Пластические смазки для автомобилей назначение виды. Марки пластичных смазок и их применение

Пластические смазки для автомобилей назначение виды. Марки пластичных смазок и их применение

Пластичные смазки – это смазки предназначенные для уменьшения трения в узлах качения и скольжения (подшипниках, шарнирах, ступицах колес и т.д.), работающих в значительном диапазоне температур.

Для получения автомобильных пластичных смазок используют главным образом обычное нефтяное мало- и средневязкое масло типа веретенного, машинного и т.д., которое загущают. В качестве загустителя служит кальциевое, натриевое или литиевое мыло. Для улучшения консервационных, противоизносных свойств, химической стабильности, термостойкости в смазки вводят различные присадки, наполнители и стабилизаторы в количестве 0,001…5%.

Основными физико-химическими свойствами пластичных смазок, определяющими их эксплуатационные качества, являются: вязкость (пенетрация), предел прочности, температура каплепадения, водостойкость, коллоидная и механическая стабильность.

Пластичные смазки делятся на четыре группы:

  • антифрикционные смазки
  • консервационные смазки
  • канатные смазки
  • уплотнительные смазки

Антифрикционные смазки используются для снижения износа и трения скольжения сопряженных деталей.

Консервационные смазки используют для предотвращения коррозии металлических изделий и механизмов при хранении, транспортировании и эксплуатации. Они обозначаются индексом «З». Консервационные смазки применяют для металлических изделий и механизмов всех видов, за исключением случаев требующих использования консервационных масел или твердых покрытий.

Канатные смазки применяют для предотвращения износа и коррозии стальных канатов и тросов. Их обозначают индексом «К».

Уплотнительные смазки используют для герметизации зазоров, облегчения сборки и разборки арматуры, сальниковых устройств, резьбовых соединений и любых подвижных соединений, в том числе вакуумных систем. Уплотнительные смазки делятся на три подгруппы:

  • арматурные (индекс «А»)
  • резьбовые («Р»)
  • вакуумные («В»)

Обозначение пластичной смазки кратко характеризует ее назначение, состав и свойства.

Обозначение состоит из пяти буквенных и цифровых индексов, указывающих: группу (подгруппу) в соответствии с назначением смазки; загуститель; рекомендуемый температурный интервал применения; дисперсионную среду; консистенцию смазки.

Приведем примеры обозначения пластичных смазок:

  • СКа2/8-2: С – смазка общего назначения для обычных температур (солидол); Ка – загущена кальциевым мылом; 2/8 – предназначена для применения при температурах – 20…+80 °С (вязкость смазки при –20 ºС близка к 2000 Па·с); отсутствие индекса дисперсионной среды – приготовлена на нефтяном масле; 2 –пенетрация 265…295 при 25 °С;
  • МЛи 3/13-3: М – многоцелевая; Ли – загущена литиевым мылом; 3/13 – предназначена для применения при температурах –30…+130 °С; отсутствие индекса дисперсионной среды свидетельствует о том, что смазка приготовлена на нефтяном масле; 3 – пенетрация 220…250 при 25 °С.

Для легковых автомобилей применяют следующие основные пластичные смазки:

  • «Литол-24» – для подшипников ступиц колес, водяного насоса, промежуточной опоры карданных валов, подшипниковых узлов, не подверженных влиянию воды, подшипников редуктора заднего моста
  • ЦИАТИМ-201 – для втулок валика прерывателя-распределителя, подшипников генератора, гибкого вала спидометра, замков и петель дверей и др.
  • смазка № 158 – для игольчатых подшипников при сборке карданных шарниров, не имеющих пресс-масленок, приборов электрооборудования и закрытых подшипников
  • УСсА – для листов рессор, троса привода тормозных механизмов в оболочке, буксирного троса
  • ВТВ-1 – для наконечников проводов и полюсных выводов , торсионов крышки багажника, упора капота, ограничителя открывания дверей, шарниров и пружин крышки топливного бака. В аэрозольной упаковке ВТВ-1 применяют также для смазывания замочных скважин дверей и крышки багажника
  • «Фиол-1» (литиевая) – для шлицевого соединения фланца переднего карданного вала, троса управления салазок перемещения сидений
  • ШРБ-4 – для шаровых пальцев передней подвески и шарниров рулевых тяг
  • ШРУС-4 – для шарниров равных угловых скоростей ведущих колес

Пластичные (консистентные) смазки представляют собой густые составы, используемые для уменьшения трения в подшипниках качения, рычажных и шарнирных системах, цепных, зубчатых и винтовых передачах.

В отличие от жидких масел пластичные смазки способны:

  • хорошо удерживаться на вертикальных поверхностях;
  • не выходить из контакта с трущимися поверхностями;
  • герметизировать смазываемый узел.

Материалы отличаются высокими смазывающими свойствами в широком температурном диапазоне и обладают длительным эксплуатационным периодом. Благодаря этому применение пластичных смазок может быть более экономичным в сравнении с жидкими маслами.

Состав

Консистентная смазка представляет собой концентрированную дисперсию твердого загустителя (10–15 %) в жидкой среде (70–90 %), в качестве которой выступают масла на синтетической или минеральной основе. Загустителями служат соли высокомолекулярных кислот (мыла), твердые углеводороды, а также продукты органического и неорганического происхождения. Именно они позволяют материалу вести себя как твердое тело в спокойной фазе и как вязкая жидкость при появлении нагрузки. Состав и количество загустителей регулируют эксплуатационные свойства пластичных смазок. Для придания материалу определенных качеств применяются модифицирующие присадки и добавки (до 5 % от общей массы). С целью снижения окислительных процессов могут использоваться органические антиоксиданты фенольной группы. Ингибиторами коррозии служат производные парафина, а для повышения противоизносных свойств применяются эфиры ортофосфорной кислоты. В качестве антифрикционных и герметизирующих добавок выступают диосульфит молибдена, графит, порошки свинца, меди или цинка.

Функциональное назначение консистентной смазки

В результате нанесения смазочного материала на рабочие элементы достигаются следующие условия:

  • снижается коэффициент трения на поверхности;
  • увеличивается скольжение рабочих элементов;
  • уменьшается износ поверхностей трущихся деталей за счет наличия между ними смазочной пленки;
  • происходит формирование антикоррозионной пленки, предохраняющей элементы механизма от разрушения;
  • обеспечивается защитный барьер при работе в агрессивных средах;
  • происходит охлаждение механизмов и отвод тепла (такого эффекта позволяют достичь пластичные смазки для подшипников).

Классификация продуктов

Основные виды консистентных смазок классифицируют по типу применяемого в них загустителя.

  • Мыльные. Для их приготовления используют соли карбоновых кислот. В эту группу входят кальциевые, натриевые и комплексные (с включением анионов лития, бария, алюминия и др.) смазки. Продукты на основе кальция (солидолы) являются самыми простыми, но имеют низкий температурный предел эксплуатации. Натриевые составы не обладают водостойкостью, поэтому практически вышли из употребления. Комплексные пластичные смазки термостойки и обладают высокими противозадирными свойствами.
  • Углеводородные. Составы изготавливаются на основе высокоплавких углеводородов. Преимущественно это канатные и консервационные материалы.
  • Неорганические. Для их загущения используют бентонит, силикагель, графит, асбест и другие вещества. Данный вид продуктов обладает высокой термостабильностью.
  • Органические. К ним относятся продукты на основе кристаллических полимеров и производных карбамида.

По области использования пластичные смазки делят:

  • на антифрикционные – самая большая группа, применяемая для снижения износа механизмов в процессе трения. В нее входят следующие виды смазочных материалов:
    • общего назначения (например, консистентная смазка для подшипников, материал для редукторов и зубчатых передач различных механизмов);
    • термостойкие (например, высокотемпературная консистентная смазка для скоростных узлов скольжения и качения, работающих в экстремальных температурных режимах);
    • морозостойкие (материалы, имеющие низкий порог загустения, используемые при очень низких температурах);
    • химически стойкие (например, консистентная смазка, используемая в механизмах, работающих в агрессивных средах);
    • приборные и др.
  • консервационные – предназначены для предотвращения коррозии деталей оборудования как в процессе эксплуатации, так и во время хранения;
  • уплотнительные – служат для герметизации соединений и облегчения их монтажа (например, консистентная силиконовая смазка для сальников запорной арматуры и резьбовых соединений);
  • узкоспециализированные – применяются в определенных отраслях с особыми требованиями к смазкам (пищевая, электротехническая и химическая промышленность, ж/д и авиационный транспорт и др.).

Стоит отметить, что данное разделение смазок весьма условно, так как материалы обладают одновременно несколькими свойствами и могут выполнять различные функции.

Основные свойства смазок

  • Прочностные качества. С помощью частиц загустителя в материале образуется структурный каркас, обладающий определенным пределом прочности на сдвиг, благодаря которому вещество способно удерживаться на вертикальных и наклонных поверхностях. На формирование каркаса также влияет химический состав жидкой основы. При увеличении температуры прочность материала уменьшается.
  • Механическая стабильность. Разжижение при деформации и обратное загустевание при снятии нагрузки является отличием смазок от жидких масел.
  • Вязкостные свойства. Эффективная вязкость материала определяется его прокачиваемостью при низких температурах. При большой скорости приложения нагрузки и увеличении температуры вязкость резко уменьшается.
  • Коллоидная стабильность. Эта характеристика пластичных смазок определяет их способность удерживать дисперсионную среду (базовую масляную основу) от выделения в отдельную массу в результате хранения или эксплуатации. На это влияет как вязкость самой жидкой составляющей, так и структурные связи загустителя.
  • Химическая стабильность. Способность смазок противостоять окислению под воздействием кислорода, которое приводит к образованию активных веществ, ухудшающих эксплуатационные свойства продукта.
  • Термическая стабильность. Сохранение пластичного состояния под влиянием кратковременного воздействия высоких температур.
  • Испаряемость масла. Один из важнейших показателей, определяющий стабильность смазки как при длительном хранении, так и при эксплуатации в условиях высокой температуры. Повышение концентрации загустителя за счет уменьшения количества масла приводит к изменению многих других характеристик.

Klüber Lubrication является крупным производителем смазочных материалов и предлагает качественную продукцию для различных областей применения.

Пластичные смазки , используются повсеместно. Они обслуживают промышленные станки и конвейеры, сельскохозяйственную технику и городской электротранспорт, подшипниковые узлы, работающие на предельных скоростях и при высоких температурах. Подобные условия эксплуатации диктуют особое внимание к качеству продукта, соответствию всех его характеристик ГОСТу и условиям использования. Пластические смазки позволяют экономить на смазочном материале и успешно применяются как закладные и консервационные, обеспечивая герметичную защиту узла. Свойства смазки определяют компоненты, которые входят в её состав: масло, загуститель, добавочные модифицирующие присадки.

Одним из важнейших условий работы подшипника является правильная его смазка. Недостаточное количество смазочного материала или неправильно выбранный смазочный материал неизбежно приводит к преждевременному износу подшипника и сокращению срока его службы.

Пластичная смазка определяет долговечность подшипника не в меньшей мере, чем материал его деталей. Особенно возросла роль смазки с повышением напряженности работы узлов трения: с повышением частот вращения, нагрузок и в первую очередь температуры (наиболее значительного фактора, обусловливающего долговечность смазочного материала в подшипнике).

Пластичная смазка в подшипниковых узлах выполняет следующие основные функции:

  • образует между рабочими поверхностями необходимую упруго гидродинамическую масляную пленку, которая одновременно смягчает удары тел качения о кольца и сепаратор, увеличивая этим долговечность подшипника и снижая шум при его работе;
  • уменьшает трение скольжения между поверхностями качения, возникающее вследствие их упругой деформации под действием нагрузки при работе подшипника;
  • уменьшает трение скольжения, возникающее между телами качения, сепаратором и кольцами;
  • служит в качестве охлаждающей среды;
  • способствует равномерному распределению тепла, образующегося при работе подшипника, по всему подшипнику и предотвращает этим развитие высокой температуры внутри подшипника;
  • защищает подшипник от коррозии;
  • препятствует проникновению в подшипник загрязнений из окружающей среды.

Смазывание подшипника пластичной смазкой

Смазывание подшипников качения в основном выполняется с помощью пластичных смазочных материалов (пластичных смазок) и жидких масел.

Главными критериями выбора вида смазочного материала являются рабочие условия подшипников качения, а именно:

  • скорость вращения,
  • колебания,
  • влияние окружающей среды (температура, влажность, агрессивность и др.).
  • Жидкие масла являются, несомненно, наиболее предпочтительными для смазывания подшипников. Во всех случаях, где это возможно, следует применять именно их. Существенным преимуществом жидких масел по сравнению с пластичной смазкой является улучшенный отвод тепла и частиц изношенного материала от узлов трения, а также отличная проникающая способность и отличное смазывание. Однако по сравнению с пластичной смазкой недостатками жидких масел являются конструкционные расходы, необходимые для того, чтобы удержать их в подшипниковом узле, а также опасность их утечки. Поэтому на практике по возможности стараются применять пластичные смазочные материалы. Основное преимущество пластичной смазки перед жидким маслом заключается в том, что она более длительное время работает в узлах трения и снижает, таким образом, конструкционные расходы. Более 90% всех подшипников качения смазываются именно пластичной смазкой .

    Пластичные смазки - это мазеобразные продукты, чьи состав и свойства разработаны для снижения трения и износа при превышении широчайшего предела температур и периода времени. Смазки бывают твердыми, полужидкими или мягкими, состоящими из:

    • загустителей,
    • смазочной жидкости, выступающей в качестве базового масла,
    • добавок (присадок).

    Рисунок 1.1 - Микроструктура пластичной смазки

    Масло, присутствующее в смазочном материале, называется его базовым маслом. Пропорции базового масла могут изменяться в зависимости от типа и количества сгустителя и возможного применения смазки. Для большинства смазок, содержание базового масла колеблется от 85% до 97%.

    В качестве базовых масел используют:

    • минеральные масла,
    • синтетические масла, в том числе сложноэфирные синтетические и силиконовые масла;
    • на растительных маслах;
    • на смеси вышеперечисленных масел (в основном минеральных и синтетических).

    Наиболее широкого применяются пластичные смазки на основе минерального масла и металлических мыл, металлических комплексных мыл, неорганических и органических загустителей. Они пригодны для работы при температуре до 150 ºС.

    Синтетические смазки превосходят минеральные по ряду качеств, таких как неокисляемость, низко- и высокотемпературные характеристики, устойчивость по отношению к жидким и газообразным реагентам. Специальное синтетическое базовое масло и загуститель играют немаловажную роль в определении вышеуказанных свойств.

    Сложноэфирное синтетическое масло - это сочетание кислоты, спирта и воды в качестве субпродукта. Сложные эфиры высоких спиртов с двухосновными жирными кислотами формируют сложноэфирные масла, используемые в качестве синтетических смазочных масел и базовых масел. Такие пластичные смазки обычно используются для низких температур и высоких скоростей.

    Различные виды силиконового базового масла имеют в своем составе метил силикона, фенил метил силикона, хлорофенилметил силикона и т.д. В дополнение к обычным металлическим и комплексным мылам, синтетические органические загустители имеют важное значение для производства силиконовых смазок. Они позволяют полнее использовать хорошие высокотемпературные характеристики силиконовых масел. Силиконовые смазки также имеют очень хорошие низкотемпературные параметры. Недостатком является малая нагружаемость смазочной пленки силиконовой смазки. Они непригодны для трения скольжения металла по металлу, так как может появиться значительный износ или рифление.

    В последнее время получили распространение пластичные смазки на основе перфторированного полиэфирного масла (PFPE) , обладающего исключительной термической стабильностью и нетоксичностью, способностью работать в условиях глубокого вакуума и нейтральностью к широкому спектру химических веществ. Смазки с использованием PFPE разрабатываются специально для эксплуатации в условиях:

    • высоких температур - до 300 ºС;
    • глубокого вакуума - остаточное давление до 10 -10 Па и менее;
    • агрессивных сред;
    • возможного контакта с пищевыми продуктами;
    • контакта с различными полимерами.

    Растительные масла в качестве базовых масел пластичных смазок применяются крайне редко. В основном, когда требуются применение возобновляемых ресурсов и возможность биологического распада. Масло из семян рапса — очень экономически эффективное натуральное эфирное базовое масло. Узкий температурный диапазон ограничивает возможности использования. Подсолнечное масло имеет более широкий температурный диапазон. Однако более высокая цена ограничивает экономические возможности использования.

    Для снижения себестоимости в ряде случаев смешиваются дешевые и дорогие виды или сорта базовых масел. Однако при этом эксплуатационные свойства пластичных смазок, основанные на смешанных маслах, могут ухудшиться.

    Загустители делятся на мыльные и немыльные , и сами по себе придают смазке определенные свойства. Мыльные смазки могут быть разделены на простые и сложные (комплексные) мыльные смазки, каждая из которых определяется названием катиона, на котором основано мыло (т.е. литиевые, натриевые, кальциевые, бариевые или алюминиевые мыльные смазки).

    Смазочные вещества, изготовленные из алюминиевых мыл и минеральных масел, характеризуются прозрачностью, хорошим сцеплением и хорошей устойчивостью к воде. Они были очень важны в 1940-х годах, но в настоящее время их место занято другими смазками, например литиевыми. Это связано с тем, что смазки с алюминиевым мылом более устойчивы к сдвигу, имеют относительно низкую точку каплепадения (около 110 0 С), и они могут превращаться в гель. Максимальные температуры колеблются в пределах от 60 0 С до 100 0 С.

    Рисунок 1.2 - Структура пластичной смазки на основе комплексного алюминиевого мыла и минерального базового масла

    Смазочные материалы, производящиеся из комплексных алюминиевых мыл и минеральных или синтетических базовых масел имеют высокую температурную стабильность, хорошую водостойкость; расчетные температуры находятся в пределах до 140 º C, точка каплепадения в некоторых случаях может превышать 250 º C.

    Смазки, производимые из бариевого или комплексного бариевого мыл с минеральными или синтетическими базовыми маслами имеют хорошую водостойкость, высокую нагружаемость и высокую устойчивость к сдвигам. Точка каплепадения для смазки на основе бариевого мыла составляет около 150 º C, точка каплепадения для смазок на комплексного бариевого мыла может превышать 220 º C в некоторых случая (в зависимости от их консистенции). За последние три десятилетия смазочные материалы на основе комплексного бариевого мыл хорошо зарекомендовали себя во всех областях промышленности. Промышленное производство смазок на основе комплексного бариевого мыла достаточно сложно.

    Смазочные материалы основаны на минеральных или синтетических маслах со сгустителями в виде металлических мыл кальция точка каплепадения смазки на основе кальциевого мыла составляет менее 130 º C. Сегодня Са-12-гидроксистеарат используется почти для всех простых кальциевых смазок. Эти смазки разрушаются, если термически перегружены, т.к. вода в загустителе испаряется.

    В применимых диапазонах температур приблизительно до 70 º C, смазки на основе кальциевых мыл становятся водоотталкивающими и полностью водостойкими. Соответственно, концентрация загустителя остается высокой. Если происходит перегрев, то образуется большое количество золы. Смазки на основе кальциевого мыла имеют ограничения только при использовании для роликоподшипников, но эти смазки используются в качестве герметичной смазки для предотвращения попадания воды. Современные смазки на основе комплексного кальциевого безводного мыла имеют диапазон температур, превышающий 120/130 º C, а также точку каплепадения свыше 220 º C. Они имеют хорошую водостойкость в указанном диапазоне температур.

    Смазки на основе минеральных или синтетических масел, загущенные литиевым мылом (рисунки 1-2), отвечают современным стандартам высокого качества, широкого применения и относятся к универсальным смазкам. Сегодня Li-12-гидростеарат используется практически во всех простых литиевых смазках. Они водонепроницаемы, имеют высокую точку каплепадения (около 180 º C), и имеют хорошие и очень хорошие высокотемпературные характеристики, зависящие от базового масла и его вязкости. Смазки на основе комплексных литиевых мыл характеризуются высокой термической стойкостью с точкой каплепадения, превышающей 220 º C, а также высокой стойкостью к окислению.

    Смазочные материалы, изготовленные с применением натриевых или комплексных натриевых мыл и минеральных масел, имеют хорошие адгезионные свойства. Вместе с водой они превращаются в эмульсию, и таким образом, совершенно теряют водостойкость. Малое количество воды поглощается без этого вредного воздействия, но если будет большее количество воды, то смазка превратиться в жидкость и у нее появиться способность к вытеканию. Натриевые смазки имеют относительно малые низкотемпературные характеристики, с диапазоном расчетных температур от -20 до 100 º C. Смазки на основе комплексного натриевого мыла имеют лучшую стойкость к высоким температурам (до 160 º C), и водостойкость в пределах до 50 º C. Смазки на основе комплексных натриевых мыл, содержащие минеральные или синтетические масла, считаются хорошими смазками для высокотемпературных и длительных применений.

    Гелевая смазка содержит неорганический загуститель, т.е. бентонит или силикагель. Этот загуститель состоит из очень тонко распределенных твердых частиц. Пористая поверхность этих частиц имеет свойство поглощать масла. Гелевые смазки не имеют четко определенной точки каплепадения или точки плавления. Они применяются в широком диапазоне температур, водостойкие, но сопротивляемость коррозии часто относительно слабая, что подходит для использования при высоких скоростях и больших нагрузках.

    Полимочевины - это синтетические органические загустители для смазочных материалов. Их точки каплепадения и точки плавления в зависимости от их консистенции превышают 220 0 С. Они обладают превосходной водостойкостью и хорошей смазочной способностью для металлопластиковых пар трущихся деталей и для эластомеров в зависимости от типа базового масла и вязкости. Полиуретановые смазки (таблица 3.10) на основе отдельных видов минеральных или синтетических масел являются хорошими смазками, используемыми длительное время и при высоких температурах.

    Использование пластиков как синтетических органических загустителей привело к новым разработкам в области смазочных материалов. PTFE (тефлон) - один из самых термоустойчивых загустителей для высокотемпературных смазок и смазок длительного использования, базовыми маслами которых являются высококачественные масла, такие как перфторалкиловое сложноэфирное синтетическое масло. Смазки, загущенные PTFE, не имеют определенных точек каплепаденияи точек плавления. Из-за своей сравнительно низкой точки плавления, PE (полиэтилен) достаточно редко используется в качестве загустителя.

    Присадки препятствуют износу и коррозии, обеспечивают дополнительный эффект снижения трения, улучшают сцепление смазки и предотвращают повреждения при пограничном и смешанном процессе трения. Таким образом, присадки улучшают качество, технические характеристики и, особенно, области применения смазки.

    В качестве стандартных смазочных материалов для закрытых подшипников используются пластичные смазки на основе литиевого загустителя и минерального масла с консистенцией NLGI 2 или 3, обеспечивающие работу в диапазоне температур -20 ... 100 ºС. В случае эксплуатации в особых условиях применяются специализированные пластичные смазки. Ниже приведены характеристики и основное назначение пластичных смазок применяемых в некоторых видах подшипников российского производства и ряда зарубежных производителей.

    Для нормальной работы подшипников достаточно небольшого количества смазочного материала. Переполнение подшипникового узла смазкой приводит не только к большим механическим потерям, но и к ухудшению ее свойств из-за повышенной температуры и непрерывного перемешивания всей массы смазок - последняя размягчается и может вытекать из подшипникового узла. Правильное количество смазки для подшипников качения зависит от конфигурации подшипника, скорости, дополнительной направляющей поверхности и уплотнений. Общих правил использования не существует из-за разницы направляющей поверхности подшипников качения и конфигурации.

    Для смазывания подшипников выпускается большое разнообразие пластичных смазок . Некоторые из них, в зависимости от области применения.

    Информация частично взята с сайта http://www.snr.com.ru/e/lubrications_1_2.htm

    Область применения пластичных смазок:

    • Смазки общего назначения

    Смазки пластичные общего назначения применяются во всех областях машиностроения, металлургии, транспорта, сельского хозяйства. Работают в узлах трения при температуре до +70 о С.

    Графитная смазка

    Солидол Ж

    Солидол С

    Смазки пластичные для повышенных температур применяются в энергетике, металлургии, химической и пищевой промышленности. Работоспособны при температуре до +110 о С.

    Консталин

    Смазка 1-13

    • Многоцелевые смазки

    Многоцелевые пластичные смазки для узлов трения машин и механизмов различных отраслей промышленности, сельского хозяйства и транспорта. Работоспособны при температуре от -30 о С до +130 о С в условиях повышенной влажности.

    Фиол-1, Фиол-2

    Литол-24

    Лимол

    • Термостойкие смазки

    Смазки для узлов трения, работающих при температурах свыше +150 о С.

    ВНИИНП-246

    ВНИИНП-231

    ВНИИНП-219

    ВНИИНП-210

    ВНИИНП-207

    Циатим-221

    Смазка Графитол

    • Низкотемпературные смазки

    Пластичные смазки для применения в узлах трения при температурах ниже -40 о С.

    Лита

    смазка ГОИ-54п

    Циатим-203

    Зимол

    • Химически стойкие смазки

    Смазки, стойкие к воздействию агрессивных химических сред.

    ВНИИНП-294

    ВНИИНП-283

    ВНИИНП-282

    Циатим-205

    • Приборные смазки

    Приборные смазки для узлов трения приборов и точных механизмов, работающих при невысоких нагрузках.

    Смазка ОКБ-122-7

    Циатим-201

    • Автомобильные смазки

    Смазки пластичные для применения в узлах автомобилей.

    Смазка №158

    Шрус-4

    • Железнодорожные смазки

    Смазки пластичные, разработанные для железнодорожного транспорта.

    ЖТ-79Л, ЖТ-72

    ЛЗ ЦНИИ

    СТП-з, СТП-л

    • Металлургические смазки

    Металлургические смазки созданы специально для применения в металлургии.

    Смазка ЛС-1П

    • Смазки индустриальные

    Узкоспециализированные смазки для различных отраслей промышленности.

    • Смазки электроконтактные

    Смазки токопроводящие для электрических контактов.

    УВС Суперконт

    УВС Экстраконт

    УВС Примаконт

    ЭПС-98

    • Смазки консервационные

    Пластичные смазки, предназначенные для защиты от коррозии.

    Смазка консервационная пушечная ПВК

    • Смазки канатные

    Канатные смазки и пропиточные составы.

    Торсиол-35, Торсиол-55

    Канатная БОЗ

    • Смазки резьбоуплотнительные (резьбовые)

    Смазки для уплотнения резьбовых соединений

    Арматол-60

    Арматол-238

    Резьбол Б

    Компания Центр-Ойл производит пластичные смазки.

    © Михаил Ожерельев

    В автомобиле имеется достаточно много узлов, где для разделения трущихся поверхностей используются густые мазеобразные продукты, называемые пластичными смазками . О них и пойдет речь.

    Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Например, колесные и шкворневые подшипники, шарниры рулевого управления и подвески, карданные и шлицевые соединения и т.д. Раньше этот список был достаточно обширный, а сегодня мы видим, что в автомобиле доля пластичных смазок среди прочих эксплуатационных материалов уменьшается. Причина тому - применение необслуживаемых узлов на основе инновационных конструкционных материалов (например, замена пары трения «втулка-палец» на шарнир из высокомолекулярной резины). Однако там, где использованию мазеобразных продуктов нет альтернативы, к ним сегодня предъявляются самые строгие требования, в том числе и экологического характера. Зачастую происходит так, что для каждого конкретного узла, будь то седельно-сцепное устройство или шарниры подвески кабины, рекомендуется лишь определенная марка эксплуатационного материала. Как выбрать правильный продукт? В этом нам и предстоит разобраться.

    И твердые, и жидкие


    © Михаил Ожерельев

    Пластичные смазки по консистенции занимают промежуточное положение между жидкими маслами и твердыми смазочными материалами (графитами, например). При невысокой температуре и отсутствии нагрузки смазка сохраняет форму, приданную ей ранее, а при нагреве и под нагрузкой начинает слабо течь - настолько слабо, что зоны трения не покидает и через уплотнения не просачивается.


    © Михаил Ожерельев

    Основные функции пластичных смазок не отличаются от тех, что возлагаются на жидкие масла. Все то же самое: снижение износа, предотвращение задиров, защита от коррозии. Специфика лишь в области применения: пригодность для смазывания сильно изношенных пар трения; возможность использования в негерметизированных и даже в открытых узлах, где имеется вынужденный контакт с влагой, пылью либо агрессивными средами; способность прочно держаться на смазываемых поверхностях. Очень важным свойством пластичных смазок является длительный срок эксплуатации. Некоторые современные продукты практически не изменяют своих показателей качества за весь период работы в узле трения и поэтому могут закладываться одноразово, при сборке.

    Если говорить об общих недостатках мазеобразных субстанций, то в первую очередь следует обратить внимание на отсут­ствие охлаждения (отвода теплоты) и выноса продуктов износа из зоны трения. К слову, возможно поэтому некоторые автопроизводители, разрабатывая такие узлы, как, например, колесные ступицы, нередко отдают предпочтение трансмиссионным маслам.


    © Михаил Ожерельев

    Самая простая пластичная смазка состоит из двух компонентов: масляной основы (минеральной или синтетической) и загустителя, под действием которых масло становится малоподвижным. Загуститель - каркас смазки. Упрощенно его можно сравнить с поролоном, удерживающим своими ячейками жид­кость. Чаще всего в качестве загустителя, содержание которого может составлять от 5 до 30% от массы продукта, используют кальциевые, литиевые или натриевые мыла (соли высших жирных кислот). Наиболее дешевы кальциевые смазки, получаемые загущением индустриальных минеральных масел кальциевыми мылами, - солидолы. Когда-то они были настолько общеупотребительными, что слово «солидол» стало обиходным обозначением пластичной смазки вообще, хотя это не совсем корректно. Солидолы не растворяются в воде и обладают очень высокими противоизносными действиями, однако нормально функционируют лишь в узлах с рабочей температурой до 50–65 °С, что очень ограничивает их применение в современных автомобилях. А наиболее универсальны литолы - смазки, полученные загущением нефтяных и синтетических масел литиевыми мылами. Они имеют очень высокую температуру каплепадения (около +200 °С), исключительно влагостойки и работоспособны практически в любых нагрузочных и тепловых режимах, что позволяет использовать их практически везде, где требуется пластичная смазка.


    © Михаил Ожерельев

    Также в качестве загустителя могут применяться углеводороды (парафин, церезин, петролатум) или неорганические соединения (глины, силикагели). Глиняный загуститель, в отличие от мыльного, не размягчается при высоких температурах, поэтому его часто можно найти в составе тугоплавких смазок. А вот углеводородные загустители используются в основном для производства консервационных материалов, поскольку их температура плавления не превышает 65 °С.

    Помимо основы и загустителя в состав смазки включают присадки, наполнители и модификаторы структуры. Присадки практически те же, что используются в товарных маслах (моторных и трансмиссионных), они представляют собой маслорастворимые поверхностно-активные вещества и составляют 0,1–5% от массы смазки. Особое место в пакете присадок занимают адгезионные, то есть клейкие компоненты - они усиливают действие загустителя и повышают способность смазки держаться на металле. Чтобы подстраховать работу смазки в предельном тепловом и нагрузочном режиме, иногда в нее вводят твердые и нерастворимые в масле наполнители - как правило, дисульфит молибдена и графит. Такие добавки обычно придают смазке специфический цвет, например, серебристо-черный (дисульфит молибдена), синий (фталоцианид меди), черный (углерод-графит).


    © Михаил Ожерельев

    Свойства и стандарты

    Область применения смазки определяется большим набором показателей, среди которых предел прочности при сдвиге, механическая стабильность, температура каплепадения, термическая стабильность, водостойкость и т.п. Но роль наиболее важных характеристик отводится температуре каплепадения и уровню пенетрации. По сути, именно эта пара является выходным параметром для оценки смазки.

    Температура каплепадения показывает, до каких пределов можно нагреть смазку, чтобы она не превратилась в жидкость и, следовательно, не потеряла своих свойств. Измеряют ее очень просто: кусочек смазки определенной массы нагревают равномерно со всех сторон, плавно повышая температуру до тех пор, пока с него не упадет первая капля. Граница каплепадения смазки должна быть на 10–20 градусов выше максимальной температуры нагрева узла, в котором она используется.


    © Михаил Ожерельев

    Термин «пенетрация» (проникновение) своим появлением обязан методу измерения - показатель густоты полужидких тел определяется в приборе, называемом пенетрометром. Для оценки консистенции металлический конус стандартного размера и формы под собственным весом в течение 5 с погружают в смазку, нагретую до температуры 25°С. Чем мягче смазка, тем глубже войдет в нее конус и тем выше ее пенетрация, и наоборот, более твердые смазки характеризуются меньшим числом пенетрации. К слову, подобные тесты используются не только при производстве смазок, но и в лако­красочном бизнесе.


    © Михаил Ожерельев

    Теперь о стандартах. Согласно общепринятой классификации смазки принято различать по области применения и густоте. В соответствии с областью применения смазки делятся на четыре группы: антифрикционные, консервационные, уплотнительные и канатные. Первая группа разделена на подгруппы: смазки общего назначения, многоцелевые смазки, термостойкие, низкотемпературные, химически стойкие, приборные, автомобильные, авиационные. Применительно к транспортной сфере наибольшее распространение получили антифрикционные смазки: многоцелевые (Литол-24, Фиол-2У, Зимол, Лита) и специальные автомобильные (ЛСЦ-15, Фиол-2У, ШРУС-4).


    © Михаил Ожерельев

    Чтобы различать продукты по консистенции, во всем мире используется американ­ская классификация NLGI (National lubricating Grease Institute), которая делит смазки на 9 классов. Критерием деления является уровень пенетрации. Чем выше класс, тем гуще продукт. Пластичные смазки, используемые в автомобилях, чаще относятся ко второму, реже - к первому классу. Для полужидких продуктов, рекомендованных к использованию в системах централизованной смазки, выделено два обособленных класса. Они обозначаются кодами 00 и 000.


    © Михаил Ожерельев

    Раньше в нашей стране наименование смазок устанавливали произвольно. В результате одни смазки получили словесное название (Солидол-С), другие - номерное (№158), третьи - обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-242). В 1979 году был введен ГОСТ 23258-78, согласно которому наименование смазки должно состоять из одного слова и буквенно-цифрового индекса (для различных модификаций). Отечественные нефтехимики этого правила придерживаются и сегодня. Что же касается импортной продукции, то за рубежом в настоящее время отсутствует единая для всех производителей классификация по эксплуатационным показателям. Большинство европейских производителей руководствуются немецким стандартом DIN-51 502, который устанавливает обозначение пластичных смазок, отображающее сразу несколько характеристик: назначение, тип базового масла, набор присадок, класс NLGI и диапазон рабочих температур. Например, обозначение K PHC 2 N-40 говорит о том, что данная пластичная смазка предназначена для смазывания подшипников скольжения и качения (литера К), содержит в своем составе противоизносные и противозадирные присадки (Р), произведена на базе синтетического масла (НС) и относится ко второму классу консистенции по NLGI (цифра 2). Максимальная температура применения такого продукта составляет +140 °С (N), а нижний эксплуатационный предел ограничен планкой –40 °С.


    © Михаил Ожерельев

    Некоторые мировые производители применяют свои собственные структуры обозначений. Скажем, система обозначения пластичных смазок Shell имеет следующую структуру: марка - «суффикс 1» - «суффикс 2» -
    класс NLGI. К примеру, продукт Shell Retinax HDX2 расшифровывается как смазка с очень высокими эксплуатационными характеристиками для агрегатов, работающих в чрезвычайно тяжелых условиях (HD), содержащая дисульфит молибдена (X) и относящаяся ко второму классу консистенции NLGI.

    Часто на этикетках зарубежных продуктов присутствует сразу два обозначения: собственная маркировка и код по стандарту DIN. По аналогии с жидкими маслами наиболее полные требования к эксплуатационным материалам отражаются в спецификациях автопроизводителей или производителей компонентов (Willy Vogel, British Timken, SKF). Номера соответствующих допусков также наносятся на этикетку смазочного материала рядом с обозначением его эксплуатационных свойств, но основная информация о рекомендованных к применению продуктах и сроках их замены содержится в руковод­стве по обслуживанию транспортного средства.


    © Михаил Ожерельев

    Смазки разных производителей (даже одинакового назначения) смешивать нельзя, так как они могут содержать разные по химическому составу присадки и другие компоненты. Также нельзя смешивать продукты с различными загустителями. Например, при смешивании литевой смазки (Литол-24) с кальциевой (солидол) смесь получает самые худшие эксплуатационные свойства. Из предлагаемых на рынке автомобильных пластичных смазок наиболее целесообразно выбирать те, которые рекомендованы изготовителем автомобиля.

    ТРЕНИЕ – это сила, возникающая на границе контакта двух движущихся относительно друг друга тел, препятствующая движению одного тела по поверхности другого. В технике влияние трения крайне негативно, так как оно неизбежно влечет за собой непроизводительные расходы энергии, износ машин и механизмов. Ежегодный ущерб, который наносит трение экономике ведущих технически развитых стран мира, исчисляется биллионами Евро. Поэтому неудивительно, что лучшие ученые, лучшие умы в области трибологии – науки о трении – бьются над проблемой снижения трения и, соответственно, уменьшения непроизводительных энергозатрат, износа машин и механизмов.

    Специалисты компании Liqui Moly также вносят весьма существенную лепту в общее дело борьбы с трением и износом. И, в первую очередь, это передовые, уникальные и подчас не имеющие аналогов разработки в области создания и производства так называемых энергосберегающих смазочных материалов.

    Существуют различные виды трения: трение скольжения, трение качения и комбинированное трение качения/скольжения. Для снижения потерь на трение и, соответственно, уменьшения износа поверхностей используются самые разнообразные смазывающие материалы: масла, консистентные смазки, пасты и лаки скольжения.

    Пасты отличаются наличием в составе твердых смазывающих компонентов: графита, дисульфида молибдена, керамики, металлов, что позволяет обеспечить достижение наилучших высокотемпературных свойств. В тех случаях, когда конструкция узла трения исключает возможность использования жидких масел, или когда нет необходимости в охлаждении деталей узлов и механизмов, наиболее подходящим смазочным материалом являются пластичные смазки. Пластичные смазки можно представить как некое «загущенное» базовое масло. При этом особо стоит отметить тот факт, что смазывающая пленка, создаваемая пластичной смазкой, всегда оказывается толще, нежели создаваемая только базовым маслом.

    На первый взгляд, структура высококачественных пластичных смазок сходна со структурой жидких масел: то же базовое масло, те же присадки, загустители. Однако основное различие между ними заключается в типе загустителя. Тип, количество загустителя, его химические свойства – все это, в конечном итоге, и определяет получение пластической смазки заданной консистенции (классификация по NLGI).

    Различные комбинации базовых масел и загустителей обеспечивают, соответственно, и получение пластических смазок с различными служебными свойствами и характеристиками, которые используются для решения тех или иных конкретных задач.

    Пластичные смазки с высокими эксплуатационными характеристиками находят широкое применение в тех случаях, когда условия работы исключают использование обычных масел. Между тем, прогресс во многих областях техники неразрывно связан с увеличением производительности оборудования, что, как правило, ведет и к ужесточению условий его эксплуатации. Именно поэтому в последнее время столь существенно возрастает роль специальных смазочных матриалов, которые, с одной стороны, позволяют обеспечить высокопроизводительную работу современного и подчас весьма дорогостоящего оборудования, а с другой стороны, надежно защищают его от износа и преждевременного выхода из строя.

    Существуют два основных пути снижения трения и износа. Первый путь – это использование химически активных присадок, которые либо повышают способность смазочного материала выдерживать большие нагрузки, либо, воздействуя непосредственно на металл, сглаживают его микрошероховатость. Второй путь – это применение пластичных смазок с плакирующими присадками, содержащих в своем составе мелкодисперсные частицы специального вещества или соединения (в виде тончайших пластинчатых включений) – дисульфид молибдена, графит или керамику. Эти включения, осаждаясь на поверхности металла, делают ее более гладкой.

    При разработке современных смазочных материалов с супевысокими эксплуатационными характеристиками в Liqui Moly успешно применяют оба эти метода. При этом возникает синергетический эффект, когда два используемых способа снижения трения и изнашивания взаимно усиливают действие друг друга. В результате достигается качественно иной, существенно более высокий результат, нежели простое «арифметическое» сложение эффективности воздействия каждого в отдельности взятого метода. В конечном итоге, все это позволяет получать качественно новые смазочные материалы, с более высокими эксплуатационными характеристиками и пролонгированным сроком сменности, а также в большей степени и полнее удовлетворять потребности потребителя.

    КЛАССИФИКАЦИЯ ПЛАСТИЧНЫХ СМАЗОК


    ХАРАКТЕРИСТИКИ ПЛАСТИЧНЫХ СМАЗОК

    ВОДОСТОЙКОСТЬ Применительно к пластичным смазкам обозначает несколько свойств: устойчивость к растворению в воде, способность поглощать влагу, проницаемость смазочного слоя для паров влаги, смываемость водой со смазываемых поверхностей.

    МЕХАНИЧЕСКАЯ СТАБИЛЬНОСТЬ Характеризует тиксотропные свойства, т.е. способность смазок практически мгновенно восстанавливать свою структуру (каркас) после выхода из зоны непосредственного контакта трущихся деталей. Благодаря этому уникальному свойству смазка легко удерживается в негерметизированных узлах трения.

    ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ Способность смазки сохранять свои свойства при воздействии повышенных температур.

    КОЛЛОИДНАЯ СТАБИЛЬНОСТЬ Характеризует выделение масла из смазки в процессе механического и температурного воздействия при хранении, транспортировке и применении.

    ХИМИЧЕСКАЯ СТАБИЛЬНОСТЬ Характеризует в основном устойчивость смазок к окислению.

    ИСПАРЯЕМОСТЬ Оценивает количество масла, испарившегося за определенный промежуток времени, при нагреве ее до максимальной температуры применения.

    КОРРОЗИОННАЯ АКТИВНОСТЬ Способность компонентов смазки вызывать коррозию металла узла трения.

    ЗАЩИТНЫЕ СВОЙСТВА Способность смазок защищать трущиеся поверхности металлов от воздействия коррозионно-активной внешней среды (вода, растворы солей и т.д.).

    ВЯЗКОСТЬ Густота смазок описывается степенью проникновения по данным из таблиц и может быть приведена к клас- сификации по NLGI.

    Реологические свойства смазок (структурная вязкость) гораздо меньше зависят от температуры, чем у ма- сел. Самыми распространенными являются мылозагущенные смазки, где в качестве загустителя использу- ются литиевые, натриевые, кальциевые и другие соли жирных кислот (мыла). Такие смазки становятся жид- кими, когда температура каплепадания превышена. Отлично от совместимости базовых масел, загустители должны рассматриваться на совместимость для совместного использования. Любая несовместимость отри- цательно влияет на производительность смазок. Современные смазки сформированы таким образом, что во время критических нагрузок их присадки создают смазывающую пленку, которая обеспечивает надеж- ность функционирования. Определяется величинами потерь на внутреннее трение в смазке. Фактически определяет пусковые характеристики механизмов, легкость подачи и заправки в узлы трения.

    Число пенетрации (вязкость для консистентных смазок) определяется по глубине проникновения конуса в слой смазки под действием силы тяжести. Так определяется принадлежность смазки к определенному клас- су NLGI.

    СТРОЕНИЕ СМАЗОК




    МАРКИРОВКА СМАЗОК




    КОНСИСТЕНТНЫЕ СМАЗКИ

    ПРИМЕНЕНИЕ: При тяжелых условиях эксплуатации и для шарниров равных угловых скоростей. Используется при сборке, обслуживании и ремонте автомобилей. Применяется в машиностроении, включая полиграфическое оборудование и т.д.

    ПРИМЕНЕНИЕ: Стандартная для пластических смазок. Не допускает смешение с другими аналогичными продук- тами. Перед закладкой смазки подшипниковый узел должен быть чистым и сухим. Упаковка 400 гр. (картуш) рас- считана специально под шприц высокого давления.


    ПРИМЕНЕНИЕ: Применяется для смазки ступичных подшипников автомобилей с дисковыми тормозами или универсально для высоконагруженных узлов. Не рекомендуется смешивать с другими типами смазок.

    ПРИМЕНЕНИЕ: Стандартная для пластических смазок. Наносится на сухие очищенные поверхности. Не рекомендуется смешивать с другими типами смазок.

    ПРИМЕНЕНИЕ: Используется для надежной смазки подшипников, петель и направляющих скольжения. Идеально подходит для применения в домашнем, садовом хозяйстве, для хобби, гаража и мастерской. Перед нанесением необходимо тщательно очистить поверхность от загрязнений и остатков прежнего смазочного материала. На места скольжения наносить тонким слоем. При использовании соблюдайте предписания автопроизводителей.

    СМАЗКА ДЛЯ РАЗЛИЧНЫХ ПРИВОДОВ. Бинарная синтетическая низкотемпературная смазка для всевозможных приводов. Легко прокачивается. Обладает отменной смазывающей способностью при температурах от –600С до +1500С и выше. Отлично воспринимает давление благодаря наличию ЕР-присадок, снижает износ. Сверхустойчива к старению, защищает от коррозии, имеет широкий температурный диапазон применения. Подходит для смазки пластмасс и любых других материалов. Обеспечивает надежное смазывание высокоскоростных подшипников, шнеков и других промышленных приводов. Применяется для пар трения металл/пластик в коробках передач, для смазки оружейных механизмов и т.п. Соответствует немецкому индустриальному стандарту: DIN 51502 KР НС 2 N-60.

    ПРИМЕНЕНИЕ: Обычно для пластических смазок. Перед нанесением обрабатываемые поверхности трения должны быть тщательно очищены и высушены. Не допускается смешивать с другими пластичными смазками.

    ПРИМЕНЕНИЕ: Применяется аналогично консистентным смазкам для приводов и подшипников.


    Синтетическая смазка для слабонагруженных комбинированных пар трения из пластмасс, резины, металла. Устраняет скрипы. Смазывает направляющие скольжения стекол и люков, шлифы стеклянных химических реакторов, механизмы из комбинированных материалов – пластмассы, металла и резины (механизмы принтеров, факсов, кофеварочных машин и др.). Защищает от износа и преждевременного старения детали из пластика и резины. Рекомендуется использовать при сборке уплотнений гидравлических механизмов и тормозных цилиндров. Химически инертна, не токсична, не горит и не поддерживает горение. Соответствует немецкому индустриальному стандарту: 51 502: S-40 KSI2.

    [ПРИМЕЧАНИЕ:] В 2010 году выпущена специальная 50-ти граммовая упаковка с поролоновым аппликатором, предназначенная для нанесения смазки на уплотнения дверей и окон, артикул 7655.


    СМАЗКИ В АЭРОЗОЛЬНОЙ УПАКОВКЕ

    По составу принципиально не отличаются от смазок в обычной фасовке. Благодаря наличию высокоактивных компонентов обладают чрезвычайно высокой проникающей способностью. Помогают быстро и без поломок разъединять прикипевшие и заржавевшие метизы. Незаменимы при проведении ремонтных работ, сборке и разборке узлов и механизмов. Экономят время и существенно повышают производительность труда. Сотни применений на производстве, ремонтных мастерских, в гараже и в быту.

    Пасты, в отличие от пластичных смазок, содержат дополнительные твердые компоненты. Поэтому они не утрачивают свою работоспособность даже тогда, когда базовое масло подверглось термической или хими- ческой деструкции.

    ПРИМЕНЕНИЕ: Используется для смазки, предупреждения пригара и защиты от коррозии конструкционных элементов, работающих при высокой температуре, включая высоко нагруженные штекерные и винтовые соединения. В частности, может использоваться для обработки резьбы свечей зажигания, соединений суппортов механизма дисковых тормозов, штекерных соединений системы выпуска и т.д.

    Антипригарная медная паста находит самое широкое применение в машиностроении, химической и нефтехимической промышленности, электротехнической промышленности и некоторых других областях.

    КЕРАМИЧЕСКАЯ ПАСТА. Синтетическая высокотемпературная смазка. Разработана на основе технологий нанокерамики с использованием синтетической базовой смазки. Предотвращает пригорание, прикипание, обеспечивает плавное скольжение деталей тормозной системы и других высоконагруженных механизмов, работающих в условиях сильного нагрева и высоких температур. Идеальна для обработки крепежных элементов системы выхлопа, нерабочих поверхностей тормозных колодок и направляющих суппортов. Устраняет скрипы тормозных механизмов. Отличные антикоррозионные и противоизносные свойства. Температура применения от –40°С до +1400°С. Устойчива к действию воды, кислот и щелочей. Одобрена VW Group.

    ПРИМЕНЕНИЕ: Для защиты от прикипания резьбовых и иных соединений. Наносится на предварительно очищенные поверхности. Для профессионального применения.



    Специальная синтетическая, высокотемпературная паста с содержанием керамики, предназначенная для тормозной системы. Обладает очень высокой адгезией. Устойчива к действию солей и попаданию воды. Уменьшает и предотвращает появления скрипов и шумов при работе тормозов, например, между накладкой тормозной колодки и опорой. Улучшает надежность работы тормозной системы в целом. Температурный диапазон применения от -40°С до +1200°С.




    © 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков