование прицепных шатунов в звездообразных двигателях является необходимостью. Большая (нижняя) головка главного шатуна в звездообразных двигателях выполняется неразъемной.

При сборке автомобильных и других быстроходных двигателей шатуны подбирают из условий, чтобы комплект их имел минималь­ную разницу в весе. Так, в двигателях автомобилей «Волга», ГАЗ-66 и ряде других верхняя и нижняя головки шатунов подгоняются по весу с отклонением ±2 г, т. е. в пределах 4 г (≈0,04 н). Следо­вательно, общая разница в весе шатунов не превышает у них 8 г (≈0,08 н). Лишний металл обычно снимают с бобышэк-приливов, крышки шатуна и верхней головки. При отсутствии у верхней головки специального прилива вес подгоняют обтачиванием ее с обе­их сторон, как, например, в двигателе ЗМЗ-21.

-+

Порядок работы 4, 6, 8 цилиндрового двигателя - просто о сложном

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:


-расположение цилиндров двигателя: однорядное или V-образное;
-количество цилиндров;
-конструкция распредвала;
-тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.


Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ.

Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее.

Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного двигателя 360° .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).

Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120°).

Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90°).

Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам.

Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

$direct1

Рядным шестицилиндровым двигателем является конфигурация силового агрегата внутреннего сгорания, цилиндры в котором расположены в ряд. Они работают в следующем порядке – 1-5-3-6-2-4, а поршни вращают один коленчатый вал, который является общим. Зачастую такие двигатели обозначаются L6 либо I6. Плоскость расположения цилиндров в большинстве случаев бывает вертикальной либо находится под конкретным углом к вертикальной плоскости.

С теоретической точки зрения четырёхтактная версия I6 представляет собой отлично сбалансированную конфигурацию по отношению к инерционным силам верхних участков шатунов и разных порядков поршней, в которой сочетается относительно низкая сложность и стоимость производства с достаточно неплохой плавностью работы. Аналогичную сбалансированность показывает также V12, который работает как два двигателя, являющиеся шестицилиндровыми, с одним коленчатым валом, на которых можно наглядно увидеть порядок работы 6 цилиндрового двигателя.

Но на малых оборотах коленвала может наблюдаться небольшая вибрация, причина которой заключается в пульсации крутящего момента. Восьмицилиндровый рядный силовой агрегат, кроме полной сбалансированности, показывает более хорошую равномерность крутящего момента, нежели шестицилиндровый рядный, но сейчас он используется крайне редко по причине немалого количества недостатков.

Моторы I6-конфигурации эксплуатировались и продолжают эксплуатироваться на данный момент на тракторах, автомобилях, речных судах, а также автобусах. В течение последних десятилетий на легковом автотранспорте по причине широкого распространения переднеприводных систем, в которых силовой агрегат расположен поперечно, большей популярностью начали пользоваться шестицилиндровые V-образные двигатели, так как они являются более короткими и компактными, хоть стоят они больше, а их сбалансированность и технологичность являются меньшими.

Рабочий объем таких двигателей обычно находится в пределах от 2.0 до 5.0 литров. Использование данной конфигурации в силовых агрегатах, объем которых не достигает двух литров, не является оправданным, поскольку стоимость изготовления достаточно высокая, если сравнивать с четырёхцилиндровыми моторами, а длина «шестёрок» большая. Но схожие случаи также бывали, к примеру, на мотоцикл Benelli 750 Sei устанавливался силовой агрегат I6, объем которого составлял лишь 0.75 л.

fastkat.ru

Порядок работы цилиндров двигателя разных авто

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Информация о порядке работы цилиндров двигателя авто непременно понадобится в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате.

В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.

Порядок работы цилиндров двигателя – теория

Порядком работы цилиндров называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата.

Данная последовательность зависит от следующих факторов:

  • количество цилиндров;

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов.

Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора.

Двигатель работает максимально равномерно при наименьшем промежутке воспламенения. Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Порядок работы цилиндров двигателей разных автомобилей

У разных версий однотипных моторов цилиндры могут работать по-разному.

Для примера можно взять двигатель ЗМЗ. Порядок работы цилиндров 402 двигателя выглядит следующим образом – 1-2-4-3.

Но, если говорить о порядке работы цилиндров двигателя 406, то в данном случае он составляет 1-3-4-2.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней.

Данный угол определяется тактностью силового агрегата и числом цилиндров.

  • порядок работы 4 цилиндрового двигателя со 180-градусным интервалом между воспламенениями может составлять 1-2-4-3 либо 1-3-4-2;
  • порядок работы 6 цилиндрового двигателя с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями выглядит так: 1-5-3-6-2-4;
  • порядок работы 8 цилиндрового двигателя (V-образный) – 1-5-4-8-6-3-7-2 (90-градусный интервал между воспламенениями).

В каждой схеме двигателя, независимо от его производителя, порядок работы цилиндров начинается с главного цилиндра, отмеченного номером 1.

Наиболее вероятно, информация о порядке работы цилиндров двигателя автомобиля, не будет очень актуальной для вас.

Желаем успехов в определении порядка работы цилиндров мотора вашей машины.

webavtocar.ru

Порядок работы цилиндров двигателя на разных авто

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно выставить зажигание либо отрегулировать клапана.

Такие сведения непременно понадобятся в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате. В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, как работает двигатель не всегда достаточно.

Теоретическая часть

Порядком работы называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата. Данная последовательность зависит от следующих факторов:

  • количество цилиндров;
  • тип расположения цилиндров: V-образное либо рядное;
  • конструкционные особенности коленвала и распредвала.


Особенности рабочего цикла двигателя

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов. Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора. Двигатель работает максимально равномерно при наименьшем промежутке воспламенения.

Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Разные автомобили - разный принцип работы

У разных версий однотипных моторов цилиндры могут работать по-разному. Для примера можно взять двигатель ЗМЗ. Порядок работы цилиндров 402-го двигателя выглядит следующим образом – 1-2-4-3. А вот у двигателя 406 он составляет 1-3-4-2.

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней. Данный угол определяется тактностью силового агрегата и числом цилиндров.

  • 4-цилиндровый двигатель со 180-градусным интервалом между воспламенениями: 1-2-4-3 либо 1-3-4-2;
  • 6 цилиндровый двигатель с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями: 1-5-3-6-2-4;
  • 8 цилиндровый двигатель (V-образный, 90-градусный интервал между воспламенениями: 1-5-4-8-6-3-7-2.

В каждой схеме двигателя, независимо от его производителя, работа цилиндров начинается с главного цилиндра, отмеченного номером 1.

Данная статья сайта Avtopub.com находится в разделе «Устройство», с помощью которого вы сможете иметь общее представление о различных узлах всего автомобиля.

Желаем успехов в определении последовательности работы цилиндров мотора вашей машины. Также советуем обратить внимание на статью о том, как осуществляется замена прокладки головки блока цилиндров.

avtopub.com

21 Порядок работы многоцилиндрового двигателя

Порядок работы многоцилиндрового двигателя

зависит от типа двигателя (расположения цилинд­ров) и от количества цилиндров в нем.

Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени). Для определения этого угла продолжительность цикла, выраженную в градусах поворота коленчатого вала, делят на число цилиндров. Например, в четырехцилиндровом четырехтактном двигателе такт расширения (рабочий ход) происходит через 180° (720: 4) по отношению к предыдущему, т. е. через половину оборота коленчатого вала. Другие такты этого двигателя чередуются также через 180°. Поэтому шатунные шейки коленчатого вала у четырех цилиндровых двигателей расположены под углом 180° одна к другой, т. е. лежат в одной плоскости. Шатунные шейки первого и четвертого цилиндров направлены в одну сторону, а шатунные шейки второго и третьего цилиндров - в противоположную сторону. Такая форма коленчатого вала обеспечивает равномерное чередование рабочих ходов и хорошую уравновешенность двигателя, так как все поршни одновременно приходят в крайнее положение (два поршня вниз и два вверх).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторных двигателей 1-3-4-2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

При выборе порядка работы двигателя конструкторы стремятся равномернее распределить нагрузку на коленчатый вал.

Одноименные такты у четырехтактного шестицилиндрового двигателя совершаются через поворот коленчатого вала на 120°. Поэтому шатунные шейки расположены попарно в трех плоскостях под углом 120°. У четырехтактного восьмицилиндрового двигателя одноименные такты происходят через 90° поворота коленчатого вала и его шатунные шейки расположены крестообразно под углом 90° одна к другой.

В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов, что способствует его равномерному вращению.

Порядок работы восьмицилиндровых четырехтактных двигателей 1- 5-4-2-6-3-7-8, а шестицилиндровых 1-4-2-5-3-6.

Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопроводы к форсункам и отрегулировать клапаны.

22 Силы и моменты, действующие в кмш одноцилиндрового двигателя

При такте «сгорание-расширение» сила Р1, приложенная к поршневому пальцу, слагается из двух сил:

    силы P давления газов на поршень

    силы инерции Pи (сила инерции переменна по величине и направлению)

Суммарную силу P1 разложить на можно две силы: силу S, направленную вдоль оси шатуна, и силу N, прижимающую поршень к стенкам цилиндра.

Силу S перенесем в центр шатунной шейки, а к центру коленчатого вала приложим две равные силе S и параллельные ей силы S1 и S2. Тогда совместное действие сил S1 и S создаст (на плече R) крутящий момент, приводящий во вращение коленчатый вал, а сила S2 нагрузит коренные подшипники и через них будет передаваться на картер двигателя.

Разложим силу S2 на две перпендикулярно направленные силы N1 и Р2. Сила N1 численно равна силе N, но направлена в противоположную сторону; совместное действие сил N и N1 образует момент Nl, который стремится опрокинуть двигатель в сторону, обратную вращению коленчатого вала. Сила P2 численно равная силе Р1, действует вниз, а сила Р действует на головку цилиндра вверх, т.е. в противоположную сторону. Разность между силами Р и P1 представляет собой силу инерции поступательно движущихся масс Ри. Наибольшей величины эта сила достигает в момент изменения направления движения поршня.

Вращающиеся массы шатунной шейки, щек кривошипа и нижней части шатуна создают центробежную силу Рц, направленную по радиусу кривошипа в от сторону центра вращения.

Таким образом, в кривошипно-шатунном механизме одноцилиндрового двигателя, кроме крутящего момента, возникающего на коленчатом валу, действует ряд неуравновешенных моментов и сил, как то:

    реактивный, или опрокидывающий, момент Nl, воспринимаемый опорами двигателя через картер

    сила инерции поступательно движущихся масс Ри, направленная по оси цилиндра

    центробежная сила вращающихся масс Рц, направленная по кривошипу вала

Боковая сила N достигает наибольшей величины при расширении газов, когда поршень прижимается к левой стенке цилиндра, чем и объясняется ее обычно больший износ.

studfiles.net

Строительные машины и оборудование, справочник

Передвижные электростанции

Порядок работы четырехцилиндрового и шестицилиндрового двигателей

Для обеспечения наиболее плавной и уравновешенной работы двигателя устанавливают определенное чередование тактов, при котором в разных цилиндрах одновременно не происходит одинаковых тактов.

Последовательность чередования одноименных тактов в цилиндрах называется порядком работы двигателя. В четырехтактном четырехцилиндровом двигателе за каждый полуоборот коленчатого вала совершается рабочий ход. Порядок работы четырехцилиндрового двигателя может быть следующим: 1-2-4-3 (двигатель ГАЗ-МК) или 1-3-4-2 (двигатель КДМ-100).

В четырехцилиндровом двигателе за два оборота коленчатого вала совершается четыре рабочих хода, а в шестицилиндровом - шесть.

Порядок работы шестицилиндрового двигателя может быть следующим: 1-5-3-6-2-4; 1-4-2-6-3-5; 1-2-4-6- 5-3 или 1-3-5-6-4-2. Наибольшее распространение получил первый порядок работы, т.е. 1-5-3-6-2-4. По этому порядку работают двигатели 1Д6 передвижных электростанций ПЭС-100.

Кривошипы коленчатого вала шестицилиндрового двигателя попарно расположены под углом 120° (рис. 1), поэтому рабочие ходы перекрывают друг друга на 60°, чем достигается равномерная работа двигателя.

В восьмицилиндровом четырехтактном двигателе кривошипы коленчатого вала располагаются попарно под углом 90” (720°: 8 = 90°).

Многоцилиндровые однорядные двигатели хотя и обеспечивают равномерную работу, но имеют коленчатый вал большой длины, что приводит к значительной вибрации и увеличению га баритов, а следовательно, и веса двигателя. Для устранения ука занных недостатков применяют двухрядное расположение ци линдров под углом 90°. Такие двигатели принято называть с V-образным расположением цилиндров.

Рис. 1. Схема шестицилиндрового однорядного двигателя: 1 - коренные подшипники, 2 - шатунные подшипники, 3 - щека коленчатого вала.

На электростанциях ДЭС-200 в качестве первичного двигате ля применяются V-образные дизели 1Д12 с расположением ци линдров в два ряда (по шесть цилиндров в каждом ряду). Ко ленчатые валы этих дизелей имеют по шести кривошипов.

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Порядок работы 4, 6, 8 цилиндрового двигателя

По большому счёту, нам, обычным автолюбителям, совершенно не обязательно знать порядок работы цилиндров двигателя. Ну, работает и работает. Да, с этим трудно не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.

И совершенно не будет лишним знание о порядке работы цилиндров двигателя автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?

Ну согласитесь, смешно будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Да и ехать-то как? Если двигатель троит.

Что значит порядок работы цилиндров двигателя?

3D работа двигателя внутреннего сгорания

Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.

От чего зависит порядок работы цилиндров? Есть несколько факторов, а именно:

  • расположение цилиндров двигателя: однорядное или V-образное,
  • количество цилиндров,
  • конструкция распредвала,
  • тип и конструкция коленвала.

Рабочий цикл двигателя

Рабочий цикл двигателя состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Именно в этом случае происходит равномерная работа двигателя.

Обязательным условием является то, что цилиндры, работающие последовательно, не должны находиться рядом. Для этого и разрабатываются производителями двигателей, схемы порядка работы цилиндров двигателя. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с главного цилиндра №1.

Порядок работы цилиндров у разных двигателей

У двигателей одного типа, но разных модификаций, работа цилиндров может отличаться. Например, двигатель ЗМЗ. Порядок работы цилиндров двигателя 402 – 1-2-4-3, в то время как порядок работы цилиндров двигателя 406 – 1-3-4-2.

Если углубится в теорию работы двигателя, но так, чтобы не запутаться, то мы увидим следующее. Полный рабочий цикл 4-х тактного двигателя проходит за два оборота коленвала. В градусах это равно 720. У 2-х тактного двигателя 360 0 .

Колена вала смещают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности двигателя.

  • Порядок работы 4 цилиндрового двигателя, однорядного, чередование тактов происходит через 180 0. ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).
  • Порядок работы 6 цилиндрового рядного двигателя 1-5-3-6-2-4 (интервал между воспламенением составляет 120 0).
  • Порядок работы 8 цилиндрового V-образного двигателя 1-5-4-8-6-3-7-2 (интервал между воспламенениями 90 0).
  • Существует, например, порядок работы 12 цилиндрового двигателя W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12

Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У 8 цилиндрового двигателя ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90 0 .

То есть если в 1 цилиндре происходит рабочий цикл, точерез 90 градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и последовательно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен 4 рабочим ходам. Естественным образом напрашивается вывод, что 8 цилиндровый двигатель работает плавне и равномернее, чем 6 цилиндровый.

Скорее всего, глубокое знание порядка работы цилиндров двигателя вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти знания лишними не будут.

Успехов вам в изучении порядка работы цилиндров двигателя вашего автомобиля.

how.qip.ru

Порядок работы 4, 6, Восемь цилиндрового мотора - просто о сложном.

По большому счёту, нам, обыденным автолюбителям, совершенно не обязательно знать порядок работы цилиндров мотора. Ну, работает и работает. Да, с этим тяжело не согласится. Не нужно до того момента, пока вы не пожелаете своими руками выставить зажигание или не займетесь регулировкой зазоров клапанов.И совершенно не будет лишним зание о порядке работы цилиндров мотора автомобиля, когда вам нужно будет подсоединить высоковольтные провода к свечкам, либо трубопроводы высокого давления у дизеля. А если вы затеете ремонт головки блока цилиндров?Ну согласитесь, весело будет ехать на автосервис для того, чтобы правильно установить ВВ провода. Ну и ехать-то как? Если движок троит.Что значит порядок работы цилиндров мотора?Последовательность, с которой чередуются одноименные такты в разных цилиндрах и называется порядком работы цилиндров.От чего зависит порядок работы цилиндров? Есть несколько обстоятельств, а непосредственно:-расположение цилиндров мотора: однорядное или V-образное;-количество цилиндров;-конструкция распредвала;-тип и конструкция коленвала.Рабочий цикл мотораРабочий цикл мотора состоит из газораспределительных фаз. Последовательность этих фаз должна равномерно распределяться по силе воздействия на коленчатый вал. Непосредственно в этом случае происходит равномерная работа мотора.Неотклонимым условием будет то, что цилиндры, работающие попеременно, не должны находиться рядом. Для этого и разрабатываются производителями движков, схемы порядка работы цилиндров мотора. Но, во всех схемах порядок работы цилиндров начинает свой отсчет с головного цилиндра №1.У движков 1-го типа, но разных модификаций, работа цилиндров может отличаться. Например, движок ЗМЗ.Порядок работы цилиндров мотора Четыреста два – 1-2-4-3, в то время как порядок работы цилиндров мотора Четыреста 6 – 1-3-4-2.Если углубится в теорию работы мотора, но так, чтобы не запутаться, то мы увидим следующее.Полный рабочий цикл 4-х тактного мотора проходит за два оборота коленвала. В градусах это равно 72° . У 2-х тактного мотора 360° .Колена вала сдвигают на определенный угол для того, чтобы вал находился под постоянным усилием поршней. Этот угол напрямую зависит от количества цилиндров и тактности мотора.Порядок работы Четыре цилиндрового мотора, однорядного, чередование тактов происходит через 180° , ну а порядок работы цилиндров может быть 1-3-4-2 (ВАЗ) или 1-2-4-3 (ГАЗ).Порядок работы 6 цилиндрового рядного мотора 1-5-3-6-2-4 (интервал меж воспламенением составляет 120°).Порядок работы Восемь цилиндрового V-образного мотора 1-5-4-8-6-3-7-2 (интервал меж воспламенениями 90°).Существует, например, порядок работы Двенадцать цилиндрового мотора W-образного: 1-3-5-2-4-6 – это левые головки блока цилиндров, а правые: 7-9-11-8-10-12Для того, чтобы вам был понятен весь этот порядок цифр, рассмотрим пример. У Восемь цилиндрового мотора ЗиЛ порядок работы цилиндров следующий: 1-5-4-2-6-3-7-8. Кривошипы расположены под углом 90° .Другими словами если в Один цилиндре происходит рабочий цикл, то через Девяносто градусов поворота коленвала, рабочий цикл происходит в 5 цилиндре, и попеременно 4-2-6-3-7-8. В нашем случае один поворот коленвала равен Четыре рабочим ходам.Естественным образом напрашивается вывод, что Восемь цилиндровый движок работает плавне и равномернее, чем 6 цилиндровый.Скорее всего, глубочайшее зание порядка работы цилиндров мотора вашего автомобиля, вам не понадобится. Но общее представление об этом иметь необходимо. А если вы задумаете произвести ремонт, например головки блока цилиндров, то эти зания лишними не будут.Фурроров вам в исследовании порядка работы цилиндров мотора вашего автомобиля.

В большинстве случаев рядовому автовладельцу вовсе не нужно понимать порядок работы цилиндров двигателя. Однако эта информация не нужна до тех пор, пока у автолюбителя не появится желание самостоятельно либо отрегулировать клапана.

Такие сведения непременно понадобятся в том случае, если нужно будет подключить высоковольтные провода или трубопроводы в дизельном агрегате. В таких случаях добраться до станции техобслуживания бывает порой попросту невозможно, а знаний о том, не всегда достаточно.

Теоретическая часть

Порядком работы называют последовательность, с которой происходит чередование тактов в разных цилиндрах силового агрегата. Данная последовательность зависит от следующих факторов:

  • количество цилиндров;
  • тип расположения цилиндров: V-образное либо рядное;
  • конструкционные особенности коленвала и распредвала.


Особенности рабочего цикла двигателя

То, что происходит внутри цилиндра, называется рабочим циклом двигателя, который состоит из определенных фаз газораспределения.

Газораспределительной фазой называют момент, в который начинается открытие и заканчивается закрытие клапанов. Измеряется фаза газораспределения в градусах поворота коленчатого вала по отношению к верхней и нижней мёртвым точкам (ВМТ и НМТ).

На протяжении рабочего цикла в цилиндре воспламеняется смесь топлива и воздуха. Промежуток между воспламенениями в цилиндре оказывает непосредственное влияние на равномерность работы мотора. Двигатель работает максимально равномерно при наименьшем промежутке воспламенения.

Данный цикл непосредственно зависит от количества цилиндров. Чем большим является число цилиндров, тем меньшим будет интервал воспламенения.

Разные автомобили – разный принцип работы

У разных версий однотипных моторов цилиндры могут работать по-разному. Для примера можно взять двигатель ЗМЗ. Порядок работы цилиндров 402-го двигателя выглядит следующим образом – 1-2-4-3. А вот у двигателя 406 он составляет 1-3-4-2.

Нужно понимать, что один рабочий цикл четырехтактного мотора по длительности равен двум оборотам коленчатого вала. Если использовать градусное измерение, то он составляет 720°. У двухтактного двигателя он равен 360°.

Колена вала расположены под специальным углом, в результате чего вал постоянно пребывает под усилием поршней. Данный угол определяется тактностью силового агрегата и числом цилиндров.

  • 4-цилиндровый двигатель со 180-градусным интервалом между воспламенениями: 1-2-4-3 либо 1-3-4-2;
  • 6 цилиндровый двигатель с рядным расположением цилиндров и 120-градусным интервалом между воспламенениями: 1-5-3-6-2-4;
  • 8 цилиндровый двигатель (V-образный, 90-градусный интервал между воспламенениями: 1-5-4-8-6-3-7-2.

В каждой схеме двигателя, независимо от его производителя, работа цилиндров начинается с главного цилиндра, отмеченного номером 1.

Данная статья сайта сайт находится в разделе , с помощью которого вы сможете иметь общее представление о различных узлах всего автомобиля.

Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.

Теория работы ДВС

Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.

Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:

  • конструкция газораспределительного механизма;
  • углы между кривошипами коленвала автомобиля;
  • расположение цилиндров – V-подобное или рядное;
  • устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.

Как проходит рабочий цикл

Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.

Цикл, как видно из названия, делится на четыре такта работы:

  • Впуск.

В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.

  • Сжатие.

Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.

  • Рабочий ход.

Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.

  • Выпуск.

По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.

Иллюстрация процесса:

Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.

Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.

Очередность цилиндров

Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.

Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.

Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.

Один из вариантов распредвала:


Коленвал:


Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.

Рассмотрим типичный порядок у некоторых двигателей.

Рядный 4-цилиндровый

Существует две популярные компоновки таких ДВС:

  • рядная;
  • оппозитная.

Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.

Пример блока цилиндров:


Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т.д.

Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:

  • система 1–2–4–3 – менее популярная;
  • основной вариант 1–3–4–2.

Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.

4-цилиндровая оппозитная компоновка

В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.

Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.

Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.


Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.

Пятицилиндровые

Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.

На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.

Блок цилиндров:

Как действуют ДВС V6

Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.

Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.

Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.

Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:


ДВС на 8 цилиндров

Из-за габаритов двигатели делаются V-образной компоновки.

Восьмицилиндровый ДВС от Chevrolet:


Возможный порядок работы восьмицилиндрового двигателя современной машины:

  • вариант 1–5–4–2–6–3–7–8 – основной;
  • принцип 1–8–4–3–6–5–7–2 – другая вариация.

Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:

Интервал между зажиганием топлива 90 град.

Как определить порядок

Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков